
R Module 1
A Primer on R for Windows

(Version 3.2.1)

Biometry

 2 University of Canberra

Certificate in EnvlroStats (Non-Award)

This document is part of an online Certificate in EnviroStats (Non-Award) by the University of Canberra.
Course enquiries can be directed to the address below. Expressions of interest in the course can be
made online through:

http://aerg.canberra.edu.au/envirostats

Copies of this publication are available from:

The Institute for Applied Ecology
University of Canberra ACT 2601
Australia

Email: georges@aerg.canberra.edu.au

Copyright @ 2015 Arthur Georges [V 1.3]

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, including electronic, mechanical, photographic, or magnetic,
without the prior written permission of the author.

Correct citation:

Georges, A. (2015). Biometry: Statistics for Ecology and Natural Resource Management. Module 1: A
Primer on R for Windows (Version 2.5.1). Flexible Delivery Development Unit, Centre for the
Enhancement of Learning, Teaching and Scholarship (CELTS), University of Canberra, ACT 2601,
Australia. ISBN: ####.

SPONSORED BY:

Materials development team:

Authors: Arthur Georges and Peter Caley, 2007
Instructional designer: Peter Donnan, 2002
Editor: Loretta Barnard, 2002
Graphic Design: Peter Delgado, 2002
Desktop Publishing: Kristi McDonald, 2004 Sue Bebbington, 2004
FDDU Project Manager: Deborah Veness, 2002

Dynamic Web Page Design: TCNI Software Solutions
 PO Box 47
 LATHAM ACT 2615
 Australia

First prepared in January, 2004 (Version 1.0).
Reprinted June 2007.
Revised and reprinted, June 2007 (Version 1.2)

Published by Technology & Educational Design Services

(TEDS)
University of Canberra
ACT 2601, AUSTRALIA

 Module 1 — A Primer on R for Windows

University of Canberra 3

Contents
What is R? ... 6

Lesson 1: The Operating Environment .. 6
The Command Line Interface ... 7

The Graphics Interface ... 8

The R Editor Interface .. 9

Error Handling and Help... 10
Help files .. 10
Vignettes ... 11
The Web .. 11

Managing Your Workspace .. 11
Starting a New Session ... 11
Resuming a Session ... 12
Terminating a Session .. 12
Managing your Objects ... 12

Where have we come? ... 13

What comes next? .. 13

Lesson 2: Basics of Data Structures .. 14
R as a Programming Language ... 14

Workflow and Control Structures .. 14
Input/Output (IO) ... 14
Data Structures ... 15

Objects .. 15
What are Objects? .. 15

Vectors .. 16
What is a Vector? .. 16
Vector arithmetic ... 17
Sequences .. 16

Factors .. 18
What is a Factor? .. 18

Arrays .. 18
What is an Array? .. 21
Referencing array values .. 21

Lists ... 18
What is a List? ... 31
Referencing Contents of a List ... 31

The Raw Data .. 23
Some Sample Data ... 24
Types of Data ... Error! Bookmark not defined.
Data Format .. 25

Data Frames .. 25
What is a Dataframe? ... 25
Importing Data to a Dataframe ... 25
Adding Rows and Columns to a Dataframe ... 30

How R Handles Missing Values ... 28
What symbol represents missing data? .. 28
Identifying missing data .. 29

Importing data ... 29
The read.table function ... 29
File specification .. 29
Assigning names to variables ... 30
Reading from Excel ... 30

Exporting data .. 31
The write.table function ... 31

Where have we come? ... 31

Where to Now?.. 32

Biometry

 4 University of Canberra

Lesson 3: Programming basics .. 33
Keywords and Operators ... 33

Keywords ... 33
Assignment statements ... 33
Operators .. 33

Branching .. 34
if-else Statements ... 34
Conditional Indexing ... 34
Subsetting ... 34
Other approaches ... 34

Looping ... 35
Loops ... 35
Functionals .. 35

Analysis ... 35

Where have we come? ... 35

Lesson 3: Practical programming .. 37
Getting Started .. 37

Firing up R-studio .. 37

R-studio windows ... 37
Console, Environment and Files ... 37
Setting your Working Directory ... 37
Program Editor .. 37
Workflow .. 38

Creating a data file .. 38
Input your data .. 38
Save your data .. 39

Creating a program ... 39
Creating an R script or program ... 39
Save your program .. 40

Executing a program .. 40
Line by line execution ... 40
Examining your workspace ... 41
Creating new variables ... 41
Working with your data ... 42

When things go wrong ... 43
Incorrect syntax for function calls ... 43
Failure to Balance Quotes .. 44
Failure to Balance Brackets .. 44
Mixing Up Characters with Numbers .. 44
Mixing Up Variable Names with Function Names. ... 44
Object Does Not Exist ... 44
Debugging ... 44

Writing R Programs I The Dataframe .. 45
Introducing the DataFrame ... 45
Attaching Dataframes to the Search Path .. 45
Accessing a Dataframe as an Indexed Array ... 47

Writing R Programs II Assignment Statements .. 48
Assignment – Creating New Objects .. 48
Math Functions and Transformations ... 49
Assignment statement chains ... 50
Selectively Deleting Rows ... 51
Selectively Deleting Columns ... 51

Writing R Programs III Functions .. 51
What are Functions? ... 51
Creating Your Own Functions ... 51

Writing R Programs IV Controlling Program Flow .. 52
IF-THEN-ELSE constructs .. 52
Looping Constructs ... 53
Data Subsetting ... 54

Where have we come? ... 56

 Module 1 — A Primer on R for Windows

University of Canberra 5

Where to now? .. 57

Lesson 3: Sample Statistical Analyses .. 58
R as a Statistical Analysis System .. 58

The CRAN Repository .. 58

Getting Started .. 59

Descriptive statistics .. 59
The summary function .. 59
Other useful functions ... 60
Subsetting ... 60

Histograms, barcharts .. 61
Histograms .. 61
Bar Charts ... 61

T-tests .. 62

Scatterplots ... 63
The plot statement .. 63

Correlations .. 64

Simple linear regression .. 65

Finishing up .. 66

Where have we come? ... 67

Biometry

 6 University of Canberra

What is R?

R is a statistical computing language based on an earlier implementation of
a programming language called S. S is still available in the commercial
form of S-plus, whereas R is in the public domain.

S was originally designed at Bell Laboratories in 1976, as an alternative to
the FORTRAN language and statistical subroutines available at that time. S
offered a more interactive approach to programming, its source version was
made public in 1981, it became available in commercial form in 1984, and it
has maintained its popularity particularly among the statistical community.

R was created by Ross Ihaka and Robert Gentleman (hence the name R)
at the University of Auckland, New Zealand, and is now developed by the R
Development Core Team. R is considered by its developers to be an
implementation of the S programming language.

Many statistical packages on the market, such as SAS, SPSS and
Statistica are regarded as fourth generation statistical programming
languages. The R programming language is a hybrid between a third
generation language such as C or FORTRAN and a fourth generation
language such as SAS. This provides for much greater flexibility for the
analyist, but demands much more in terms of programming skills. This will
become quickly evident as you move through this module.

R supports a wide variety of statistical and numerical techniques, with
comparable benchmark results to Octave and its proprietary counterpart
MATLAB. R is also provides the analyst with a very wide range of
packages, which are user-submitted program libraries, for specific
functions or specific areas of study. As a result, R is one of the most
comprehensive statistical analysis systems on the market. R has
exceptionally good graphical capacity, and can be used to produce
publication-quality graphs.

The versatility of R has led to many different styles in the way the program
is used. A programmer will use R in a very different way from someone
using R to undertake statistical analyses. This module presents only one
style. As your skills develop, and you learn more of the capabilities and
options of the programming language, you will develop your own style.

 Module 1 — A Primer on R for Windows

University of Canberra 7

Lesson 1: The Operating Environment

The Command Line Interface
Rather than using the standard distribution of R, we will be using an
implementation with a graphical user interface called R-studio.

When you first start R-studio, a graphical user interface opens with many
features to assist you (Figure 1-1). After some introductory text appears in
the Console, a Command Prompt is presented (>), and the system awaits
instructions.

Figure 1-1. R
as it appears

when it first
starts. The R

Console
window and

two other
windows are
visible. The

Program Editor
and R

Graphics
windows do
not appear

until required.

Before we move on, there are a couple of little tricks here that are worth
mentioning. The first is that the Console can be cleared of text using
control-L (^l). The second tip is that the up-arrow will recall previously
submitted commands, which will save you a lot of typing. Try these as you
go along.

The simplest way of using R is to supply instructions to this command
prompt.

> beetles <- c(15.2,12.1,17.8,13.9,16.4,15.1)

There is a lot to this simple command. What we are doing here is creating a
list of values, referred to as a vector in R terminology. In this case, the data
are lengths of beetle elytra. The concatenate function c() is used to
create the vector which is then assigned to the object beetles using the
assignment operator <-. The object beetles is called an object because
it is a self-contained entity that can be used in subsequent calculations.

Instructions to the command line are terminated with a return () or a semi-
colon (;). R instructions are case sensitive, so the objects beetles,
Beetles and BEETLES are all considered as separate objects. It is wise to
adopt a consistent practice, such as always using lower case unless upper
case is demanded by the R syntax.

Spaces matter, sometimes. So you will need to watch that.

Biometry

 8 University of Canberra

If you instruct R to undertake some action, and do not assign it to an object,
then R will direct the results of the instructions to the screen. For example,
requesting R to create the vector of beetle elytra without assigning it to
beetles will result in the vector being listed on the screen.

> c(15.2,12.1,17.8,13.9,16.4,15.1)
[1] 15.2 12.1 17.8 13.9 16.4 15.1

You can view the contents of an object simply by giving its name in
response to the command prompt.

> beetles
[1] 15.2 12.1 17.8 13.9 16.4 15.1

As an object, beetles can be used in subsequent calculations. For
example,

> mean(beetles)
[1] 15.08333

R programs often comprise a series of nested instructions, and the same
result could have been obtained by using

> mean(c(15.2,12.1,17.8,13.9,16.4,15.1))
[1] 15.08333

This is the advantage of an object-oriented approach to programming.

The Graphics Interface
When a command requires more sophisticated output, R will open a
purpose-built window. The most useful of these is the graphics window.

A scatter plot of 1000 pairs of coordinates drawn at random from a bivariate
standard normal distribution (mean=0, stdev=1) is made by combining the
plot() function with the rnorm() function as follows:

> plot(rnorm(1000,0,1),rnorm(1000,0,1))

The result is shown in in Figure 1-2. This scatter plot can be saved to a file
or copied to the clipboard by right-clicking on the graphics window and
choosing the desired outcome.

Figure 1-2. R
as it appears

after activating
the graphics

window.

 Module 1 — A Primer on R for Windows

University of Canberra 9

You can pull the graphics out into its own window with the [Zoom] tab, or
export the image in one of the standard formats using the [Export] tab.

The R Editor Interface
Using the Command Line Interface is great for a quick analysis, but it is
essentially a calculator mode. Once you have done the calculations, you
walk away only with the results. In more substantial analyses, we need to
better manage the set of programming instructions needed to do the job.
We do this using the R editor, which can be accessed from the file menu
[File>New File>R Script] or by typing control-N (^N).

The idea is to type all instructions in the R editor for progressive submission
or for submission as a block. At the end of the process, you have a
complete program listing that can be saved to disk for later use.

The R editor is not all that sophisticated. Each instruction is typed in on its
own line. A line can be submitted for execution by placing the cursor on it
and typing control-r (^r). Alternatively, blocks of instructions can be
highlighted and submitted in the same way. This allows progressive
debugging of the program as it is constructed.

It is wise to include abundant comments as part of your programs, so that
you can understand them later or pass them to others in a comprehensible
form. Comments are preceeded by the # character and terminated by a
return ().

Our simple R program, with comments added is shown in Figure 1-3.

 # Creating and displaying a list of beetle measures

 beetles <- c(15.2,12.1,17.8,13.9,16.4,15.1)

 beetles

 mean(beetles)

Figure 1-3. R
as it appears

after submitting
a simple
program.

Biometry

 10 University of Canberra

Accessing Packages

Not many users of R program all of the scripts that they require to
undertake a task. This would be like reinventing the wheel. Instead, it is
possible to access scripts written by those who have come before you, and
who have made those scripts available as a package. A complete list of
available packages can be obtained from the Comprehensive R Archive
Network known as CRAN (https://cran.r-project.org/).

You will generally identify the packages you require after some
investigative work on the web, by talking to colleagues or taking pointers
from the literature. For example, the package reshape2 is useful for
rearranging data, and can be accessed using the R-studio menus
(Packages>Install Packages) or using the statement

> install.packages("reshape2", lib="C:/Program Files/R/R-
3.2.1/library")

You may need administrator rights to install packages. Packages are only
installed once, not every time you require them.

The directory where packages are stored is called the library. R comes with
a standard set of packages. A list of installed packages can be obtained
using

> library()

or by examining the list using the Packages menu.

Apart from those included in the standard implementation of R, installed
packages are loaded for use in a session with the library function.

> library(reshape2)

A list of loaded packages is obtained with

> search()

Error Handling and Help

When you make an error in the syntax of commands given to R, the
program will respond with some form of diagnostic message. Sometimes
these are self-explanatory, sometimes they are not.

Help files

Fortunately, R has very extensive help documentation. If you know the
exact name of the function you want help on (e.g. sort), help can be
obtained using

> ?sort

More extensive help can be obtained from the help files. These are
accessed via the [Help] tab of R-studio. Here you can use the Search
Engine and Keywords link to access a wide range of information on the
operations of R.

 Module 1 — A Primer on R for Windows

University of Canberra 11

Figure 1-4.
Useful

information
available using
the [Help] tab.

Vignettes

Some packages in R have what are called vignettes. These are how-to
guides for topics, and usually offer gentle introductions and examples.
Alternatively, you can view vignettes from any loaded package by going to
the 'Vignettes' menu and selecting the required package name. This will
give a list of all available vignettes for you to open. Sometimes this menu
doesn't appear until you load a package which has a vignette.

The Web

The web and Google are good places to turn for assistance. An excellent
quick reference to R can be found on http://www.statmethods.net/

Managing Your Workspace

Starting a New Session

R facilitates the management of workflow by defining a workspace to hold
all of your objects – vectors, dataframes, user-defined functions and the
like. A workspace can be saved at the end of a session, and reloaded at a
later time when you want to continue the analysis.

Managing workflow can be difficult in R, and we need some basic rules to
minimize confusion.

 Identify discrete projects or analyses and create a separate Windows
directory for each one. This way you will avoid having a jumble of
objects from many analyses in your workspace.

 Tidy up after each session, by removing all unwanted and temporary
objects, before saving your workspace.

 Use standard file naming conventions, such as filename.R for R
programs and filename.dat for raw data files.

Biometry

 12 University of Canberra

Once you have started R, you need to start a new project using File>New
Project. R will prompt you for a directory in which to save all temporary and
working files, and the project image if you choose to save it later.

R may ask you to save existing work before opening a new project. You
should do this if you have important work that has been executed in a
previously open project.

Resuming a Session

To open an existing project use File>Open Project. This will prompt you for
the working directory, scan it for a previously saved workspace, load that
workspace if it exists and pass control back to you via the command
prompt.

Either way, with an existing or a new project, you can now begin a new
analysis, or continue an existing analysis confident that the objects,
datafiles, and other associated elements of your analysis are a self-
contained unit.

Terminating a Session

Exit a session by exiting from R, at which time you will be asked whether or
not you wish to save your workspace.

Managing your Objects

The active objects associated with your workspace are listed when you
select the [Global Environment] tab in R-studio.

In addition, there are a number of useful functions for managing your
workspace.

> setwd("c://R_analysis")

 Sets the default directory for files, and action that
can also be done from the R-studio menus.

> ls() provides a list of objects in your current
workspace.

> rm(object) deletes an object from your workspace.

> rm(list=ls()) deletes all objects from your workspace.

> sessionInfo() provides information about your session.

Setting a default directory

The best way to manage your work is to ensure that the files associated
with each project is in a separate directory on disk. To set the default
directory use

> setwd("C:/Users/username/Documents/R_demo")

R will then look in the directory R_demo when locating a file to read, and to
write a file. Note the direction of the backslashes in the file specification.

 Module 1 — A Primer on R for Windows

University of Canberra 13

Where have we come?
The above lesson was designed to give you an overview of the operation of
R through the graphical user interface. Having completed this lesson, you
should now be familiar the following concepts.

 R has available a Graphical User Interface (GUI) called R-studio, and
within it, the R Console, R Editor Window, Graphics Output Window, and
various Help Windows.

 R establishes a workspace. Managing the objects in that workspace is
challenging for the new user of R, but proficiency will come with practice.

What comes next?
Next we will cover the data structures that are central to the R programming
language, including vectors, factors, arrays, lists and dataframes.

Biometry

 14 University of Canberra

Lesson 2: Basic Data Structures

R as a Programming Language

Workflow and Control Structures

R is a programming language combined with the features of a statistical
package. As with most programming languages, R comprises:

 a set of keywords and operators that are combined by the programmer
to form statements or instructions to be executed. R is unusual in that
many of its commands comprise function calls, and so its keyword set is
largely made up of the names of functions.

 a clearly defined sequence in which these instructions are executed.

 mechanisms for branching, subject to some condition being met (Figure
1-2).

 mechanisms for looping, that is, repeating sequence of statements
while a condition is met until a condition is met, or some fixed number of
times (Figure 1-2).

 Mechanisms for isolating blocks of code, to be called on repeatedly (and
possibly recursively) as required. In R, these are called functions.

Figure 1-2.
A sample R

Program. The
program is

executed in
sequence one
statement at a
time from the
top. The "for"

statement
results in the

enclosed code
being repeated
for each line of

data.
Branching is

provided with
an "if"

statement.

Read the data from the clipboard, space delimited
Note: Cut from Excel

forest <- read.delim("clipboard")
View the contents of the dataframe forest to confirm

forest
Make dataframe forest the default

attach(forest)
calculate timber yield separately for each species

for (i in 1:length(species)){
 if (species[i] == "radiata") {
 yield <- density*3.1416*diameter*height*0.85
 }
 else {
 yield <- density*3.1416*diameter*height*0.62
 } # Terminate the if statement
} # Terminate the for loop

 # Add yield to the dataframe turtle
cbind(forest,yield)

 # Examine forest to confirm
forest

Input/Output (IO)

In addition, programming languages often have unique ways of assembling
and managing data and handle input and output (I/O) in unique ways that
must be mastered.

 Module 1 — A Primer on R for Windows

University of Canberra 15

Data Structures

Finally, a clear understanding of data structures used by R and the way R
passes data and results to and from the files, the screen and other
applications is essential for using R.

We will learn more about all of these concepts as we move through the
lessons of this Module, but for now, let’s focus on data structures.

Objects

What are Objects?

We used the term object earlier and it is appropriate now to define this
more precisely. An object in the context of R is a self-contained collection of
data, data attributes, code for manipulating the data, and object descriptors
that allow objects to recognise each other and interact appropriately.

Scalars, vectors, lists, matricies, arrays, dataframes, and even functions
are objects in R, each able to interact with others in clearly defined ways.
So a vector of data, an object, can be defined as follows.

> beetles <- c(15.2,12.1,17.8,13.9,16.4,15.1)

You can view the contents of an object simply by typing its name.

> beetles
 [1] 15.2 12.1 17.8 13.9 16.4 15.1

and pass it to another object, in this case, a function

> mean(beetles)
 [1] 15.08333

which recognises the object beetles as class “numeric” and acts upon it
accordingly.

Similarly, the object mean(beetles) can be passed to another function

> log(mean(beetles))
 [1] 0.6931472

in a nested statement.

You can create your own objects, and indeed do this whenever you create
a vector, for example. In this sense, the R programming language is object
oriented.

The class of an object can be determined using

> class(beetles)
[1] "numeric"

We start with one of the simplest but most fundamental of data structures,
the vector.

Biometry

 16 University of Canberra

Vectors

What is a Vector?

It is not possible to program in R without a good grasp of one data structure
in particular, so we introduce it early. It is a vector.

A vector is one of the simplest data structures in R. It is simply an ordered
set of values. It is an ordered set in the sense that values in the set have a
specific position in the array, and when the vector is accessed it passes the
elements across one at a time in the order that they appear in the array.

One way to create a vector is to use the c() function, for example

> width <- c(10.4, 5.6, 3.1, 6.4, 21.7)

Data Types

Vectors come in various forms, or classes, by which we mean that vectors
can be numeric, integer, character or logical, but cannot contain an
admixture of these types.

The most common classes are character, containing character strings of
varying length, numeric, containing real numbers, integer, containing
integers, and logical, containing TRUE or FALSE.

You can determine the class of a vector with the class() function.

> class(width)
[1] "numeric"

Coercion

Data of one type can be implicitly ‘coerced’ into another type during
calculations. For example, data containing 1’s and 0’s will be treated as
containing TRUE and FALSE respectively if used in a context where true
and false values are expected. Similarly, the number 10 in one context may
be viewed as the string “10” in another context. In this sense, R has
dynamic not static data types. This requires careful handling.

Data can be explicitly converted from one type, or class in R terminology,
using the functions as.numeric(), as.character() or as.logical().

> width
[1] 10.4 5.6 3.1 6.4 21.7

> width.txt <- as.character(width)
> width.txt
[1] "10.4" "5.6" "3.1" "6.4" "21.7"

Unrecognised implicit coercion is a source of many syntax issues for the
beginner, so explicit coercion is recommended, where possible, when
starting out.

Sequences

The sequence function seq() is a versatile way of making vectors
comprising incremental series. For example, the series of numbers from 1
to 10 in 0.2 unit intervals can be generated with

> series <- seq(1,10,0.2)
> series
 [1] 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
[15] 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4
[29] 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2

 Module 1 — A Primer on R for Windows

University of Canberra 17

[43] 9.4 9.6 9.8 10.0

Referencing Vector Values

You can view the contents of a vector by typing its name.

> width
[1] 10.4 5.6 3.1 6.4 21.7

Elements of the vector can be accessed individually in a variety of ways.
The most direct is to refer to the values by their position in the vector. For
example,

> width[4]
[1] 6.4

Note the use of square brackets for indexing a vector. You can also pick
out the first, third and fourth values by listing their positions in the vector.

> width[c(1,3,4)]
[1] 10.4 3.1 6.4

Note here the nested use of the concatenate function c() which passes the
listed values to the vector pointer successively so that the corresponding
values of the vector are returned successively.

If the values we want are consecutive, we can use the colon (:) in short-
hand notation to specify the concatenation.

> width[1:4]
[1] 10.4 5.6 3.1 6.4

You can select all values except those specified with negative signs.

> width[c(-2,-5)]
[1] 10.4 3.1 6.4

A value in a vector can be replaced using an assignment statement

> width[1] <- 10
> width
[1] 10.0 5.6 3.1 6.4 21.7

So you should by now have the gist. A vector is a data structure that holds
an ordered set of numbers, each of which can be addressed by its position
in the ordered set using square brackets.

Vector arithmetic

The normal rules of arithmetic apply to vectors in the sense that they apply
to each element of the vector (note that it is not at all like vector arithmetic
in the mathematical sense).

> width <- width + 10

will add 10 to each value of the vector. Similar actions occur with the other
arithmetic operators. The functions log(), exp(), sin(), cos(), tan(),
sqrt(), and so on, all have their usual meaning, and when applied to a
vector, are applied to each value of the vector.

It is possible to include two vectors in calculations, in which case their
values will be included in the equation as matched pairs. For example, if we
have two vectors with the same number of values, length and width,
then the assignment

> area <- length*width

Biometry

 18 University of Canberra

will yield a new vector with the values calculated by multiplying the first
value of length with the first value of width, the second value of length
with the second value of width, and so on. Calculations involving missing
values will yield missing values (NA) and calculations resulting in undefined
or indeterminate values will yield an R specific code NaN.

The standard arithmetic operators apply, and include and include the usual
addition (+), subtraction (-), division (/), multiplication (*) and exponentiation
(^).

Working with vectors of differing sizes is difficult, and we probably should
not go there.

Factors

What is a Factor?

Factors are special types of vectors whose values have labels associated
with them. For example, we might create a character vector containing a
combined sex and maturity code for animals caught on a particular day.

> sexcode <- c("F", "F", "M", "J", "F", "M", "J", "J", "F")
> sexcode
[1] "F" "F" "M" "J" "F" "M" "J" "J" "F"

Converting this to a factor causes the values, in alphabetical order, to be
assigned numbers, and those numbers to be assigned labels.

> sexcode <- factor(sexcode)
> sexcode
[1] F F M J F M J J F
Levels: F J M

Outwardly, this is a subtle difference to be sure. The numbers are hidden
behind the scenes, and re-caste with their character values by R when they
are printed out. That they are stored as numbers is evident when we print
the object sexcode out without reference to its class.

> unclass(sexcode)
[1] 1 1 3 2 1 3 2 2 1
attr(,"levels")
[1] "F" "J" "M"

The subtle difference between a character vector and a factor will become
evident in analyses that involve discrete factors, such as analysis of
variance. Confusing factors with vectors is a cause of much frustration for
those new to R, and you are advised to regularly check the class of the
objects you are using in calculations.

Matricies

What is a Matrix?

A matrix is a table with rows and columns. Like vectors, the matrix can
contain values only if they are of the same type. Matricies are usually
numeric.

 Module 1 — A Primer on R for Windows

University of Canberra 19

For example, a 2-dimensional matrix containing 18 values could be
established from a vector as follows.

> count <- seq(1:18)
> count
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

> a <- array(count, c(9,2)) # 9 rows, 2 columns
> a
 [,1] [,2]
 [1,] 1 10
 [2,] 2 11
 [3,] 3 12
 [4,] 4 13
 [5,] 5 14
 [6,] 6 15
 [7,] 7 16
 [8,] 8 17
 [9,] 9 18

Note that the array function fills the matrix from left to right, that is, it cycles
through the rows before moving to the next column. This is important, lest
you come terribly unstuck with computations.

Referencing matrix values

Because matricies are vectors with more complex indexing, it should come
as no surprise that you can access the contents of the array as if it were a
vector.

> a[15]
[1] 15

More conveniently, the contents of an array would be accessed using the
two index values

> a[6,2]
[1] 15

You can pull out a whole row with

> a[7,]
[1] 7 16

or a whole column with

> a[,2]
[1] 10 11 12 13 14 15 16 17 18

Assigning Row and Column Names

Row and column names can be added using the rownames() and
colnames() functions.

> rownames(a) <- c("AA45620", "AA35432", "AA75418",
"AA25767", "AA87556", "AA45666", "AA45667",
"AA45668", "AA45669")

> colnames(a) <- c("BRI", "CBR")
> a
 BRI CBR
AA45620 1 10
AA35432 2 11
AA75418 3 12
AA25767 4 13
AA87556 5 14
AA45666 6 15
AA45667 7 16
AA45668 8 17
AA45669 9 18

Biometry

 20 University of Canberra

Once you have named the rows and columns, the above values can be
referenced by name. The row and column names should be unique if they
are to be used in referencing. The statements in the previous section can
be alternatively represented by

> a["AA45666","CBR"]
[1] 15

a["AA45667",]
BRI CBR
 7 16
> a[,"CBR"]
AA45620 AA35432 AA75418 AA25767 AA87556 AA45666 AA45667 AA45668 AA45669
 10 11 12 13 14 15 16 17 18

Adding New Rows and Columns

> AA45213 <- c(32, 14)
> a <- rbind(a, AA45213)
> a
 BRI CBR
AA45620 1 10
AA35432 2 11
AA75418 3 12
AA25767 4 13
AA87556 5 14
AA45666 6 15
AA45667 7 16
AA45668 8 17
AA45669 9 18
AA45213 32 14

The function rbind() can be used in the same way to append a second
matrix with the same number of columns. We first create the second matrix
with the same row and column names and the same number of columns.

a2 <- array(c(3, 24, 68, 5, 17, 26, 18, 97), c(4,2))
rownames(a2) <- c("AA65634", "AA75417", "AA25438", "AA75769")
colnames(a2) <- c("BRI", "CBR")
a2
 BRI CBR
AA65634 3 17
AA75417 24 26
AA25438 68 18
AA75769 5 97

and then append matrix a2 to the end of matrix a.

> a <- rbind(a, a2)
> a
 BRI CBR
AA45620 1 10
AA35432 2 11
AA75418 3 12
AA25767 4 13
AA87556 5 14
AA45666 6 15
AA45667 7 16
AA45668 8 17
AA45669 9 18
AA65634 3 17
AA75417 24 26
AA25438 68 18
AA75769 5 97

In an analogous way, you can join two matricies with the same number of
rows side by side using cbind().

 Module 1 — A Primer on R for Windows

University of Canberra 21

Deleting Rows and Columns

A row can be deleted from a matrix by setting it to NULL.

a["AA25438",] <- NULL

and in a similar way, columns can be deleted.

Matrix Arithmetic

As with vectors, the normal rules of arithmetic apply to matricies in the
sense that they apply to each element of the matrix. For example,

> a <- a*10

will multiply all values in the matrix by 10, and so on.

If two matricies have the same dimensions, their elements can be added,
subtracted, multiplied or used in any equation to generate a new matrix of
the same size. The arithmetic operations apply to the elements of the two
matricies in pairwise fashion.

In addition, there is a suite of functions for undertaking matrix algebra, but
we will not cover those here.

Arrays

What is an Array?

A vector is an array with one dimension, a matrix is an array with two
dimensions, but arrays can refer to higher dimensional block data
structures.

As an example, a 3x5x2 array has three dimensions referring, for example,
to data from 3 sites at 5 times under 2 conditions (burnt and unburnt).

Arrays are defined using the array() function, in this case a 3x3x2
dimensional array.

> b <- array(count, c(3,3,2))
> b
 , , 1

 [,1] [,2] [,3]
 [1,] 1 4 7
 [2,] 2 5 8
 [3,] 3 6 9

 , , 2

 [,1] [,2] [,3]
 [1,] 10 13 16
 [2,] 11 14 17
 [3,] 12 15 18
Site_3 12 15 18

As with matricies, or higher level arrays, the array function cycles through
rows, columns, then slices etc, varying through the first array index first,
then the second, then the third and so on.

Referencing array values

Because arrays are vectors with more complex indexing, it should come as
no surprise that you can access the contents of the array as if it were a
vector.

Biometry

 22 University of Canberra

> b[15]
[1] 15

More conveniently, the contents of an array would be accessed using the
three index values

> b[3,2,2]
[1] 15

You can pull out a whole row with

> b[2,,2]
[1] 11 14 17

or a whole column with

> b[,3,2]
[1] 16 17 18

or a whole slice with

> b[,,1]
 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

Adding Row and Column Names

When the dimension of the array is greater than two, names can be
assigned to rows, columns and levels of higher dimensions by passing a list
of character vectors as follows.

> dimnames(b) <- list(c("Site_1", "Site_2", "Site_3"),
c("Winter", "Spring", "Summer"), c("Burnt", "Unburnt"))

> b
, , Burnt

 Winter Spring Summer
Site_1 1 4 7
Site_2 2 5 8
Site_3 3 6 9

, , Unburnt

 Winter Spring Summer
Site_1 10 13 16
Site_2 11 14 17

Once you have named the rows and columns, the above references can be
referenced by name. The row and column names should be unique if they
are to be used in referencing. The statements in the previous section can
be alternatively represented by

> b["Site_3","Spring","Unburnt"]
[1] 15

> b["Site_2",,"Unburnt"]
Winter Spring Summer
 11 14 17

> b[,"Summer","Unburnt"]
Site_1 Site_2 Site_3
 16 17 18

> b[,,"Burnt"]
 Winter Spring Summer
Site_1 1 4 7
Site_2 2 5 8
Site_3 3 6 9

Arrays will be further discussed in the context of conditional branching and
dataframes, after we consider the simplest form taken by raw data.

 Module 1 — A Primer on R for Windows

University of Canberra 23

Where have we come?
You should now be aware that R programming, like any programming, uses
a set of keywords and operators combined to form statements or
instructions. These instructions are arranged in a clearly defined sequence
in which they are executed. The language includes mechanisms for
branching, looping, and for isolating blocks of code, functions, to be
called on repeatedly as required.

In addition, R has specific data structures and means for input of data to
those structures and for output of results.

Specifically, this lesson provided an overview of the simplest of data
structures used in R programming. Having completed this lesson, you
should now be familiar the following concepts.

 R is a programming language. As such it has a vocabulary of keywords,
many of them function names provided in the base function library.

 R works with objects, and at this stage you know of the objects called
vectors, factors and arrays.

 Vectors are simply ordered lists of numbers, character strings or logical
values. Vectors can contain values that are numeric, character or logical,
but these cannot be admixed in the one vector.

 Factors are vectors where the values take on one of several specified
factor levels.

 Arrays are matricies of 2 dimensions or blocks of data of 3 or more
dimensions.

Where to Now?
Next we learn of more complex datastructures that are a special feature of
R, dataframes and lists.

Biometry

 24 University of Canberra

Lesson 3: Dataframes and Lists

Raw Data

Some Sample Data

When first using R, the raw data are best arranged as a rectangular block
made up of a series of rows (referred to as observations or entities) and
fields (referred to as variables or attributes). Matters are much simpler if the
raw data are arranged in this form, because this form is amenable to being
input to an array, or as we will see, a special data structure called a
dataframe.

The data in Table 1-1 are from a study of the pig-nosed turtle Carettochelys
insculpta in Kakadu National Park.

The data are arranged so that each row contains data collected from an
individual turtle. The measurements for each turtle are lined up to form
columns of values.

Note that there is an admixture of integer, numeric and character data. This
distinguishes dataframes from matricies.

The first variable contains the number of the tag attached to the turtle. The
second variable contains the sex of each individual, MALE for mature
males, FEMALE for mature females. Juvenile individuals cannot be reliably
sexed, so no sex has been recorded. The third variable contains shell
lengths in cm, the fourth variable contains head widths in cm and the last
variable contains body weights in kg.

Table 1-1.
Measurements of

the pig-nosed
turtle,

Carettochelys
insculpta.

Tag
Number

Sex Carapace
Length (cm)

Head Width
(cm)

Weight
(kg)

10 MALE 41.0 7.15 7.60
11 FEMALE 46.4 8.18 11.00
2 24.3 4.42 1.65

15 28.7 4.89 2.18
16 32.0 5.37 3.00
3 FEMALE 42.8 7.32 8.60
4 MALE 40.0 6.60 6.50
5 FEMALE 45.0 8.05 10.90

12 FEMALE 44.0 7.55 8.90
13 28.0 4.85 1.97
6 FEMALE 40.0 6.53 6.20
8 32.0 5.35 2.90
9 MALE 35.0 5.74 3.90

17 FEMALE 35.1 6.04 4.50
19 MALE 42.3 6.77 7.80
22 FEMALE 48.1 8.55 12.80
105 MALE 44.0 7.10 9.00
14 MALE 43.0 6.60 7.20
7 FEMALE 48.0 8.67 13.50
1 29.2 5.10 2.38

104 MALE 44.0 7.35 9.00

 Module 1 — A Primer on R for Windows

University of Canberra 25

Data Format

These data need to be converted to a form suitable for input to R. The
simplest way is to prepare the data as a block of numbers (a two-
dimensional array), delimited by spaces, with single word names at the
head of each column. Missing values are represented by the special R
keyword NA.

Data Frames

What is a Dataframe?

The dataframe is, as with a vector, a type of R object, but one that is more
complex. It is the primary means by which we will manage our datasets.

Dataframes are special R objects designed to hold data in a form that
comprises a block of observations or entities (rows) each with values for
their attributes, sometimes referred to as factors or variables (columns).
Names can be given to both the columns (attributes) and the rows
(entities).

A dataframe differs from a matrix or array in that it can contain an
admixture of data types, and so helps us manage the associations between
character vectors (sex for example) and numeric data (length, head
width and weight).

Importing Data to a Dataframe

The read.table() function is used to import data into a dataframe (see
Input and Output). This can be done directly for small datasets

> turtle <- read.table(header=TRUE, text="
 idno sex length hwidth weight
 10 MALE 41.0 7.15 7.60

Table 1-1.
Measurements of

the pig-nosed
turtle,

Carettochelys
insculpta

presented as a
text file suitable

for reading into R.
The even spacing
of the columns is
optional, to assist

readability.

idno sex length hwidth weight
10 MALE 41.0 7.15 7.60
11 FEMALE 46.4 8.18 11.00
2 NA 24.3 4.42 1.65
15 NA 28.7 4.89 2.18
16 NA 32.0 5.37 3.00
3 FEMALE 42.8 7.32 8.60
4 MALE 40.0 6.60 6.50
5 FEMALE 45.0 8.05 10.90
12 FEMALE 44.0 7.55 8.90
13 NA 28.0 4.85 1.97
6 FEMALE 40.0 6.53 6.20
8 NA 32.0 5.35 2.90
9 MALE 35.0 5.74 3.90
17 FEMALE 35.1 6.04 4.50
19 MALE 42.3 6.77 7.80
22 FEMALE 48.1 8.55 12.80
105 MALE 44.0 7.10 9.00
14 MALE 43.0 6.60 7.20
7 FEMALE 48.0 8.67 13.50
1 NA 29.2 5.10 2.38
104 MALE 44.0 7.35 9.00

These data would normally be held in a text file or in an excel spreadsheet
and saved as comma delimited (csv format). They can also be part of your
script.

Biometry

 26 University of Canberra

 11 FEMALE 46.4 8.18 11.00
 2 NA 24.3 4.42 1.65
 15 NA 28.7 4.89 2.18
 16 NA 32.0 5.37 3.00
 3 FEMALE 42.8 7.32 8.60
 4 MALE 40.0 6.60 6.50
 5 FEMALE 45.0 8.05 10.90
 12 FEMALE 44.0 7.55 8.90
 13 NA 28.0 4.85 1.97
 6 FEMALE 40.0 6.53 6.20
 8 NA 32.0 5.35 2.90
 9 MALE 35.0 5.74 3.90
 17 FEMALE 35.1 6.04 4.50
 19 MALE 42.3 6.77 7.80
 22 FEMALE 48.1 8.55 12.80
 105 MALE 44.0 7.10 9.00
 14 MALE 43.0 6.60 7.20
 7 FEMALE 48.0 8.67 13.50
 1 NA 29.2 5.10 2.38
 104 MALE 44.0 7.35 9.00
 ")

The first step is to examine the contents of the dataframe to see if it has
been input correctly.

> turtle
1 idno sex length hwidth weight
2 10 MALE 41.0 7.15 7.60
3 11 FEMALE 46.4 8.18 11.00
4 2 <NA> 24.3 4.42 1.65
5 15 <NA> 28.7 4.89 2.18
6 16 <NA> 32.0 5.37 3.00
7 3 FEMALE 42.8 7.32 8.60
8 4 MALE 40.0 6.60 6.50
9 5 FEMALE 45.0 8.05 10.90
10 12 FEMALE 44.0 7.55 8.90
11 13 <NA> 28.0 4.85 1.97
12 6 FEMALE 40.0 6.53 6.20
13 8 <NA> 32.0 5.35 2.90
14 9 MALE 35.0 5.74 3.90
15 17 FEMALE 35.1 6.04 4.50
16 19 MALE 42.3 6.77 7.80
17 22 FEMALE 48.1 8.55 12.80
18 105 MALE 44.0 7.10 9.00
19 14 MALE 43.0 6.60 7.20
20 7 FEMALE 48.0 8.67 13.50
21 1 <NA> 29.2 5.10 2.38
22 104 MALE 44.0 7.35 9.00

Referencing Data in a Dataframe

Index Referencing

The data in a dataframe comprises only the data and not the column
headings, even though these were in the original dataset. Hence,
turtle[1,1] holds the value 10.

This means that we can apply all that we have learned on referencing data
within a matrix. We can reference values directly using index numbers.

> turtle[6,2]
[1] FEMALE
Levels: FEMALE MALE

The character variable sex has been stored in the dataframe as a factor. It
is not a character vector, but a factor with the factor levels MALE and
FEMALE.

You can pull out a whole row with

 Module 1 — A Primer on R for Windows

University of Canberra 27

> turtle[2,]
 idno sex length hwidth weight
11 11 FEMALE 46.4 8.18 11

or a whole column with

> turtle[,2]
[1] MALE FEMALE <NA> <NA> <NA> FEMALE MALE FEMALE FEMALE <NA> FEMALE <NA>
MALE FEMALE MALE FEMALE MALE MALE FEMALE <NA> MALE
Levels: FEMALE MALE

Label Referencing

The labels in the first row of the datafile have been assigned to column
labels because we had header=TRUE in the script that read the data. The
row labels have been assigned the values “1” to “22”. It would be sensible
in this case to assign the turtle identity number to the rows.

> rownames(turtle)<- turtle[,1]
> turtle
 idno sex length hwidth weight
10 10 MALE 41.0 7.15 7.60
11 11 FEMALE 46.4 8.18 11.00
2 2 <NA> 24.3 4.42 1.65
15 15 <NA> 28.7 4.89 2.18
16 16 <NA> 32.0 5.37 3.00
3 3 FEMALE 42.8 7.32 8.60
4 4 MALE 40.0 6.60 6.50
5 5 FEMALE 45.0 8.05 10.90
12 12 FEMALE 44.0 7.55 8.90
13 13 <NA> 28.0 4.85 1.97
6 6 FEMALE 40.0 6.53 6.20
8 8 <NA> 32.0 5.35 2.90
9 9 MALE 35.0 5.74 3.90
17 17 FEMALE 35.1 6.04 4.50
19 19 MALE 42.3 6.77 7.80
22 22 FEMALE 48.1 8.55 12.80
105 105 MALE 44.0 7.10 9.00
14 14 MALE 43.0 6.60 7.20
7 7 FEMALE 48.0 8.67 13.50
1 1 <NA> 29.2 5.10 2.38
104 104 MALE 44.0 7.35 9.00

Now we can conveniently reference the data as we did with a matrix earlier,
using the row and column names.

> turtle["105", "weight"]
[1] 9

> turtle[“3”,”sex”]
[1] FEMALE
Levels: FEMALE MALE

> turtle[“11”,]
 idno sex length hwidth weight
11 11 FEMALE 46.4 8.18 11

> turtle[,”sex”]
[1] MALE FEMALE <NA> <NA> <NA> FEMALE MALE FEMALE FEMALE <NA> FEMALE <NA>
MALE FEMALE MALE FEMALE MALE MALE FEMALE <NA> MALE
Levels: FEMALE MALE

Note that R implicitly coerced the integers that are in the dataset as idno
into characters for the column labels when R executed the rownames
statement above.

We could have done this explicitly with

> rownames(turtle)<- as.character(turtle[,1])

Biometry

 28 University of Canberra

Shorthand Conventions

R has a shorthand convention for referring to data columns in a dataframe.

> turtle$length
 [1] 41.0 46.4 24.3 28.7 32.0 42.8 40.0 45.0 44.0 28.0 40.0 32.0 35.0 35.1
42.3 48.1 44.0 43.0 48.0 29.2 44.0

refers to the turtle lengths as a variable in the dataframe. This is equivalent
to

> turtle[,”length”]

or

> turtle[,3]

The convenience of this is carried further if you attach your dataframe to
your workspace

> attach(turtle)

Now if you wish to refer to the length data in computations, you can simply
use

> length
[1] 41.0 46.4 24.3 28.7 32.0 42.8 40.0 45.0 44.0 28.0 40.0 32.0 35.0 35.1
42.3 48.1 44.0 43.0 48.0 29.2 44.0

This greatly increases readability of R statements.

Dataframes can be detached using

> detach(turtle)

So in summary, the benefit of using dataframes is that you can mix data of
varying types (classes) in the one matrix, assign column and row names,
use all of the referencing conventions that apply to matricies, but in
addition, take advantage of the shorthand referencing of variables using the
$ operator and attach() and detach() functions.

How R Handles Missing Values

What symbol represents missing data?

You will have noticed in the example above that the keyword NA is
recognised by R as a missing value – the sex of juveniles is unknown.
Some R commands take into account missing values, such as summary(),
while others do not, such as mean().

Do not use the string "NA" to represent missing data in your program
statements. Use the keyword NA. So an appropriate assignment of the
fourth value of the vector weight to missing is

 weight[4] <- NA

and not

 weight[4] <- "NA"

 Module 1 — A Primer on R for Windows

University of Canberra 29

Identifying missing data

The function is.na() is used to determine which values of a variable are
missing and which have data. For example,

 is.na(sex)
 [1] FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE
FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

Many R functions have an option to specify whether or not to exclude
missing values from computations, for example

 mean(weight,na.rm=TRUE)

Importing data

The read.table function

We have seen one way of importing data to a dataframe, using the
read.table()function

turtle <- read.table(header=TRUE, text="
 idno sex length hwidth weight
 10 MALE 41.0 7.15 7.60
 11 FEMALE 46.4 8.18 11.00
 2 NA 24.3 4.42 1.65
 15 NA 28.7 4.89 2.18
 16 NA 32.0 5.37 3.00
 3 FEMALE 42.8 7.32 8.60
 4 MALE 40.0 6.60 6.50
 5 FEMALE 45.0 8.05 10.90
 12 FEMALE 44.0 7.55 8.90
 13 NA 28.0 4.85 1.97
 6 FEMALE 40.0 6.53 6.20
 8 NA 32.0 5.35 2.90
 9 MALE 35.0 5.74 3.90
 17 FEMALE 35.1 6.04 4.50
 19 MALE 42.3 6.77 7.80
 22 FEMALE 48.1 8.55 12.80
 105 MALE 44.0 7.10 9.00
 14 MALE 43.0 6.60 7.20
 7 FEMALE 48.0 8.67 13.50
 1 NA 29.2 5.10 2.38
 104 MALE 44.0 7.35 9.00
 ")

This may be fine for small datasets, but is not convenient in most cases.
Data usually are kept in a separate file on disk, usually in an Excel
spreadsheet. There they can be readily accessed by a variety of computer
packages, including R.

File specification

R does not recognise the drive:\path\filename.ext conventions of the
Windows environment. R uses forward slashes in place of reverse slashes,
that is drive://path/filename.ext. For example

turtle <- read.table(“c://caretto.csv”, sep=”,”, header=TRUE)

This statement assigns the data in the raw datafile caretto.csv to the
dataframe turtle.

Biometry

 30 University of Canberra

After reading the data in, you can verify the contents of the dataframe by
using

> turtle
1 idno sex length hwidth weight
2 10 MALE 41.0 7.15 7.60
3 11 FEMALE 46.4 8.18 11.00
4 2 <NA> 24.3 4.42 1.65
5 15 <NA> 28.7 4.89 2.18
6 16 <NA> 32.0 5.37 3.00
7 3 FEMALE 42.8 7.32 8.60
8 4 MALE 40.0 6.60 6.50
9 5 FEMALE 45.0 8.05 10.90
10 12 FEMALE 44.0 7.55 8.90
11 13 <NA> 28.0 4.85 1.97
12 6 FEMALE 40.0 6.53 6.20
13 8 <NA> 32.0 5.35 2.90
14 9 MALE 35.0 5.74 3.90
15 17 FEMALE 35.1 6.04 4.50
16 19 MALE 42.3 6.77 7.80
17 22 FEMALE 48.1 8.55 12.80
18 105 MALE 44.0 7.10 9.00
19 14 MALE 43.0 6.60 7.20
20 7 FEMALE 48.0 8.67 13.50
21 1 <NA> 29.2 5.10 2.38
22 104 MALE 44.0 7.35 9.00

Adding Rows and Columns to a Dataframe

The rbind() function can be used to join two like dataframes together,
one to follow the other, or to bind a vector to a dataframe as an additional
row. The vector needs to be of the same length as the number of columns
in the dataframe, and to have data of appropriate type in each column.
Character variables in a dataframe are often considered factors and their
values as factor levels. Any character values added may need to have
compatible factor levels.

There is an equivalent command called cbind() which can be used to
add vectors to a dataframe as new variables. These vectors need to be the
same length as the variables already in the dataframe.

Assigning names to variables

Sometimes data are held in a file without variable names. The raw data file
caretto_nn.csv contains the same data as caretto.csv, but without
the variable names heading up each column. We can still read these data
in and give the variables names subsequently.

turtle <- read.table("caretto_nn.csv", sep=”,”)
names(turtle) <- c("idno","sex","length","hwidth","weight")

You can again verify this by examining the contents of the dataframe
turtle.

Reading from Excel

R can access data directly from Microsoft Excel spreadsheets, which is
convenient, but the simplest method is to save your files as comma
delimited prior to reading them in with R as illustrated above.

Alternatively, you can copy data then read it from the clipboard. Make sure
that the data are in block form (a rectangular matrix comprising
observations as rows and attributes as columns). Make sure the column
names conform to the format expected by R for object names (no spaces).

 Module 1 — A Primer on R for Windows

University of Canberra 31

Select only the cells containing data (don't select any extra blank rows or
columns) and copy them to the clipboard. The contents of the clipboard can
then be transferred to an R dataframe using the read.delim() function.

mydata <- read.delim("clipboard")

The object mydata will contain the excel data including column names and
will be included in your workspace.

Exporting data

The write.table function

We use the write.table()function to export data to a file, tab delimited
for example.

write.table(turtle, "mydata.txt", sep="\t")

or as a comma delimited csv file

write.table(turtle, "mydata.csv", sep=",")

The new data file will appear in your default directory.

Lists

What is a List?

Lists are vectors of objects of various types. For example, a list may
comprise an ordered series of scalers, vectors, arrays, factors and
dataframes.

For example, we could create a list called cabinet, and assign to it the
various objects we have created so far.

> cabinet <- list(lengths=beetles, counts=b, sex=sexcode)
> cabinet
$lengths
[1] 15.2 12.1 17.8 13.9 16.4 15.1

$counts
, , 1

 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

, , 2

 [,1] [,2] [,3]
[1,] 10 13 16
[2,] 11 14 17
[3,] 12 15 18

$sex
[1] F F M J F M J J F
Levels: F J M

Referencing Contents of a List

You can extract an object from a list using

> cabinet[[3]]

Biometry

 32 University of Canberra

[1] F F M J F M J J F
Levels: F J M

but a more convenient way is to take advantage of the list labels.

> cabinet$lengths
[1] 15.2 12.1 17.8 13.9 16.4 15.1

Accessing values from an object within a list is now intuitive, I hope.

> cabinet$lengths[4]
[1] 13.9

Where have we come?
You should now be aware that R programming, like any programming, uses
a set of keywords and operators combined to form statements or
instructions. These instructions are arranged in a clearly defined sequence
in which they are executed. The language includes mechanisms for
branching, looping, and for isolating blocks of code, functions, to be
called on repeatedly as required.

In addition, R has specific data structures and means for input of data to
those structures and for output of results.

Specifically, this lesson provided an overview of the data structures
commonly used in R programming. Having completed this lesson, you
should now be familiar the following concepts.

 R is a programming language. As such it has a vocabulary of keywords,
many of them function names provided in the base function library.

 R works with objects, and at this stage you need to know of the objects
called vectors, factors, arrays, lists and dataframes.

 Vectors are simply ordered lists of numbers, character strings or logical
values. Vectors can contain values that are numeric, character or logical,
but these cannot be admixed in the one vector.

 Factors are vectors where the values take on one of several specified
factor levels.

 Arrays are matricies of 2 dimensions or blocks of data of 3 or more
dimensions.

 Lists are like vectors but the elements can be objects of any kind, an
admixture of vectors (numeric, character or logical), arrays, lists or
dataframes.

 Dataframes are special structures for working with data comprised of a
set of observations or entities (rows) each with values for each of a set
of variables or attributes (columns).

Finally, you have some simple tools for importing data from a file and for
exporting data to a file.

Lesson 2 was an overview. The best way of learning is by doing, and it is
when you start using these data structures to solve programming
challenges that you will see their value.

Where to Now?
Now it is time to move on to learn some programming.

 Module 1 — A Primer on R for Windows

University of Canberra 33

Lesson 4: Programming basics
Once the data are read into a dataframe, we can proceed to analyse them
with the fundamental tools provided as part of the R base library or with the
tools from any additional libraries we have chosen to load.

Keywords and Operators

Keywords

R has remarkably few reserved keywords, but use of these as object or
user-defined function names must be avoided. They include
TRUE FALSE NULL NA NaN Inf
if else repeat while for in next break function pi

It is not necessary, but wise to avoid using function names defined in
loaded packages as object names or as the names of your own functions.
Some people avoid the confusion by using uppercase names for all of their
objects and personal functions.

Assignment statements

The most common R statement used in programming is the assignment
statement. For example, assignment statements can be used to create new
variables:

 lglength <- log10(length)

This means literally, take the contents of object length, log the values
(base 10) and place the logged values in new object lglength.

Operators

The standard operators recognized by R are

Operator Description

+ addition

- subtraction

* multiplication

/ division

^ or ** exponentiation

< less than

<= less than or equal to

> greater than

>= greater than or equal to

== exactly equal to [NOTE!!]

!= not equal to

!x Not x

x | y x OR y

x & y x AND y

Biometry

 34 University of Canberra

Note that the logical operator for equality is not = but ==.

Branching

if-else Statements

As with any programming language, R has statements that allow for
branching, that is, executing statements provided some condition is met. In
fact R has an abundance of approaches to this.

One way is to use IF-THEN-ELSE constructs:

 if (sex == "MALE"){
 condition <- 0.00140*length^2.91 - weight
 }
 else if(sex == "FEMALE"){
 condition <- 0.00135*length^2.85 - weight
 }
 else {
 condition <- NA
 }

Conditional Indexing

A second approach is to access the dataframe as an array turtle[i,j],
putting conditions on the index variables i or j.

turtle[sex=="FEMALE",]

will print out only those rows for which sex=="FEMALE". The conditional
statement can be quite complex

turtle[sex=="female" & length>40.0,].

We can select only those observations for which an indicator variable takes
on particular values,

turtle[is.element(idno, c(17,19, 22,105)),]

and of course, these restrictive references to the data can be used inside
other functions,

 summary(turtle[is.element(idno, c(17,19, 22,105)),])

Subsetting

A third approach is to split the data into subsets for further analysis

 males <- subset(turtle, sex == "MALE")
 females <- subset(turtle, sex == "FEMALE")

A forth approach is to apply functions such as summary()separately to
each sex with the tapply() function

 tapply(length, sex, summary)

Other approaches

There are still other appoaches using the by() function or the by option
within functions. It will take time to become familiar with these different
options and when they are each most efficiently applied.

 Module 1 — A Primer on R for Windows

University of Canberra 35

Looping

Loops

As with any programming language, R has statements that allow for
looping, that is, repeating blocks of code. This is possible with one of the
DO-WHILE, DO-UNTIL OR DO-FOR constructs in R, for example

 for (i in 1:length(species)){
 if (species[i] == "radiata") {
 yield <- density*3.1416*diameter*height*0.85
 }
 else {
 yield <- density*3.1416*diameter*height*0.62
 } # Terminate the if statement
 } # Terminate the for loop

Functionals

Seasoned R programmers draw upon an alternative approach to using the
above constructs. They use instead functionals (so called because of the
analogy with mathematical functions of functions).

The most frequently used is lapply()..lapply()takes a function, applies
it to each element in a list, and returns the results in the form of a list. For
example, to round all the length values in dataframe turtle, you could use

for (i in 1:length(turtle$length)){
 turtle$length <- round(turtle$length)
}

or

turtle$length <- lapply(turtle$length, round)

This is rather a trivial example, but applied to more complex functions,
including those of your own, lapply() is a concise and powerful tool and
an alternative to conventional looping that is more efficient and improves
code readability.

Analysis
Once our data manipulation is completed, we can get down to analysis. We
can plot the data.

 plot(length, weight)

and undertake all manner of statistical analyses.

 t.test(weight ~ sex)

which brings us to the end of these introductory lessons.

Where have we come?
The above lesson was designed to give you an overview of the operation of
R. It sets the scope of what you need to learn to develop R programming
skills. Having completed this lesson, you should now be familiar the
following concepts.

 R functions are used to construct R commands.

Biometry

 36 University of Canberra

 As a programming language, R has the means for manipulating data
through assignment statements, for repeating segments of program
code with for and while constructs, and for selectively applying
segments of code with if-else constructs or selection within R
functions like subset()and tarray().

More detail on programming in R can be found in the very readable text
Venables, WN and Ripley, BD (2002). Modern Applied Statistics with S.
Fourth Edition. Springer, New York. Chapters 1-4.

Where to next?
The lessons up to this point provided an overview. There is only so much
that can be done by reading about R. The best way of learning is by doing,
and it is now time to run through what you have learned with some step-by-
step examples.

 Module 1 — A Primer on R for Windows

University of Canberra 37

Lesson 5: Practical programming

Getting Started

Firing up R-studio

If R-studio is properly installed, you should then be able to run it by double-
clicking on the relevant icon on the desktop or in an Applications Group
window. Consult the computer systems officer at your institution for details
of how to invoke R.

Download the data for the course and place the files in a directory of your
choice.

Double-click on the R icon on your desktop.

Throughout this module, your action is required only when you encounter
instructions inside an Activity Box like this one.

R-studio windows

Console, Environment and Files

Once R has commenced running, the program will display three windows
(refer to Figure 1-1) – the Console, an environment window and two other
windows with environment and file display information.

Setting your Working Directory

You first need to set your working directory as the default. Move the files
view to your working directory, then select “Files>More>Set As Working
Directory”.

This directory will be linked to this analysis when you later save an image of
your workspace.

There are a number of other fairly self-evident buttons on the Menu Bars.
The Console has the greeting message, and awaits your commands.

Program Editor

The Program Editor does not open unless requested and is used to create R
programs.

Open an EDITOR window by selecting "File>New File>R Script" from the
File Menu on the top Menu Bar.

Biometry

 38 University of Canberra

Workflow

To demonstrate how the R-studio windows system operates, an R program
to perform a simple task has been provided. You must first import this
program to the Editor, so that you may peruse it and ultimately submit it for
execution.

Select Open Script from the File Menu to locate and select the file
demo1.R

Note that several lines of code, an R program, have appeared in the R
Editor. Do not worry about what the lines mean at this stage.

An R program must be submitted before it is executed.

Place the cursor on the first line of the program and submit the program
line by line with control-r (^r).

Note that the progress of the analysis in the R Console. Refer to the
output.You should be able to see a listing of the data, a statistical summary,
some correlation analyses, and a bivariate graph.

You should now be familiar with the R-studio graphical user interface, and
how the various windows relate to each other.

Creating a data file

Input your data

You can create data files before running R by using your favourite editor,
spreadsheet or word processor (in text only mode).

Recall the data in Table 1-2, from a study of the pig-nosed turtle,
Carettochelys insculpta, in Kakadu National Park.

Use your favourite editor to type the data in in a form suitable for reading
into R. Remember, missing values in R are represented by the keyword NA.

Table 1-2.
Measurements of

the pig-nosed
turtle,

Carettochelys
insculpta.

Tag
Number

Sex Carapace
Length (cm)

Head Width
(cm)

Weight
(kg)

10 MALE 41.0 7.15 7.60
11 FEMALE 46.4 8.18 11.00
2 24.3 4.42 1.65
15 28.7 4.89 2.18
16 32.0 5.37 3.00
3 FEMALE 42.8 7.32 8.60
4 MALE 40.0 6.60 6.50
5 FEMALE 45.0 8.05 10.90
12 FEMALE 44.0 7.55 8.90
13 28.0 4.85 1.97
6 FEMALE 40.0 6.53 6.20
8 32.0 5.35 2.90
9 MALE 35.0 5.74 3.90
17 FEMALE 35.1 6.04 4.50
19 MALE 42.3 6.77 7.80
22 FEMALE 48.1 8.55 12.80

105 MALE 44.0 7.10 9.00
14 MALE 43.0 6.60 7.20
7 FEMALE 48.0 8.67 13.50
1 29.2 5.10 2.38

104 MALE 44.0 7.35 9.00

 Module 1 — A Primer on R for Windows

University of Canberra 39

You might wish to line the data up in columns for ease of reading and
correcting, but R requires only that the numbers and character strings be
separated from each other by one or more blanks.

Use a suitable editor to create the data file in a form conducive to reading
in to R. Do not include variable names in the file.

Save your data

Once you have checked your typing and corrected any errors, you can
save the data in a disk file in the directory in which you have chosen to
store your files. Call it mydata.dat.

Save the contents to the file mydata.dat.

Note

You should follow the convention of using .DAT as the extension to all files containing raw
data.

Close the external editor and return to R.

Creating a program

Creating an R script or program

The usual way to create programs is in the R Editor, rather than an external
editor. The following is a sample R program.

Read in the data
 turtle <- read.table("mydata.dat")
Add variable names
 names(turtle) <- c("idno","sex","length","hwidth","weight")
Create two new variables for later use
 turtle$lglength <- log10(turtle$length)
 turtle$lgweight <- log10(turtle$weight)
Calculate summary statistics
 summary(turtle)

Move to the R Editor and type in the above R program. For the sake of
this exercise, do not submit the program statements for execution quite
yet.

Note

Be very careful to balance the quotes when you use them. Omission of one of the quotes
will lead to an obscure error message that will persist until the second quote is submitted
or the command terminated with an escape (Esc).

Biometry

 40 University of Canberra

Again, you don’t need to worry at all about what the program means at this
stage.

You can use your favourite editor or word processor to create an R
program, provided that you can save it in text mode. You can then open the
file into the Editor window.

Save your program

It is prudent to save a copy of your program on your data disk before
submitting the program to R for execution.

Make sure that you are in the R Editor, then save the contents to the file
myprog.R.

Note

You should follow the convention of using .R as the extension to all disk files containing R
programs. It will save a great deal of confusion.

You now have two files on disk – your raw data file mydata.dat, and your
R program, myprog.R. You can confirm this by examining the relevant
directory using the Files tab on the Files Window toolbar.

Executing a program

Line by line execution

An R program must be submitted for execution. This is done line by line
with control-r (^r) or by highlighting segments of the program and typing ^r.

During execution, the program will remain in the R Editor for editing and re-
submission, if things go awry. This way, as you amend the program to fix
errors, you build up a working copy of the final program. It is prudent to
save a copy of your amended program periodically.

Submit your program for execution line by line, using ^r.

Lets now submit the first few lines of the program, those that set up the
dataframe.

Read in the data
 turtle <- read.table("mydata.dat")
Add variable names
 names(turtle) <- c("idno","sex","length","hwidth","weight")

Highlight the above segment of your program as it appears in the R
Editor, and use ^r to submit it for execution.

Later, you can execute the whole program using the [Run] tab on the Editor
toolbar.

 Module 1 — A Primer on R for Windows

University of Canberra 41

Quite a number of actions are taken when you submit a program for
execution. First, a log of the progress of the program will appear in the
Console. You should take note of any errors, as these indicate a fatal
problem with your program. Warnings should also be heeded, as they
indicate that the syntax is correct, but the analysis itself may have
problems.

Second, a number of objects are typically created, depending upon the
instructions received by your program. These reside in your workspace and
will appear in the Environment Window under “Global Environment”.
Among these objects will be your dataframe under the name you assigned
it in the read.table() function.

Examining your workspace

Alternatively, you can confirm that the dataframe turtle, specified in the
read.table() assignment of your program has indeed been created by
examining the list of objects in your workspace.

 ls()
[1] "turtle"

Submit the above command to the R Console

You can peruse the contents of the dataframe you have created, by
submitting its name to the command prompt.

 turtle
 idno sex length hwidth weight
1 10 MALE 41.0 7.15 7.60
2 11 FEMALE 46.4 8.18 11.00
3 2 <NA> 24.3 4.42 1.65
4 15 <NA> 28.7 4.89 2.18
5 16 <NA> 32.0 5.37 3.00
6 3 FEMALE 42.8 7.32 8.60
7 4 MALE 40.0 6.60 6.50
8 5 FEMALE 45.0 8.05 10.90
9 12 FEMALE 44.0 7.55 8.90
10 13 <NA> 28.0 4.85 1.97
11 6 FEMALE 40.0 6.53 6.20
12 8 <NA> 32.0 5.35 2.90
13 9 MALE 35.0 5.74 3.90
14 17 FEMALE 35.1 6.04 4.50
15 19 MALE 42.3 6.77 7.80
16 22 FEMALE 48.1 8.55 12.80
17 105 MALE 44.0 7.10 9.00
18 14 MALE 43.0 6.60 7.20
19 7 FEMALE 48.0 8.67 13.50
20 1 <NA> 29.2 5.10 2.38
21 104 MALE 44.0 7.35 9.00

Submit the above command to the R Console

Creating new variables

The next block of program code creates two new variables by transforming
existing variables in our dataframe turtle.

Create two new variables for later use
 turtle$lglength <- log10(turtle$length)
 turtle$lgweight <- log10(turtle$weight)

Biometry

 42 University of Canberra

Highlight the above segment of your program as it appears in the R
Editor, and use ^r to submit it for execution.

What we are asking here is for R to take each of the values of the vector
length in dataframe turtle, log it to base 10, and place the transformed
values in the new vector lglength, also within the dataframe turtle.
Ditto for weight.

Again, examine the dataframe to see the outcome of your instructions. The
additional variables have been added to the dataframe.

 turtle
 idno sex length hwidth weight lglength lgweight
1 10 MALE 41.0 7.15 7.60 1.612784 0.8808136
2 11 FEMALE 46.4 8.18 11.00 1.666518 1.0413927
3 2 <NA> 24.3 4.42 1.65 1.385606 0.2174839
4 15 <NA> 28.7 4.89 2.18 1.457882 0.3384565
5 16 <NA> 32.0 5.37 3.00 1.505150 0.4771213
6 3 FEMALE 42.8 7.32 8.60 1.631444 0.9344985
7 4 MALE 40.0 6.60 6.50 1.602060 0.8129134
8 5 FEMALE 45.0 8.05 10.90 1.653213 1.0374265
9 12 FEMALE 44.0 7.55 8.90 1.643453 0.9493900
10 13 <NA> 28.0 4.85 1.97 1.447158 0.2944662
11 6 FEMALE 40.0 6.53 6.20 1.602060 0.7923917
12 8 <NA> 32.0 5.35 2.90 1.505150 0.4623980
13 9 MALE 35.0 5.74 3.90 1.544068 0.5910646
14 17 FEMALE 35.1 6.04 4.50 1.545307 0.6532125
15 19 MALE 42.3 6.77 7.80 1.626340 0.8920946
16 22 FEMALE 48.1 8.55 12.80 1.682145 1.1072100
17 105 MALE 44.0 7.10 9.00 1.643453 0.9542425
18 14 MALE 43.0 6.60 7.20 1.633468 0.8573325
19 7 FEMALE 48.0 8.67 13.50 1.681241 1.1303338
20 1 <NA> 29.2 5.10 2.38 1.465383 0.3765770
21 104 MALE 44.0 7.35 9.00 1.643453 0.9542425

Submit the above command to the R Console

Working with your data

Now we are ready to calculate some summary statistics.

Calculate summary statistics
 summary(turtle)
 idno sex length hwidth weight
 Min. : 1.00 FEMALE:8 Min. :24.30 Min. :4.42 Min. : 1.650
 1st Qu.: 6.00 MALE :7 1st Qu.:32.00 1st Qu.:5.37 1st Qu.: 3.000
 Median : 11.00 NA's :6 Median :41.00 Median :6.60 Median : 7.200
 Mean : 19.19 Mean :38.71 Mean :6.58 Mean : 6.737
 3rd Qu.: 16.00 3rd Qu.:44.00 3rd Qu.:7.35 3rd Qu.: 9.000
 Max. :105.00 Max. :48.10 Max. :8.67 Max. :13.500
 lglength lgweight
 Min. :1.386 Min. :0.2175
 1st Qu.:1.505 1st Qu.:0.4771
 Median :1.613 Median :0.8573
 Mean :1.580 Mean :0.7502
 3rd Qu.:1.643 3rd Qu.:0.9542
 Max. :1.682 Max. :1.1303

Highlight the above segment of your program as it appears in the R
Editor, and use ^r to submit it for execution.

 Module 1 — A Primer on R for Windows

University of Canberra 43

Executing programs in R in this way allows progressive debugging and
refinement of the program code which resides in the R editor. You should
now save the program again for future use.

Go to the R Editor and save the program.

When things go wrong
There is a dreaded shadow that hangs over all who engage in computing
— SYNTAX. If you don't get it right, the program will not work. Finding out
why it will not work is not always easy, though many simple mistakes will be
immediately evident.

In the example you have just run, there should have been no errors. Had
there been an error, you would need to examine the content of the Console
for an error message. Several problems are quite common.

Incorrect syntax for function calls

R functions are very particular in what they expect as arguments, and often
the order of the arguments is quite important. When a function fails, the first
step is to call up the help files using the ? prefix. An example is

?summary

This command opens up the help files in a new window. The help
information contains full details of the syntax for the summary() function,
which should enable you to identify and rectify the problem with your
program.

Submit the above command to the R Console

Biometry

 44 University of Canberra

Failure to Balance Quotes

String values are usually identified as such by enclosing them in quotes. If
you fail to supply the terminal quote, a very common error, then R passes
all that follows the initial quote into the string variable. Usually this is
evident because the Console responds with a + rather than the usual
command prompt >. You need to break out of this using the Esc key, locate
and rectify the error, and resumit the code.

Failure to Balance Brackets

Many R commands comprise nested function calls, and so you have
brackets within brackets. These two need to be balanced. Blocks of code
also are contained within brackets ({ and }), and these need to be balanced.
R will give you an explicit error message when you fail to balance brackets.

Mixing Up Characters with Numbers

Mis-spelling variable names and function names is a very common mistake,
and one that requires attention to detail. A common mistake is to use a
lowercase L (l) in place of the number one (1) or the letter O in place of the
number 0. Look for this when your program does not work for reasons that
are not immediately obvious.

Mixing Up Variable Names with Function Names.

It is best to avoid using the pre-existing names of R functions as names for
your variables. You will find that we have done this in this Module – using
length as the name of a variable when there exists a function length()
that returns the number of values in a vector. This can lead to considerable
confusion – length(length) for example – and is best avoided. One
common way to address this issue is to use upper case for variable names
and lower case for function names, though this is a nightmare for touch-
typists.

Object Does Not Exist

This is a common error and can arise for a reason as simple as mis-
spelling its name, or for more complex reasons such as the object not
falling on the search path.

The first step is to check that the object exists by typing its name and
submitting it to the R Console. This will verify its existence and display its
contents.

If the object is part of a larger object, such as a dataframe, R might not be
able to find it. You can identify this problem by typing its full specification,
such as turtle$weight or by attaching the relevant data frame to the
search path and trying again. More on this later.

Debugging

Debugging a program is what programmers do, but for those not used to
programming, it can be a real block. The idea is to be systematic about
your approach to identifying and rectifying bugs in your programs.

The best way is to run each line of your program one at a time, checking
the progress of the analysis. Bugs often beget bugs, so it is important to
start at the top of the program.

 Module 1 — A Primer on R for Windows

University of Canberra 45

Bugs derived from incorrect syntax are the easiest to resolve. Those
involving logical errors take a bit more mental energy.

Writing R Programs I
The Dataframe

You now know how to enter, edit and save data, to enter an R program, to
submit it for execution, and to modify and re-submit R programs if they do
not initially work. Your next step is to learn how to write sensible R
programs.

Introducing the DataFrame

The program lines

 turtle <- read.table("mydata.dat")
 names(turtle) <- c("idno","sex","length","hwidth","weight")
 turtle

create a special R object called a DataFrame, import the raw data into the
DataFrame, assign names to columns of data in the DataFrame, then
display the contents of the Dataframe.

Open a new script in the Editor, type in the above code, and submit it for
execution.

The Dataframe can be considered to be an aggregation of vectors, with
each column of data representing a vector. Clearly, these vectors need not
be of the same type. For example, the variable sex is of type factor and
the variable length is of type numeric.

You can refer to the variables in the dataset as vectors by adding the
dataframe name as a prefix and separating the two with a dollar sign ($).

 turtle$idno
[1] 10 11 2 15 16 3 4 5 12 13 6 8 9 17 19 22 105 14 7
[20] 1 104

Submit the above command to the Console

This is very convenient, as all manner of vector manipulations can be
applied to variables within the dataframe.

Attaching Dataframes to the Search Path

Refering to variables with the dataframe name as a prefix can be tiresome,
and you can avoid this by copying the dataframe to the search path used
by R in locating objects.

Verify that the object turtle$sex exists by entering its name in the R
Console. Also verify that the object sex is unrecognised.

Biometry

 46 University of Canberra

The object sex is not recognised because the contents of the dataframe
turtle are not recognised by R, they are not in R's search path. You can
examine the objects that are in the search path using the command

 search()

Submit the above command to the R Console.

The following output should appear in the R Console. By default, the search
path includes the Global Environment at the top, and the R libraries at the
bottom. The Global Environment is where all explicitly defined objects are
placed by default.

 search()
[1] ".GlobalEnv" "package:stats" "package:graphics"
[4] "package:grDevices" "package:utils" "package:datasets"
[7] "package:methods" "Autoloads" "package:base"

The command

 attach(turtle)

will enable you to use the variable name sex in place of turtle$sex. You
will find that attaching dataframes to the search path is pretty much
essential.

If we now attach the dataframe turtle to the search path, all vectors
contained within that dataframe will be recognised by R.

Attach the dataframe turtle to the search path, using attach()
function described above.

Verify that the object sex is now recognised.

The attach function placed the dataframe turtle in the search path for R,
and so when R encountered the command sex, it found the object sex in
the dataframe turtle, and listed its contents.

Confirm that the search path now contains the dataframe turtle using the
search() function.

Note that attach copies the dataframe to a location in the search path, so
any variables you add to the dataframe will require you to attach it again if
you want to access them without the $ prefix.

You can remove a dataframe from the search path using

 detach(turtle)

Although we will not do it now, it is important to match each attach() call
with a detach() call, lest you want a very cluttered search path. Failing to
manage the search path is a major source of confusion for the novice user
of R.

 Module 1 — A Primer on R for Windows

University of Canberra 47

Accessing a Dataframe as an Indexed Array

Using the square brackets, you can access any particular value in the
dataframe. The syntax is

 dataframe[row, column]

For example, to access the value of the fifth row and the second column in
the dataset, use

 turtle[5,2]

or alternatively

 turtle[5,"sex"]

The command

 turtle[,"sex"]

is the same as turtle$sex and will print all values of the vector sex.
Similarly,

 turtle[5,]

will print all variables for observation 5. This is all very convenient, once
you get used to it.

Exercise

Use array indexing to determine

(a) The sex of the 8th individual in the data set.
(b) The length of the 5th individual.
(c) All the data for the 3rd individual.
(d) Use the mean() function to get the mean weights

Accessing data within a dataframe is very flexible indeed, because you can
use logical conditions as the indexing variable for rows (usually) or
columns. For example,

 turtle[sex=="FEMALE",]
 idno sex length hwidth weight lglength lgweight
2 11 FEMALE 46.4 8.18 11.0 1.666518 1.0413927
NA NA <NA> NA NA NA NA NA
NA.1 NA <NA> NA NA NA NA NA
NA.2 NA <NA> NA NA NA NA NA
6 3 FEMALE 42.8 7.32 8.6 1.631444 0.9344985
8 5 FEMALE 45.0 8.05 10.9 1.653213 1.0374265
9 12 FEMALE 44.0 7.55 8.9 1.643453 0.9493900
NA.3 NA <NA> NA NA NA NA NA
11 6 FEMALE 40.0 6.53 6.2 1.602060 0.7923917
NA.4 NA <NA> NA NA NA NA NA
14 17 FEMALE 35.1 6.04 4.5 1.545307 0.6532125
16 22 FEMALE 48.1 8.55 12.8 1.682145 1.1072100
19 7 FEMALE 48.0 8.67 13.5 1.681241 1.1303338
NA.5 NA <NA> NA NA NA NA NA

will access data only for females. Note that it is a little untidy, in that all
rows for which sex != "FEMALE" has the data set to missing (NA). A
cleaner approach might be

 turtle[is.element(sex, "FEMALE"),]
 idno sex length hwidth weight lglength lgweight
2 11 FEMALE 46.4 8.18 11.0 1.666518 1.0413927
6 3 FEMALE 42.8 7.32 8.6 1.631444 0.9344985
8 5 FEMALE 45.0 8.05 10.9 1.653213 1.0374265
9 12 FEMALE 44.0 7.55 8.9 1.643453 0.9493900
11 6 FEMALE 40.0 6.53 6.2 1.602060 0.7923917

Biometry

 48 University of Canberra

14 17 FEMALE 35.1 6.04 4.5 1.545307 0.6532125
16 22 FEMALE 48.1 8.55 12.8 1.682145 1.1072100
19 7 FEMALE 48.0 8.67 13.5 1.681241 1.1303338

You can use more complicated conditions, such as

 turtle[sex="FEMALE" & length>40,]

or

 turtle[is.element(idno, c(17,19,104)),]

By now you would realize that you can wrap these references to the
dataframe inside instructions to act upon the data they yield.

 summary(turtle[is.element(sex, "FEMALE"),])
 idno sex length hwidth
 Min. : 3.00 FEMALE:8 Min. :35.10 Min. :6.040
 1st Qu.: 5.75 MALE :0 1st Qu.:42.10 1st Qu.:7.122
 Median : 9.00 Median :44.50 Median :7.800
 Mean :10.38 Mean :43.67 Mean :7.611
 3rd Qu.:13.25 3rd Qu.:46.80 3rd Qu.:8.273
 Max. :22.00 Max. :48.10 Max. :8.670
 weight lglength lgweight
 Min. : 4.50 Min. :1.545 Min. :0.6532
 1st Qu.: 8.00 1st Qu.:1.624 1st Qu.:0.8990
 Median : 9.90 Median :1.648 Median :0.9934
 Mean : 9.55 Mean :1.638 Mean :0.9557
 3rd Qu.:11.45 3rd Qu.:1.670 3rd Qu.:1.0578
 Max. :13.50 Max. :1.682 Max. :1.1303

As an aside, note that the summary command knows about the existence
of MALE in the dataframe even though we have requested an analysis on
females only. This is because R has created sex as a factor rather than a
character vector, and the factor levels for sex have been passed to the
summary function in addition to the values of sex.

Try out some of the above approaches for yourself by submitting the
statements to the R Console

Writing R Programs II
Assignment Statements

Assignment – Creating New Objects

We can also apply arithmetic to the rows and columns now that we know
they are vectors. For example, we can create two new variables that might
be useful in later analyses. Two new variables (or objects), lglength and
lgweight, are created by taking the logarithm to base 10 of length and
weight respectively using the log10() function.

 turtle$lglength <- log10(turtle$length)
 turtle$lgweight <- log10(turtle$weight)

Type the above statements in the R Editor and submit it for execution.

If we examine the dataframe turtle, we will see that the two new variables
are included.

 Module 1 — A Primer on R for Windows

University of Canberra 49

 turtle

Submit the above command to the R Console.

The output:
 idno sex length hwidth weight lglength lgweight
1 10 MALE 41.0 7.15 7.60 1.612784 0.8808136
2 11 FEMALE 46.4 8.18 11.00 1.666518 1.0413927
3 2 <NA> 24.3 4.42 1.65 1.385606 0.2174839
4 15 <NA> 28.7 4.89 2.18 1.457882 0.3384565
5 16 <NA> 32.0 5.37 3.00 1.505150 0.4771213
6 3 FEMALE 42.8 7.32 8.60 1.631444 0.9344985
7 4 MALE 40.0 6.60 6.50 1.602060 0.8129134
8 5 FEMALE 45.0 8.05 10.90 1.653213 1.0374265
9 12 FEMALE 44.0 7.55 8.90 1.643453 0.9493900
10 13 <NA> 28.0 4.85 1.97 1.447158 0.2944662
11 6 FEMALE 40.0 6.53 6.20 1.602060 0.7923917
12 8 <NA> 32.0 5.35 2.90 1.505150 0.4623980
13 9 MALE 35.0 5.74 3.90 1.544068 0.5910646
14 17 FEMALE 35.1 6.04 4.50 1.545307 0.6532125
15 19 MALE 42.3 6.77 7.80 1.626340 0.8920946
16 22 FEMALE 48.1 8.55 12.80 1.682145 1.1072100
17 105 MALE 44.0 7.10 9.00 1.643453 0.9542425
18 14 MALE 43.0 6.60 7.20 1.633468 0.8573325
19 7 FEMALE 48.0 8.67 13.50 1.681241 1.1303338
20 1 <NA> 29.2 5.10 2.38 1.465383 0.3765770
21 104 MALE 44.0 7.35 9.00 1.643453 0.9542425

Remember, to access the new log variables without using the turtle$
prefix the modified dataframe turtle must be copied to reside on the search
path once more.

 attach(turtle)

Submit the above command to the R Console.

Math Functions and Transformations

Any arithmetic expression can be used in an assignment to create contents
for an existing or new object. There are a myriad of mathematical functions
that that can be included in assignment statements. Some of the more useful
ones follow.

abs() Take the absolute of values in a vector or other object

min() Extract the minimum value from a vector or other object

max() Extract the maximum value from a vector or other object

asin() Take the arcsin of values in a vector or other object (answer in radians)

cos() Take the cosine of values in a vector or other object

exp() Raises e to the power of values in a vector or other object

log() Takes the natural log of values in a vector or other object

log10 () Takes the log to base 10 of values in a vector or other object

sin () Takes the sine of values in a vector or other object

sqrt () Takes the square root of values in a vector or other object

tan () Takes the tangent of values in a vector or other object

Biometry

 50 University of Canberra

A full list of mathematical functions can be obtained using the R help facility
(using the HELP menu on the Menu Bar).

For example, transforming counts of macroinvertebrates using a standard
square root transformation is effected by

 count <- sqrt(count+0.5)

The standard arithmetic operators apply, and include and include the usual
addition (+), subtraction (-), division (/), multiplication (*) and exponentiation
(^).

If fish size changes with time exponentially in accordance with the Von
Bertalanffy growth equation

 L = 3.00 – 2.5e0.138t

we can easily code this in R as

 length <- 3.00 - 2.5*exp(0.138*time)

Assignment statement chains

More complicated equations are possible by splitting them over several
lines. For example, the Sharpe-DeMichele growth model relating embryonic
growth with temperature is given by



































































THTr

HH

TLTr

LH

Tr

AHT
RHO

dt

ds

11
 exp

11
 exp 1

1

15.298

1
 exp

15.29825

and can be coded in R as follows, using the temporary intermediary
variables c1, c2 and c3 which are subsequently discarded with a rm()
statement. Temperature T is in degrees Kelvin, and r in the equation
above is the Gas Constant 1.987.

 degk <- temp+273.15
 c1 <- exp((1/298.15-1/degk)*ha/1.987)
 c2 <- exp((1/tl-1/degk)*hl/1.987)
 c3 <- exp((1/th-1/degk)*hh/1.987)
 rate <- (rho25*degk*c1/298.15)/(1+c2+c3)
 rm(c1, c2, c3, degk)

This code assumes that the parameters temp, ha, hl, hh, th, tl
and rho25 have been assigned values earlier in the program.

Exercise

Retrun your attention to our dataframe turtle.

Construct a body condition index as the difference between the actual
weight of a turtle and its weight predicted from linear body measurements
according to the formula

 Predicted Weight = 0.0014*length^2.91

The new vector of values for body condition should be contained in the
dataframe turtle. Confirm that it is. Calculate summary statistics for
this new variable.

 Module 1 — A Primer on R for Windows

University of Canberra 51

Selectively Deleting Rows

Use of indexed reference to the contents of a dataframe as part of
assignment statements can be used to selectively delete rows from a
dataframe.

 turtle.new <- turtle[!is.na(sex),]

will remove all data for which sex is missing. I think you can see the
possibilities.

Selectively Deleting Columns

The same approach can be used to select columns for retention.

 turtle.new <- turtle[,c("sex","length")]

will remove all variables except sex and length.

 turtle.new <- turtle[,!names(turtle)=="sex"]

will remove the variable sex.

Writing R Programs III
Functions

What are Functions?

You will realize by now that most of the commands used in R are functions
of one sort or another.

Functions in R are not functions in the mathematical sense, but rather are
the equivalent to subroutines or subprograms in other languages. A
function is a discrete block of code that takes data, manipulates it and
returns the results of those manipulations. For example, the function
sort() can be used to re-order a data vector.

 weight <- c(10.4, 5.6, 3.1, 6.4, 21.7)
 sort(weight)
[1] 3.1 5.6 6.4 10.4 21.7

Information on a particular function can be obtained by typing a question
mark followed by the function name, for example,
?sort

Functions are extremely useful elements of R programming. You can
create your own, modify those already available in R, or collect your
functions into a library and make them available to others.

Creating Your Own Functions

We can define our own functions very easily. To define a function called
echo, we might use

 echo <- function(x) {print(x)}

This is using the function statement to define a new function that takes a
single argument x. The value of x is then passed to the statements that
make up the body of the function, inside the curly brackets. In this case the
body of the function is a single statement, print(x). We then assign the
function to the object echo, which can be subsequently called on as follows

Biometry

 52 University of Canberra

 echo("Hello Cocky!")
[1] "Hello Cocky!"

Enter and execute the above function definition, then use it to echo some
simple statements.

It is possible to put any number of statements inside the curly brackets, and
so build quite sophisticated functions.

There are many functions built into the base library of R. A full listing of
them can be obtained via the web-base help page (select Help from the
Console Menu Bar), under the link entitled "Packages".

Exercise

Retrun your attention to our dataframe turtle.

Construct a function to calculate the coefficient of variation for a vector.
Recall that the coefficient of variation is the standard deviation divided by
the mean. Use the sum(), length() and sqrt() functions in R to
do the job.

If you are rusty, you might need to Google the equation for the standard
deviation.

Apply your new function to calculate the coefficient of variation for
length and weight. Which of the two is the most variable?

Writing R Programs IV
Controlling Program Flow

The statements making up R programs are executed in the order in which
they are given, that is, from top to bottom. However, you are able to control
the flow of execution of the program with conditional statements. R has all
the standard conditional statements and looping statements of a structured
programming language – IF-THEN-ELSE constructs, DO-WHILE
constructs, DO-UNTIL constructs and DO-FOR constructs.

IF-THEN-ELSE constructs

The general form of an if statement is

 if (logical expression 1){
 program block 1
 }
 else if(logical expression 2){
 program block 2
 }
 else {
 program block 3
 }

 Module 1 — A Primer on R for Windows

University of Canberra 53

A logical expression is constructed from the conventional logical operators.
These include equal to (==), greater than (>), greater than or equal to (>=),
less than (<), less than or equal to (<=), not equal to (!=), the “and”
operator (&), the negation operator (!) and the “or” operator (|). For
example
 if (sex == "FEMALE" | sex == "NA") {cat(idno)}

There can be as many else if statements embedded in this program
element as desired. This structure enables you to execute different sets of
program instructions depending on the value taken (T or F) by the series of
logical expressions, with clearly defined terminal action if none of the
conditions are met. Nice neat structured code.

The indenting is optional, but greatly increases readability.

The structure can be simplified to

 if (logical expression 1){
 program block 1
 }
 else {
 program block 3
 }

or further simplified to

 if (logical expression){
 program block 1
 }

depending on the number of conditions that are to be treated differently by
the program code.

Looping Constructs

R has two primary mechanisms for looping, that is, for repeating segments
of code. You can repeat the code for a specified range of an index variable
or repeat it while some condition prevails.

The syntax for the repeat for loop is

 for (i in 1:200) {
 program block
 }

which will execute 200 times while progressively incrementing the variable
i which would typically be involved in the calculations undertaken in the
program block.

The while loop has the following syntax

 while (logical expression) {
 program block
 }

The combination of progressive execution of your program from top to
bottom, conditional statements like if and else if, and looping with
repeat for and repeat while constructs, provides you with full control over
the flow of execution of your instructions and a great deal of versatility in
your programs.

Biometry

 54 University of Canberra

Data Subsetting

The above constructs for selection and looping are pretty fundamental to
any third generation programming language. However R has a number of
special features that reduce the need for such constructs. For example, you
can take the dataframe turtle and split it into two for separate treatment,
rather than using an if-else construct.

We can divide our turtle dataframe into two new dataframes on the basis of
a logical condition as follows.

 males <- subset(turtle, sex=="MALE")
 females <- subset(turtle, sex=="FEMALE")

Enter and execute the above statements.

The contents can be examined in the usual way.

 males
 idno sex length hwidth weight
1 10 MALE 41.0 7.15 7.6
7 4 MALE 40.0 6.60 6.5
13 9 MALE 35.0 5.74 3.9
15 19 MALE 42.3 6.77 7.8
17 105 MALE 44.0 7.10 9.0
18 14 MALE 43.0 6.60 7.2
21 104 MALE 44.0 7.35 9.0

 females
 idno sex length hwidth weight
2 11 FEMALE 46.4 8.18 11.0
6 3 FEMALE 42.8 7.32 8.6
8 5 FEMALE 45.0 8.05 10.9
9 12 FEMALE 44.0 7.55 8.9
11 6 FEMALE 40.0 6.53 6.2
14 17 FEMALE 35.1 6.04 4.5
16 22 FEMALE 48.1 8.55 12.8
19 7 FEMALE 48.0 8.67 13.5

Submit the above command to the R Console.

Calculations can then be applied to males and females separately.

 mean(males$weight); mean(females$weight)
[1] 7.285714
[1] 9.55

Type the above statements in the R Editor and submit for execution.

We can then combine the two dataframes and view the results

 turtle <- rbind(males, females)
 turtle
 idno sex length hwidth weight condition
1 10 MALE 41.0 7.15 7.6 61.47630
7 4 MALE 40.0 6.60 6.5 57.78692
13 9 MALE 35.0 5.74 3.9 39.68791
15 19 MALE 42.3 6.77 7.8 67.84470
17 105 MALE 44.0 7.10 9.0 75.83505
18 14 MALE 43.0 6.60 7.2 72.14531
21 104 MALE 44.0 7.35 9.0 75.83505

 Module 1 — A Primer on R for Windows

University of Canberra 55

2 11 FEMALE 46.4 8.18 11.0 63.15666
6 3 FEMALE 42.8 7.32 8.6 50.30995
8 5 FEMALE 45.0 8.05 10.9 57.05628
9 12 FEMALE 44.0 7.55 8.9 54.84029
11 6 FEMALE 40.0 6.53 6.2 42.37859
14 17 FEMALE 35.1 6.04 4.5 28.97335
16 22 FEMALE 48.1 8.55 12.8 69.36510
19 7 FEMALE 48.0 8.67 13.5 68.17920

Type the above statements in the R Editor and submit for execution.

and do some cleaning up of the workspace,

 rm(males); rm(females); ls()

Type the above statements in the R Editor and submit for execution.

A more satisfactory way of subseting the analysis is to use the by()
function.

by(turtle, sex, summary)
sex: FEMALE
 idno sex length hwidth
 Min. : 3.00 FEMALE:8 Min. :35.10 Min. :6.040
 1st Qu.: 5.75 MALE :0 1st Qu.:42.10 1st Qu.:7.122
 Median : 9.00 Median :44.50 Median :7.800
 Mean :10.38 Mean :43.67 Mean :7.611
 3rd Qu.:13.25 3rd Qu.:46.80 3rd Qu.:8.273
 Max. :22.00 Max. :48.10 Max. :8.670
 weight lglength lgweight
 Min. : 4.50 Min. :1.545 Min. :0.6532
 1st Qu.: 8.00 1st Qu.:1.624 1st Qu.:0.8990
 Median : 9.90 Median :1.648 Median :0.9934
 Mean : 9.55 Mean :1.638 Mean :0.9557
 3rd Qu.:11.45 3rd Qu.:1.670 3rd Qu.:1.0578
 Max. :13.50 Max. :1.682 Max. :1.1303
--
sex: MALE
 idno sex length hwidth
 Min. : 4.00 FEMALE:0 Min. :35.00 Min. :5.740
 1st Qu.: 9.50 MALE :7 1st Qu.:40.50 1st Qu.:6.600
 Median : 14.00 Median :42.30 Median :6.770
 Mean : 37.86 Mean :41.33 Mean :6.759
 3rd Qu.: 61.50 3rd Qu.:43.50 3rd Qu.:7.125
 Max. :105.00 Max. :44.00 Max. :7.350
 weight lglength lgweight
 Min. :3.900 Min. :1.544 Min. :0.5911
 1st Qu.:6.850 1st Qu.:1.607 1st Qu.:0.8351
 Median :7.600 Median :1.626 Median :0.8808
 Mean :7.286 Mean :1.615 Mean :0.8490
 3rd Qu.:8.400 3rd Qu.:1.638 3rd Qu.:0.9232
 Max. :9.000 Max. :1.643 Max. :0.9542

Type the above statements in the R Editor and submit it for execution.

A related function for selectively analysing data in a dataframe is tapply().
This function takes on the form

 tapply(vector, factor, function)

Biometry

 56 University of Canberra

where vector is the object to which the function is to be applied
separately for each level of the factor. For example,

 tapply(weight, sex, mean)

will apply the function mean() to the weights of each sex.

Type the above statements in the R Editor and submit it for execution.

The output is as follows.
 FEMALE MALE
9.550000 7.285714

Exercise

Use the if() construct and your new function to calculate the
coefficient of variation for the carapace lengths of juveniles. Remember,
juveniles are those turtles for which sex is missing.

Repeat the analysis using the subset() approach.

Repeat the analysis again using the by() function.

Repeat the analysis again using the tapply() approach.

Where have we come?

The objective of the step-through exercises we have just done was to
reinforce the key concepts introduced in lesson 1. In particular, you can
now appreciate more that

 R is a programming language, with all the usual features for branching
and looping.

 The raw data that is to be subject to analysis is typically constructed as a
file comprising rows (observations or entities) and columns (variables or
attributes). It is constructed using an application outside the R
environment, such as Notepad.

 The raw data are read into a dataframe which is essentially a two-
dimensional array. Elements of the dataframe can be accessed using
array index notation in square brackets. Columns of the dataframe can
be referenced and manipulated as named vectors.

 All manner of calculations can be applied to a dataframe by using the
column vectors in assignment statements. The usual arithmetic
operators apply, and there is a myriad of functions available for
manipulating these vectors.

You have also learnt the value of the R Windows.

 The R Editor Window can be used for creating data sets and for creating
your R programs.

 R programs need to be submitted for execution via the R Console.

 Module 1 — A Primer on R for Windows

University of Canberra 57

 The results of the analysis appear in the R Console or Graphics
Window.

 When things go wrong, error messages appear in the R Console.

 Help is available for R functions using the ? operator, or the online help
facility.

You should now have a working understanding of workflow using R.

 When you start R, a workspace is established and a working directory is
identified to hold your raw datafiles and your workspace image.

 The analysis proceeds under your instructions, which are submitted
through the R Console.

 R maintains a search path to which you attach your dataframe to assist
in working with vectors contained in that dataframe.

 Saving your workspace image at the end of a session enables you to
resume work at a later date.

Where to now?
Now we have the basics under our belt, let’s move on to the Lesson 3 to try
a variety of analyses.

Biometry

 58 University of Canberra

Lesson 6: Some Elementary Statistical Analyses

R as a Statistical Analysis System

The CRAN Repository

R is more than a programming language. R is also a mature statistical
anaylsis system. Many people have taken the opportunity to develop
analysis capability using R, and have made this capability available to the
general scientific public in the form of packages.

All R functions are stored in packages. Only when a package is loaded are
its contents available.

The standard base packages are considered part of the R source code.
They contain the basic functions that allow R to work, and the datasets and
standard statistical and graphical functions that are described in this
Module.

There are literally hundreds of additional contributed packages for R,
written by many different authors. Some of these packages implement
specialized statistical methods, others give access to data or hardware, and
others are designed to complement textbooks. Most are available for
download from CRAN (http://CRAN.R-project.org/ and its mirrors).

To see which packages are installed at your site, issue the command

 library()

or click on the [Packages] tab in R-studio.

To see which packages are currently loaded, use

 search()

This will display the list of packages and objects currently in use, that is,
those that will be searched for commands.

To download a package from the CRAN site, select the [Packages] tab on
the R-studio Window. Then select [Install], type in the package name and, if
available, select to install. This will add the new package to those existing
in the library of packages within your installed copy of R, but will not load
the package.

To load a package that is available from within your installed copy of R, use

 library(boot)

This example will load the boot package containing bootstrapping
functions provided by Davison & Hinkley (1997) Bootstrap Methods and
their Application. Cambridge University Press.

You can confirm that it has been loaded with

 search()

As we move through the more advanced Modules using R, new packages
will be identified and loaded.

 Module 1 — A Primer on R for Windows

University of Canberra 59

Getting Started
If you are not continuing directly from the previous lesson, you will need to
start R again by double-clicking on the relevant icon on the desktop or in an
Applications Group window.

 Double-click on the R icon on your desktop and start a session with the
start.session() command.

If you are not continuing directly from the previous lesson, you will need
also to refamiliarise R with the dataset. If you have the relevant program
saved, read it into the Editor. Otherwise, you will need to type it in again.

Read in the data
 turtle <- read.table("mydata.dat")
Add variable names
 names(turtle) <- c("idno","sex","length","hwidth","weight")
Create new variables as the log to base 10 of length and
hdwidth
 turtle$lglength <- log10(turtle$length)
 turtle$lgweight <- log10(turtle$weight)
Copy the dataframe turtle to the search path
 attach(turtle)

Highlight the above segment of your program as it appears in the R
Editor, and use ^r to submit it for execution.

Descriptive statistics

The summary function

Descriptive statistics are a useful place to start an analysis. They can be
obtained by using the summary() command as follows:

 summary(turtle)

Type the above statements in the R Editor and submit it for execution.

The output is as follows.
 idno sex length hwidth weight
 Min. : 1.00 FEMALE:8 Min. :24.30 Min. :4.42 Min. : 1.650
 1st Qu.: 6.00 MALE :7 1st Qu.:32.00 1st Qu.:5.37 1st Qu.: 3.000
 Median : 11.00 NA's :6 Median :41.00 Median :6.60 Median : 7.200
 Mean : 19.19 Mean :38.71 Mean :6.58 Mean : 6.737
 3rd Qu.: 16.00 3rd Qu.:44.00 3rd Qu.:7.35 3rd Qu.: 9.000
 Max. :105.00 Max. :48.10 Max. :8.67 Max. :13.500
 lglength lgweight
 Min. :1.386 Min. :0.2175
 1st Qu.:1.505 1st Qu.:0.4771
 Median :1.613 Median :0.8573
 Mean :1.580 Mean :0.7502
 3rd Qu.:1.643 3rd Qu.:0.9542
 Max. :1.682 Max. :1.1303

Biometry

 60 University of Canberra

Other useful functions

Other functions are available to produce statistics such as the minimum,
maximum, range, standard deviation and so on (Table 1-5).

Table 1-5. Useful
summary

statistics functions
in R. In all cases x
refers to a vector.

Function Operation

min(x) Minimum of x

max(x) Maximum of x

range(x) Range of x

mean(x) Mean of x

median(x) Median of x

sd(x) Standard deviation of x

var(x) Variance of x

length(x) Number of elements in x

quantile(x, p) The quantiles of x corresponding to
probability p

summary(x) Minimum, maximum, median and mean of

x

Subsetting

Alternatively, you might want descriptive statistics calculated separately for
each sex, in which case the tapply() function is most appropriate. The
tapply() function has the following form:

 tapply(vector, factor, function)

where vector is the object to which the function is to be applied
separately for each level of the factor. For example,

 tapply(weight, sex, summary)

will apply the function summary() to the weights of each sex.

Type the above statements in the R Editor and submit it for execution.

The output is as follows.
$FEMALE
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 4.50 8.00 9.90 9.55 11.45 13.50

$MALE
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 3.900 6.850 7.600 7.286 8.400 9.000

Try some of the other functions listed in Table 1-5 on some of the other
numeric variables in the dataframe.

 Module 1 — A Primer on R for Windows

University of Canberra 61

Histograms, barcharts

Histograms

Size distributions are an important biological characteristic of populations of
animals with indeterminate growth, such as turtles. To obtain a size
distribution for the Kakadu population of pig-nosed turtles, the following
step is appropriate:

 hist(length)

We can tart this up a bit by specifying the intervals and the colour.

 hist(length, breaks=seq(17.5,52.5,5), col="red")

This step will produce a histogram of the variable length based on the
frequency of individuals falling in each of the intervals specified by the
breaks option. In this case each interval will be 5.0 cm wide, and centered
on 20 cm, 25 cm, 30 cm etc. Col=2 specifies the colour of the bars.

Type the above statements in the R Editor and submit it for execution.

Note that your graph may differ from that shown owing to differences in
screen attributes.

Figure 1-6
 Size distribution

for pig-nosed
turtles from

Kakadu National
Park. Length is

in cm. The
histogram on the

left was
produced with
function hist()

with user-defined
breaks.

The histogram
on the right is

the same data
using the default

settings in
function hist().

Histogram of LENGTH

LENGTH

F
re

q
u
e
n
cy

20 25 30 35 40 45 50

0
1

2
3

4
5

6
7

Histogram of LENGTH

LENGTH

F
re

q
u
e
n
cy

20 25 30 35 40 45 50

0
2

4
6

8

Bar Charts

Histograms are fine for continuous data, but for discrete data it is
customary to construct barcharts (the columns of a barchart are separated
by a space, Figure 1-7). Bar charts in R are achieved using the plot()
function. In the turtle data set the variable sex is discrete, and the
following program is appropriate:

 plot(sex, type="h", col="red")

Biometry

 62 University of Canberra

Type the above statements in the R Editor and submit it for execution.

Figure 1.7.
A barchart

showing the
frequency of

males and females
in a population of
pig-nosed turtles

from Kakadu
National Park. The

graph was
produced using

plot().

FEMALE MALE

0
2

4
6

8

T-tests
To perform a student's T-test with R, the data must be in the form of a
measurement variable occupying one data column and a breakdown
variable occupying another. The breakdown variable must have only two
values, not counting missing values.

In the example at hand, we might choose to compare the body weights of
males (sex coded as MALE) with those of females (sex coded as
FEMALE). Because juveniles were coded with the missing value code 'NA'
the t.test() function will ignore them. Here is the appropriate program:

 t.test(weight ~ sex)

Type the above statements in the R Editor and submit it for execution.

The output is as follows.
 Welch Two Sample t-test

data: weight by sex
t = 1.761, df = 11.235, p-value = 0.1054
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.5584373 5.0870088
sample estimates:
mean in group FEMALE mean in group MALE
 9.550000 7.285714

The t.test() function has lots of options, and you might like to look at
those by typing

 ?t.test

 Module 1 — A Primer on R for Windows

University of Canberra 63

One option is to perform a paired T-test, but the turtle data set does not
provide the opportunity to perform a paired T-test.

Scatterplots

The plot statement

Moving on to the bi-variate procedures, scatterplots are an important
prelude to both correlation and regression analyses. Before performing a
linear regression or correlation analysis, it is important to be sure that the
relationship between the two variables under consideration is roughly
linear. Consider the relationship between length and weight using a
plot() command:

The syntax of the plot() function is

 plot(x,y)

so to plot weight as a function of length, we need

 plot(length,weight)

Type the above statements in the R Editor and submit it for execution.

This statement will produce the plot shown in Figure 1-8, with weight on
the vertical axis and length on the horizontal axis.

As expected, the relationship is not linear, weight being more of a function
of body volume than of body shell length. It is for this reason that the
transformations of length and weight were undertaken earlier.

Figure 1-8.
Relationship

between body
weight and

carapace length
for the pig-nosed

turtle from
Kakadu National

Park. Length is
in cm and weight

is in kg. The
scatterplot was
produced with

plot().

25 30 35 40 45

2
4

6
8

1
0

1
2

length

w
ei

g
h

t

The extent to which the transformations linearise the relationship between
body weight and length can be judged from the following analysis:

 plot(lglength,lgweight)

Biometry

 64 University of Canberra

Type the above statements in the R Editor and submit it for execution.

The output is shown in Figure 1-9. With the possible exception of the left-
most point, the relationship between logged shell length and logged body
weight appears linear.

Figure 1-9. Log-
linear

relationship
between body

weight and
carapace length

for the pig-nosed
turtle from

Kakadu National
Park. Length is

in cm and weight
is in kg. Both

variables have
been

transformed by
logs to base 10.
The scatterplot
was produced

with plot().

1.40 1.45 1.50 1.55 1.60 1.65

0
.2

0
.4

0
.6

0
.8

1
.0

lglength

lg
w

e
ig

h
t

Correlations
The next step might be to calculate correlations between our response
variable weight and the linear measurement of length, after logging.

 cor.test(lglength,lgweight)

which yields the following output
 Pearson's product-moment correlation

data: lglength and lgweight
t = 33.2983, df = 19, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.9788252 0.9966334
sample estimates:
 cor
0.9915406

The correlation coefficient of 0.99 is significant with a p value well less than
0.0001.

Type the above statements in the R Editor and submit it for execution.

 Module 1 — A Primer on R for Windows

University of Canberra 65

Simple linear regression
As Aboriginal residents of Kakadu National Park regularly eat turtles, one
can often obtain shells of the species that are the remains of a meal. In
order to estimate the weight of a turtle from its shell length, a predictive
regression of weight on shell length is required.

Because of curvilinearity in the relationship between the two untransformed
variables, a linear regression of lgweight on lglength is appropriate:

 lm(lgweight~lglength)

The lm() function is designed as a general tool for undertaking linear
modelling. In this case, with a single response variable and a single
predictor, lm() does a simple linear regression. The output is as follows.

Call:
lm(formula = lgweight ~ lglength)

Coefficients:
(Intercept) lglength
 -4.392 3.255

More details on the analysis can be obtained by combining the summary()
function with the lm() function

 summary(lm(lgweight~lglength))

The output is as follows.
Call:
lm(formula = lgweight ~ lglength)

Residuals:
 Min 1Q Median 3Q Max
-0.067357 -0.023797 -0.002945 0.016399 0.099567

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.39213 0.15466 -28.4 <2e-16 ***
lglength 3.25492 0.09775 33.3 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.03817 on 19 degrees of freedom
Multiple R-Squared: 0.9832, Adjusted R-squared: 0.9823
F-statistic: 1109 on 1 and 19 DF, p-value: < 2.2e-16

Note now that we have not only the parameter estimates, but tests of their
significance, and the usual R2 value.

Type the above statements in the R Editor and submit it for execution.

For simple linear regression, the last two lines of the output suffice for a
quick interpretation of the analysis. The predictive relationship is

LGWEIGHT = 3.25492*LGLENGTH – 4.39

The regression coefficient (slope) is significant (t = 33.3, p < 0.0001).

Biometry

 66 University of Canberra

A graph of the relationship with the regression line can be be produced using
a combination of plot() and abline() (Figure 1-7).

 plot(lglength,lgweight)
 abline(lm(lgweight~lglength))

The abline() function is used to add a line of best fit generated by the
model specified in the lm() function. This program yields the output shown
in Figure 1-10.

Figure 1-10.
Log-linear

relationship
between body

weight and
carapace length

for the pig-nosed
turtle from

Kakadu National
Park. Both

variables have
been

transformed by
logs to base 10.
The scatterplot

and least-
squares line was

produced with
plot() with the

abline() function.

1.40 1.45 1.50 1.55 1.60 1.65

0
.2

0
.4

0
.6

0
.8

1
.0

lglength

lg
w

ei
g

ht

Finishing up
The preceding analyses of the turtle data set have exposed you to R
commands for some commonly used basic statistical techniques. Before
you instruct the computer to exit from R, you may wish to produce a
printout of your program.

Tidy up the program listing in the R Editor window by ensuring there are
no elements remaining of the program that did not work.

Print the contents, and then save the program to disk.

Before you leave R, it’s worthwhile to try the online help facility. Detailed
help is available on a wide range of R options. Try obtaining help on topics
that strike your interest.

 Module 1 — A Primer on R for Windows

University of Canberra 67

Select Html Help under the HELP Menu of the R Console and peruse the
help files.

The basic introduction to R is now complete, so exit from the R
environment. You should clean up your workspace by perusing its contents
with the ls() command and removing unwanted objects with the rm()
command. Select to save your workspace image, in case you want to
revisit this module.

Clean up your workspace and exit from R by choosing File_Exit from the
Menu Bar. Elect to save your workspace, when prompted.

 Where have we come?
Having completed this module, you have the basic knowledge and skills to
undertake simple statistical analyses in R. In particular, you will appreciate
that:

 R is a programming language that uses objects as its primary
constructs, and in particular, vectors, dataframes and functions

 R has a windows interface including an R Console for entering
commands directly and an R Editor for creating and submitting
programs. Graph windows are for displaying graphical output, and Help
windows appear when help is requested.

 Data can be accessed from separate raw data file, usually created using
a third-party editor or an Excel spreadsheet.

 Once the data are read into R, there are a very large number of
functions for analysing those data, both in the base library and in a very
many specialized libraries available on the web.

It needs to be said that this module has introduced only a very small part of
the capability of R, and has been designed to be a minimal introduction, to
get you up to speed as quickly as possible.

Your capacity for using R will grow with use, and you need to keep a good
notebook to record new procedures and to share these with your
colleagues.

