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Lesson 1: Key Concepts  

Sample and summarise 

Descriptive statistics have an important role to play in science. When 
specific problems are addressed in science, data needs to be 
collected, analysed and presented in a concise form so that others 
may benefit from what has been found.  

In the biological sciences, work is often undertaken on populations 
of organisms. Almost invariably, these populations are too large to 
study in their entirety. For example, an ornithologist could not 
possibly hope to capture all of the individuals of the bird species he 
chose to study. Studies usually require that subsets of entire 
population be taken. These subsets are called samples. 

Most of the advantages of sampling are fairly obvious. It is cheaper 
and quicker to obtain information from a sample than from an entire 
population, which may be very large. More comprehensive data can 
be obtained by studying a relatively small sample thoroughly, rather 
than a large population superficially. Sampling may be the only 
means of obtaining data if the process of measurement is 
destructive. The biologist examining ovaries to judge the proportion 
of female seals that breed each year will surely refuse to slaughter all 
individuals to gather data. Whatever the reason for taking a sample, 
it is important for the sample to be representative of the population 
from which it is drawn. Only then will it be possible to extend your 
findings to the entire population.  

One of the first steps taken in any analysis is to summarise the 
information contained in the sample. This is necessary because 
blandly perusing raw data in samples of even moderate size (Table 
2-1) is unlikely to provide great insight. Nor is it worthwhile to present 
entire raw data set in a report or manuscript, except perhaps in an 
appendix, because the reader cannot be expected to glean the 
trends that the author considers important, directly from the raw data. 
Few readers would bother.  

The objective of this module is to introduce descriptive analyses 
appropriate for a single variable. 
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The frequency tabulation 

The frequency tabulation is a very popular method for summarising 
data because even very large data sets can be condensed to a 
manageable form without substantial loss of information. Consider 
the data on the lengths of shoots of Banksia ericifolia shown in Table 
2-1. 

Table 2-1. 
Lengths (in cm) 
of 500 shoots of 

the shrub 
Banksia ericifolia 

from heaths in 
the 

Commonwealth 
Territory of 
Jervis Bay. 

28.4 29.1 25.7 26.2 25.8 30.2 26.2 35.8 33.4 29.0 31.6 33.8 22.6 34.8 

25.1 36.8 29.9 38.3 27.1 32.3 29.0 27.7 28.1 28.9 21.8 25.0 23.2 26.8 

29.9 36.3 26.0 21.2 19.8 36.7 21.1 34.6 29.6 32.6 27.2 34.2 26.7 27.6

25.8 23.2 28.8 38.2 32.7 38.7 33.2 24.5 21.6 28.6 19.4 27.4 43.7 25.5 

35.0 25.1 24.7 29.5 24.9 29.2 19.5 20.1 30.3 38.9 28.2 26.2 29.4 22.4 

36.4 31.8 31.0 39.4 28.8 31.8 28.7 37.0 25.5 19.3 44.0 38.0 28.6 36.5 

29.1 21.1 30.4 31.2 38.0 39.0 19.3 27.6 19.1 32.5 26.8 39.9 36.1 41.5

33.2 26.5 38.1 14.9 33.2 27.8 24.7 24.9 25.0 33.1 24.1 19.7 19.1 31.4 

26.9 22.5 25.5 33.0 19.4 26.8 24.6 37.5 19.8 43.7 38.1 30.8 34.5 22.8 

34.2 33.6 42.5 19.0 25.8 34.0 34.4 42.0 35.4 31.5 40.6 19.2 24.9 33.5

32.0 38.4 29.1 29.4 29.3 26.8 32.4 25.2 28.5 29.8 22.8 17.1 29.6 33.3 

31.7 22.4 21.7 20.1 21.6 23.5 33.2 33.0 29.6 36.9 26.8 38.1 29.8 21.2 

23.6 16.2 27.3 33.3 21.6 30.2 22.5 33.0 38.3 29.5 34.9 30.3 26.0 24.5 

31.1 31.7 31.6 41.7 25.9 32.3 35.7 31.6 26.0 26.6 26.3 19.6 22.0 40.2 

29.1 15.8 22.1 23.2 25.4 28.4 20.2 25.5 26.9 32.7 28.8 39.6 31.9 31.9 

29.8 27.1 36.9 32.7 24.8 18.0 40.2 28.0 26.8 41.9 15.8 16.2 33.6 34.8 

31.5 27.4 37.2 30.6 32.2 34.8 28.2 31.3 34.3 32.0 33.3 30.1 20.5 37.3 

20.6 27.2 25.0 26.1 34.5 44.9 40.5 32.1 40.4 35.7 33.9 29.3 28.1 34.3 

29.3 24.7 37.0 36.9 34.8 29.8 22.8 32.3 34.8 29.6 33.6 22.8 31.6 34.7 

24.0 30.5 31.6 28.7 20.8 14.6 23.4 26.3 31.9 32.5 34.3 25.7 36.0 37.7 

32.4 36.4 24.1 33.1 26.3 35.7 26.4 34.7 27.5 39.6 16.5 30.2 23.8 23.7 

30.5 30.1 21.3 27.1 19.0 25.4 36.5 22.6 25.5 30.0 34.4 30.6 32.7 30.4 

29.2 30.2 20.8 30.3 27.8 32.9 28.2 20.6 33.6 22.2 37.5 30.0 24.2 18.8 

26.1 29.7 32.0 22.2 29.2 21.5 31.4 43.1 35.9 14.9 24.6 26.2 33.4 29.9 

38.8 21.9 25.6 29.7 29.9 32.5 30.4 29.2 40.9 14.1 22.1 20.0 24.3 28.6

22.4 19.9 34.8 33.4 28.0 29.1 27.2 18.8 36.2 27.8 20.2 21.9 27.0 21.9 

29.9 21.8 33.1 30.4 30.8 33.9 27.1 27.6 37.2 30.9 31.4 41.9 24.7 25.8 

28.3 34.3 34.0 29.0 30.9 24.4 29.0 25.4 30.5 31.1 33.9 15.7 40.5 29.9 

26.3 38.3 24.8 23.5 29.3 37.8 29.9 28.6 27.4 29.9 33.5 17.0 34.1 30.9 

24.3 20.7 22.5 39.5 32.0 27.6 36.3 22.0 28.4 19.1 25.8 25.7 33.9 43.0 

16.8 43.9 27.9 44.4 29.7 23.0 26.8 43.4 29.4 26.7 16.5 22.1 23.0 39.4 

27.8 33.1 34.9 20.5 25.4 10.0 28.2 31.0 10.6 28.4 16.5 22.3 17.6 24.2

21.9 27.0 26.5 29.2 24.9 18.4 24.1 28.3 29.0 29.1 18.8 36.7 24.7 23.2 

26.2 32.6 22.3 31.7 37.1 35.6 19.5 26.9 24.8 19.2 25.1 22.1 37.9 28.3

29.9 42.1 36.6 25.5 34.2 22.4 40.5 21.2 32.3 31.5 34.2 34.5 39.2 29.3 

29.3 31.6 23.2 32.1 20.3 27.8 22.9 32.5 24.5 36.5     

There are 500 measurements, quite a formidable data set. By 
inspection, the minimum shoot length is 10.0 and the maximum is 
44.9 cm. These values define the sample range. We now need to 
subdivide the range into intervals or classes, each of equal size. It is 
generally advisable to round the minimum value down and the 
maximum value up to appropriate values when deciding on class 
intervals. In this case it seems sensible to divide the range 10 to 45 
cm into seven intervals each 5 cm wide. 

If we count the number of shoots that lie in each of the seven 
intervals, we have the basis for frequency tabulation. Such a 
tabulation is shown in Table 2-2. The frequency column was obtained 
by counting the number of measurements that lie within each class. 
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The percent frequency column was obtained by representing each 
count as a percentage of the total count. The cumulative frequency 
and cumulative percentage frequencies were obtained by 
progressively summing the corresponding frequencies. 

Table 2-2. 
 A frequency 
tabulation of 

shoot lengths for 
the shrub 

Banksia ericifolia 
from Jervis Bay 

Length Frequency Percent Cumul. Freq 
Cumul.Percent 
Frequency 

10<x15  6  1.2  6  1.2 

15<x20  35  7.0  41  8.2 

20<x25  93  18.6  134  26.8 

25<x30  155  31.0  289  57.8 

30<x35  130  26.0  419  83.8 

35<x40  57  11.4  476  95.2 

40<x45  24  4.8  500 100.0 

Frequency tabulations provide summaries of data sets without 
substantial loss of information. In this case there has been minimal 
information lost — for example, the average shoot length calculated 
directly from the frequency tabulation (using the class midpoints) of 
28.85 is in close agreement with the figure of 28.97 calculated from 
the raw data. A reader of a paper containing a frequency tabulation 
would have access to almost as much information as if the entire 
data had been published, yet the table takes up far less space and 
would take up little more room if based on 5 million measurements 
rather than only 500. 

Frequency tables included in reports or papers do not generally 
contain all four types of frequencies shown in the above tabulation. 
The most usual columns to include are:  

 Class intervals 

 Raw frequencies 

 Percentage frequencies  

Percentage frequencies, although the most commonly used, can be 
very misleading if the sample size is small. For small samples, 
frequency tabulations should contain raw frequencies only. When 
dealing with a large sample, you may choose not to include the raw 
frequencies, but you must provide the total sample size upon which 
the percentage frequencies were based. 
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Histograms and bargraphs 

Frequency tabulations can be represented as a graph of frequency 
(raw or percentage) against the measurement variable. The 
information contained in the frequency table of shoot lengths of 
Banksia ericifolia is graphically represented by the histogram shown 
in Figure 2-1. The shape of the frequency distribution is usually of 
greater interest than the absolute heights of each column, so 
histograms are usually constructed from percentage frequencies. 

The shoot lengths of Banksia ericifolia are examples of continuous 
measurements — they are free to take any whole or fractional 
number within their range. For discrete measurements such as hair 
colour or sex class, frequency tabulations can be represented as 
bargraphs. Bargraphs are similar in construction to histograms 
except that the vertical columns used represent class frequencies are 
spaced to indicate that the data are discrete (Figure 2-2).  

Modern statistical packages have great versatility in graphical output. 
Experimentation with options described in the manuals will enable 
you to produce frequency polygons, composite histograms, 
horizontal bargraphs, block diagrams and pie charts. 

 

 

Figure 2-1 (left).   
A histogram 
showing the 

distribution of 
lengths for shoots 

of Banksia 
ericifolia (n=500). 

Figure 2-2 (right).  
A bargraph 

showing the 
relative 

proportions of 
unsexed juveniles 
(J), mature males 

(M) and mature 
females (F) in a 

population of pig-
nosed turtles at 

Pul Pul Billabong 
in Kakadu National 

Park (n=32).     
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Statistics 

The term statistic does not only refer to the academic discipline that 
deals with measurement, summary, inference and hypothesis testing. 
The term refers also to single-valued characteristics of samples. The 
sample mean, median, standard deviation and skewness are all 
statistics. They each describe some aspect of the sample. 

Although the frequency tabulation (or histogram) summarises a data 
set with little loss of information, as a description it lacks sufficient 
definition to satisfy most researchers. Various summary statistics are 
usually presented in addition to or in place of the frequency 
tabulation or histogram.  

Commonly used statistics fall into one of three categories — 
averages or statistics location, statistics of dispersion or variability, 
and statistics of shape.  

Averages 

An average is a single value that summarises the position of the 
sample measurements with respect to the range of values possible 
for the measurements. When asked how big the quoll Antechinus 
stuartii is, it would be appropriate to answer with the mean adult body 
length of 5.3 cm. This value might not give an accurate indication of 
the size of a particular individual Antechinus, but it does give a good 
indication of the size of Antechinus in general. 

Several averages are available. The most common is the Arithmetic 
Mean calculated by summing all the measurements in a sample and 
then dividing by the total number of measurements, as follows:  

n

Y
Y

n

i
i

 1  

The Median is the value that has 50% of values greater than it and 
50% less than it. To calculate the median, you must rank the 
measurements in order of magnitude, then select a value that equally 
divides the number of measurements in the sample.  

The Mode is the most commonly occurring value in a sample. For 
continuous data that have been grouped, it is sensible to define it as 
the midpoint of the class interval in a frequency tabulation that 
contains the most values. Interpolation formulae are available to 
improve the answer. 
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Other averages are in use, such as the harmonic mean and the 
geometric mean. These have specific applications, and they will not 
be dealt with further here.  

Measures of variability 

It is possible to imagine two histograms with the same mean but 
which differ in the spread of measurements about their means 
(Figure 2-3). Clearly an average does not provide an adequate 
summary of a data set. Other statistics are required, among which 
are statistics of variability or spread of measurements about the 
mean.  

A simple measure of variability is the range. It is the difference 
between the largest and the smallest values in a sample. The range 
is obviously affected by even a single outlying value and for this 
reason is only a rough estimate of the variability of all observations in 
a sample. The range is also of limited value because it cannot be 
used easily in sampling theory, upon which so much of statistics 
depends. By far the most important measure of variability is the 
Standard Deviation.  

 
1

2




 
n

YY
SY  

The deviations of all sample observations from the sample mean are 
squared to remove negative signs, then summed. The summed 
squared deviations or Sums of Squares are then divided by n-l. The 
square-root is then taken to ensure that the units of the standard 
deviation are the same as those of the measurement variable. The 
standard deviation is a sort of average absolute deviation of 
measurements from their mean, though quite distinct from the mean 
absolute deviation defined in many textbooks but no longer widely 
used. 

Figure 2-3.  
Two histograms 

with identical 
means but 
differing in 

variability about 
those means. 
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The Variance or Mean Square is simply the standard deviation 
squared.  

The Coefficient of Variation is used to compare the variability of 
two samples that have widely differing means. In such cases it is 
useful to measure the variability in relative terms by dividing the 
standard deviation by the mean. The result is the coefficient of 
variation, usually expressed as a percentage. 

%100.
Y

S
CV Y  

The coefficient of variation has the added advantage in that it has no 
units, and can be used to compare the variability of two very different 
measures, for example, to compare variability in body weight and in 
the concentration of a hormone in the blood.  

The Inter-Quartile Range is another useful measure of variability. 
Recall that the median is the value below which 50% of all values in 
the sample lie. We might similarly define the 1st Quartile as the value 
below which 25% of all values in the sample lie and the 3rd Quartile 
as the value below which 75% of values lie. The Inter-Quartile Range 
is the difference between the first and third Quartiles and is a 
measure of variability that is superior under some circumstances to 
the standard deviation.  

The 5th and 95th percentiles cut off 5% of the most extreme values 
in the distribution of values for the sample. The 1st and 99th 
percentiles may be similarly defined. As with Quartiles, a list of 
percentiles may be far more informative than the standard deviation 
for summarising the spread of values about the mean or median, 
especially when the spread is asymmetrical. 

The Evenness Index J' (Pielou, 1966) is an appropriate measure of 
the variability among nominal level measurements such as hair 
colour or sex class.  

n

ffnn
H

k

i
ii




 1

loglog
'  

k

H
J

log

'
  

where f i represents the class frequencies, k is the number of classes 
and n is the total number of objects measured. The derivation and 
relative merits of several measures of variability for nominal level 
data are discussed by Zar (1984, Chapter 4).  
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Statistics of shape 

It is possible to have two sample frequency distributions with the 
same arithmetic mean (ie they are in the same overall position on the 
horizontal axis) and with the same standard deviation (ie variability 
about the mean is the same on average) but with different overall 
shape (Figure 2-4).  

There are two statistics useful for describing shape. Skewness is 
another name for asymmetry which means that one tail of the 
frequency distribution is drawn out more than the other. A skewness 
of zero implies a symmetrical shaped histogram, a negative value 
implies skewness to the left, and positive value implies skewness to 
the right. The skewed histogram of Figure 2-4 is skewed to the right.  

Kurtosis is a measure of how "peaked" (leptokurtic) a frequency 
distribution is or how "flattened " (platykurtic) it is. A negative value 
indicates platykurtosis, and a positive value indicates leptokurtosis.  

Figure 2-4. Two 
histograms with 
the same mean 

and the same 
standard 

deviation, but 
differing in 

shape. 
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Where have we come? 

In this lesson, we have covered the basics of descriptive statistics for 
data comprised of a single variable. You should now appreciate 

 The distinction between a sample data set and the population 
from which it is drawn. 

 The value of the frequency tabulation for presenting data in a 
concise form with minimal loss of information, and that frequency 
tabulations can be presented in graphical form as histograms and 
barcharts. 

 The range of statistics available for measuring central tendency, 
and the distinction between them in theory and practice. You have 
the arithmetic mean, the median and the mode. 

 The range of statistics for measuring dispersion of sample values 
about their mean, and the distinction between them. You have the 
standard deviation, the range, the interquartile range and 
percentiles, the coefficient of variation and the evenness index, 
each with their own particular application. 

 The range of statistics for measuring the shape of a sample 
distribution. You have the skewness statistic and the kurtosis 
statistic, and should appreciate the distinction between the two. 
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Lesson 2: Application Notes 

Levels of measurement 

There are two considerations which, more than any other, will 
determine your choice of descriptive statistics. The first relates to the 
type of measurements you take, because not all descriptive statistics 
are appropriate for all types of measurement. The second is whether 
or not your sample of measurements is taken from a normally 
distributed population.  

In its broadest sense, measurement is the process of abstracting a 
value from each item or entity that is the subject of study. For 
organisms we might choose to measure the variables length, weight, 
and body temperature or the variables sex, colour, presence or 
absence of evidence of lactation, and species. Measurement of a 
property means assigning a value, not necessarily numerical, to 
represent it.  

Measurements can be made at different levels of precision, or 
Levels of Measurement as they are so called. The level of 
measurement often dictates the choice of valid summary statistics, 
and the statistical analyses that follow, and so are described in some 
detail below. 

Nominal level 

Measurements are at the nominal level if the items being measured 
are simply assigned to one of several classes that may be denoted 
by numbers or alphabetic codes. 

Measurements at the nominal level place units in categories, nothing 
more. The order in which the categories are presented is quite 
arbitrary. Examples include sex, species in a rainforest assemblage, 
genetic phenotypes among second generation offspring, colour of the 
scales on the dorsal surface of Crocodylus johnstoni, identity number 
etc. 

Ordinal level 

Measurements are at the ordinal level if, in addition to having all the 
properties of nominal measurements, they can be ordered on 
magnitude 

Sperm in the epididymides of a seasonal breeder may be recorded 
as absent, sparse, common, abundant or very abundant. Military 
ranks can be considered ordinal measurements. A General is greater 
in military rank than a Captain who is greater in rank than a 
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Sergeant. Moh's scale of hardness is another good example of 
measurement at the ordinal level.  

Note that in all of these cases we can say that one measurement is 
greater than another, but we cannot say by how much it is greater. Is 
the difference between absent and sparse comparable to the 
difference between abundant and very abundant? Does subtracting a 
Captain from a General have any meaning? A diamond with a Moh’s 
hardness of 10 scratches corundum with a Moh’s hardness of 9 and 
corundum scratches topaz with a Moh’s hardness of 8. This does not 
mean that as corundum is one unit harder than topaz, then diamond 
is in absolute terms one unit harder than corundum. In fact any 
mineralogist will tell you that is untrue. If hardness is measured as 
the force per unit area necessary to produce a permanent 
deformation in a polished surface (the Knoop Scale), then diamond 
has a hardness of 7000 compared to 2100 for corundum and 1340 
for topaz. Measurement at an ordinal level as on Moh’s scale, allows 
us to say that one item has more of a property than another, but not 
how much more. 

Interval level 

Measurements are at the interval level if, in addition to having all the 
properties of ordinal measurements, they can be used to determine 
by how much one measurement differs from another. 

At the interval level, the measurements can not only be ranked, but 
differences between measurements have a real meaning. Obviously 
measurements at the interval level must be represented by numerical 
values, unlike measurements at the nominal and ordinal levels. 
Consider measurement of temperature in degrees centigrade. The 
difference between 30ºC and 60ºC is equal to the difference between 
-10ºC and 20ºC and half the difference between 50ºC and 110ºC. 

However, an object heated to 40ºC does not have twice as much 
heat in it than when it was initially at 20ºC. This becomes clear when 
you realise that the centigrade scale has its zero value set arbitrarily 
at the freezing point of water. On the Fahrenheit scale, 40ºC and 
20°C correspond to 104°F and 68°F respectively. The former 
temperature (104°F) is no longer double the latter (68°F). Centigrade 
and Fahrenheit temperature scales are not measured in relation to 
true zero and so are measured at the interval level.  

Ratio level 

Measurements are at the ratio level if, in addition to all the 
properties of interval measurements, they are measured relative to a 
true zero point, as opposed to an arbitrary zero point. 
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Zero represents absence of the property being measured. One can 
validly present ratios of the measurements in the knowledge that 
those ratios are absolute and not dependent on the scale chosen for 
measurement. Examples of ratio level measurements include height 
in cm, weight in grams, counts, plant densities in plants/m2. 

Levels of measurement and descriptive statistics 

Not all of the descriptive techniques covered in these notes can be 
applied to all types of data. The summaries appropriate for describing 
nominal data are frequency tabulations, bargraphs, the mode and 
the Evenness Index. One might choose to record the colour of head 
scutes of the freshwater crocodile by assigning the colours to one of 
seven nominal classes. It is not meaningful to talk of average scute 
colour (say) in the sense of calculating an arithmetic mean, yet the 
number of crocodiles with scutes of each colour can be readily 
tallied, graphed and the modal class determined. The standard 
deviation cannot be calculated for scute colour, but the Evenness 
Index will provide a measure of the spread of individuals across the 
range of scute colour classes. 

The summaries appropriate for describing ordinal data are 
frequency tabulations, bargraphs, the mode, the median and 
percentiles. Recall that the median is the value for which half the 
measurements are smaller and half are larger. It is because the 
ordinal scale is ranked that one can calculate the median and 
percentiles. The arithmetic mean should not be calculated for ordinal 
data no matter how respectable the result may appear. This is 
because the intervals between units on the scale are not necessarily 
of equal size and are, in all respects apart from their order, arbitrary. 
On ordinal data, the operations of arithmetic (addition, subtraction) 
are not valid, and so it is not valid to calculate the arithmetic mean. 
Nor is it valid to calculate the standard deviation, variance or 
coefficient of variation, even though the computations may be 
possible. The inter-quartile range replaces them as an appropriate 
measure of variability for ordinal data.  

With the exception of the coefficient of variation, all of the descriptive 
statistics described in these notes may be used to summarise 
interval data. 

The distinction between interval and ratio data is often glossed over 
in statistical texts; in fact the two levels of measurement are often 
discussed together as if there were no practical differences between 
them. To dispel this view, consider an example. A researcher has 
decided that variability in environmental factors is more important in 
stimulating germination of a plant species than are the absolute 
values of ambient temperatures and humidity. She wishes to know 
which of the two factors, temperature or humidity, can be considered 
the more variable. Note that the temperature is measured on the 
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interval scale whereas humidity is measured on the ratio scale (zero 
humidity means zero moisture). Her data are shown in Table 2-3. 

Table 2-3. 
Temperature 
and humidity 

measurements 
collected in an 

investigation of 
plant 

germination. 

 Temperature   0C Humidity  % 
21.0 72.5 

22.5 74.0 

27.5 87.5 

28.0 88.0 

24.5 79.5 

26.0 81.0 

23.0 78.0 

27.5 79.5 

MEAN 25.0 80.0 

SD 2.65 6.02 

N 8 8 

CV 10.6% 7.5% 

To determine which factor is more variable, it is of little value to 
compare the standard deviations directly because the mean humidity 
of 80% is much greater in magnitude than the mean temperature of 
25°C. We must compare the coefficients of variation. The coefficient 
for temperature of 10.6% is greater than the coefficient for humidity 
of 7.5%, so we conclude that temperature is the more variable of the 
two. However, had the researcher chosen to measure temperature in 
ºF rather than ºC, she would have obtained figures of 77°F for the 
mean, 4.76°F for the standard deviation and only 6.2% for the 
coefficient of variation. Now humidity is the more variable.  

This is clearly unsatisfactory. The results of an analysis should not 
depend on an arbitrary decision to measure temperature in degrees 
Fahrenheit rather than degrees centigrade. The anomaly arises 
because temperature is not measured with respect to a true zero; it is 
measured on the interval scale. The coefficient of variation can only 
be validly calculated for data measured at the ratio level.  
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Table 2-4. The 
applicability of 

various summary 
techniques to 

data measured 
at each of four 

levels of 
measurement. 

 Data Type 
Technique Nominal Ordinal Interval Ratio 
Frequency Tabulations YES YES YES YES 

Bargraphs YES YES YES YES 

Mode YES YES YES YES 

Evenness Index YES YES YES YES 

Median no YES YES YES 

Quartiles and Percentiles no YES YES YES 

Interquartile range no no YES YES 

Histograms no no YES YES 

Frequency Polygons no no YES YES 

Arithmetic Mean no no YES YES 

Standard Deviation no no YES YES 

Variance no no YES YES 

Coefficient of Variation no no no YES 

Level of measurement depends on the method of measurement, not 
on the property being measured. Most science students would be 
familiar with measurement of temperature on the Kelvin Scale or 
Absolute Scale. 0ºK is the temperature at which molecules stop 
vibrating and there is literally no heat. 0ºK is a true zero and an 
object at 20ºK has twice as much heat as at 10ºK. Temperature in 
degrees Kelvin is measured at the ratio level. If we choose instead to 
record temperature in °C, relative to the arbitrarily chosen freezing 
point of water, we are measuring it at the interval level. Alternatively 
we might choose to record it as freezing, cold, cool, neutral, warm, 
hot, boiling — an ordinal level of measurement  
(Table 2-5).  
 

Table 2-5. 
Temperature 
measured at 

each of the four 
levels of 

measurement 

Ratio I n t e r v a l  Ordinal Nominal 
ºK ºC ºF Touch Treatment 

273 0  32 Freezing C 

283 10  50 Cold A 

293 20  568 Cool D 

313 40  104 Hot E 

353 80  176 Very Hot B 

The same property is measured, but at four different levels and a 
higher level can be converted to a lower level, but with some loss of 
information. The consequence of this is that statistics that are valid at 
a low level of measurement can always be applied to measurements 
at a higher level (Table 2-4). 
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Normality 

Analysing Normal data 

Most natural groups of objects show variation. Humans differ in 
height, even if of the same sex, race and age. In many instances, 
measurements of similar objects vary about their mean according to 
a well defined function, the Normal or Gaussian distribution function. 
The second major consideration in deciding upon appropriate 
descriptive statistics is whether or not the data can be adequately 
modelled by a normal distribution.  

The normal distribution has the following characteristics:  

 It is symmetric about its mean, median and mode. Hence a normal 
distribution has a skewness of zero. 

 It is bell-shaped, with a kurtosis of zero. 

 It is a continuous curve defined for ordinate values from minus 
infinity to plus infinity.  

 It is completely defined by its mean and standard deviation. That 
is, if you know the mean and standard deviation of the normal 
curve, you can calculate its exact equation.  

 95% of observations fall in the range defined by the mean plus or 
minus 1.96 standard deviations and 99% fall in the range defined 
by the mean plus or minus 2.58 standard deviations.  

A normal distribution can be expected to be a good model of the 
distribution of data if, in general, the value taken by a measurement 
of one particular object is influenced by a myriad of small and 
independent factors. Hence one would expect the birth weights of 
female infants of Caucasian descent born full-term to be normally 
distributed. One would not expect the weights of individuals in a 
sample of people taken at random to be normally distributed because 
there are a few variables, which have an over-riding influence on a 
person's weight. Age is one, sex is another. The distribution of body 
weights in a sample will depend very much on the distribution of ages 
of the people in the sample. 

Similarly, we might expect counts of a plankton species in column 
samples taken at the same time and place to be normally distributed 
provided the average count is around 50. If the average count is 
around four, however, a normal distribution is not likely because 
counts in individual column samples can vary below the mean by 
only four places (a negative count is not possible) but is not limited in 
how far it can vary above the mean. Such a distribution would be 
skewed to the right.  
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A normal distribution with a mean and standard deviation equal to 
those of the sample, has been fitted to the frequency distribution of 
shoot lengths of Banksia ericifolia (Figure 2-5). Clearly the normal 
distribution is an adequate model for these data, as the fit is very 
good. A practical consequence of this Normality is that the data on 
shoot lengths of Banksia ericifolia can be adequately summarised by 
the sample mean and standard deviation alone, because they are all 
that is required to specify exactly the corresponding normal 
distribution. With these two statistics, we can re-construct a close 
approximation of the frequency tabulation for the original data, and 
as we have seen, this tabulation contains almost as much 
information as the original data itself.  

Summary statistics for a sample drawn from a normally distributed 
population would usually include the range of values encountered 
(10.0 to 45.9 cm), the arithmetic mean (28.97 cm), the standard 
deviation (6.37 cm) and the size of the sample from which these 
statistics were calculated (n = 500). All other information, including 
the frequency tabulation, the mode, median, percentiles, sample 
skewness and kurtosis would be superfluous.  

Analysing non-normal data 

For data that do not conform to the theoretical normal distribution, the 
situation is more complex. No longer will the mean and standard 
deviation suffice in order to reconstruct the frequency distribution of 
the raw data. No longer would we expect only 5% of values to lie 
outside the mean plus or minus 1.96 standard deviations. A more 
detailed description of the characteristics of non-normal data is 
required.  

Figure 2-5 (left). 
A histogram of 

the shoot lengths 
of Banksia 

ericifolia showing 
the close 

agreement with 
a Normal 

distribution with 
the same mean 

and variance. 

Figure 2-6 
(right). A 

distribution that 
is skewed to the 

right showing the 
difference 

between mean, 
median and 

mode. 
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Substantial differences between the mode, median and arithmetic 
mean are apparent when a skewed distribution is considered (Figure 
2-6). Clearly the three averages can have distinctly different values. 
Which one is the most appropriate average?  

The mean is markedly affected by outlying observations whereas the 
median and mode are not. Consider for example the salaries of staff 
employed by a large company (Figure 2-6). The very high salaries of 
the few senior executives would shift the arithmetic mean (the centre 
of gravity) toward a completely unrepresentative value. On the other 
hand, the median would be little affected by a few large salaries and 
may indeed be more representative of the typical salary. Quadrupling 
the salaries of the ten most highly paid executives would have a 
marked effect on the value of the mean, but would not alter the mode 
and median at all. 

This difference between the mean and median has important 
practical consequences for analysis of data that contains aberrant 
outlying values, because of errors at the time of measurement or 
during transcription in preparing the data. Such errors, if they go 
unnoticed, can seriously affect an analysis based on the mean and 
standard deviation, less so an analysis based on the median and 
other percentiles.  

The median may be preferred over the mean in cases where it is 
difficult or impossible to measure the entire sample. A case in point is 
the time it takes a particular poison to kill half of the animals in the 
experiment. Such a value represents the median time to die and it is 
preferable to the mean which may be incalculable if some animals 
fail to die. 

Similar considerations apply to measures of dispersion. The 
interquartile range or comparison of percentiles may provide the best 
summary of the dispersion of values in a sample taken from a very 
skewed population, and indeed they are preferred over standard 
deviations for data on river flow which are typically very skewed. In a 
preliminary analysis to detect outliers (aberrant values), one might 
choose to omit from subsequent analyses, all values that are more 
than four standard deviations from their mean. Only 0.01% of values 
would be expected to be as extreme, if the sample is drawn from a 
normal distribution, so values more extreme are highly suspect. The 
catch is that this approach is only appropriate for normal 
distributions. For skewed data, a definition based on percentiles is 
preferred. We might choose to reject, or at least check, data that are 
greater than the 99th percentile or less than the 1st percentile. 

Most modern statistical packages perform various tests to determine 
if your data are likely to have been drawn from a normally distributed 
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population. These will be introduced when presenting the step-
through examples. 

Where have we come? 

The objective of the Application Notes is to introduce the nuances of 
applying descriptive statistics in practice. In completing this lesson, 
you should appreciate 

 The various levels at which measurements can be taken -- 
Nominal, Ordinal, Interval and Ratio -- and the distinction between 
them. You should also appreciate the central role level of 
measurement plays in your choice of descriptive statistic. 

 The distinction between normal and non-normal data, and how this 
governs the descriptive statistics you use and how you report the 
results of your analysis. 
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 Lesson 3: Step-through Examples 

Example 2-1: Burton's Bush Rat 

This is a sample analysis of nominal level data 

In a study of the reproduction of the small native rodent Melomys 
burtoni, Bob Begg and his colleagues at the Conservation 
Commission of the Northern Territory laid out a grid of 96 trap 
stations at Cobourg Peninsula. A total of 143 individuals were 
captured over 116 weeks (Begg et al, 1983).  

Female Melomys were classified into one of four reproductive 
groups:  

 Juveniles:  rats in this category had an imperforate vagina, 
indicating that they had not previously mated, their nipples were 
not clearly visible and they weighed less than 50 grams. 

 Non-breeding adults:  this group included all non-pregnant 
perforate females and imperforate adults (body weight  50 g). 

 Pregnant:  as this was scored by palpation, only females in the 
more advanced stages of pregnancy were scored as positive. 

 Lactating:  the nipples of rats in this category were elongated, 
swollen and surrounded by rings of bare skin. Milk was expressed 
when the nipples were squeezed. These animals had young in the 
nest.  

The data, which are clearly at the nominal level of measurement, are 
held in the file MELOMYS.DAT and are arranged as follows:  

MELOMYS APR F 2  
MELOMYS APR F 2  
MELOMYS APR F 3 
MELOMYS APR F 3  
MELOMYS APR F 2  
MELOMYS APR F 2 
MELOMYS APR F 2  
MELOMYS APR F 2  
MELOMYS APR F 1 

etcetera. 

The first variable is the species name, the second is the month in 
which the animal was examined, the third is the sex of the animal, 
and the fourth variable is its reproductive status. As reproductive 
status is a measurement made at the nominal level, it cannot be 
validly analysed in terms of means, standard deviations and other 
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such statistics. This is true even though the classes are represented 
by the digits 1 to 4 and the calculation of such statistics is manually 
possible. Instead, we have at our disposal, procedures that yield 
frequency tabulations and barcharts, from which the modal class 
might be determined.  

Throughout this series your action is only required when you 
encounter instructions in one of these text boxes. 

When you encounter code it will be typed in Courier New. Code 
that is in bold and is led by a greater than symbol “>” has to 
be entered by you, whereas code that appears in normal type 
without the greater than symbol is the output of the R 
console. 
 

Start a R-session  

  Double click on the Tinn-R icon and launch R from within 
Tinn-R (Click in the Menu on R->Initiate/Close Rgui->Initiate 
preferred Rgui). 
 

 

 

 

Note 

First thing to do once you started R, is to set your working directory to the folder 
where you place your data file.  If your data is in C:\Name\ R\Data\ then you will 
need to set the working directory to this folder. 

Set your working directory to the folder where your data are 
located using the setwd() function. 

 > setwd(“C:\\Name\\R\\Data\\”) 

 

 

Note 

You can specify the path either using double backslash “\\” (see the code above) 
or using a single forward slash “/” (this is a leftover from UNIX...). 

> setwd(“C:/Name/R/Data/”) 
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Prepare the data 

First familiarise yourself with the data. Read it into a data frame 
object and peruse its form (a mixture of character and numeric data) 
and structure (a series of fixed field columns).  

We must read in the data using the read.table() function.  

 > MELOMYS <- read.table("MELOMYS.DAT", header=FALSE) 

Simply typing the object name at the R Console will reveal the 
contents of the object: 

> MELOMYS  

         V1  V2    V3 V4 
1   MELOMYS JAN FALSE  1 
2   MELOMYS JAN FALSE  1 
3   MELOMYS JAN FALSE  2 
. . . . . 
. . . . . 
. . . . . 
257 MELOMYS DEC FALSE  4 
258 MELOMYS DEC FALSE  4 
259 MELOMYS DEC FALSE  4  

Scroll upwards to check the beginning of the data set. 

 Allways check and confirm that your data (MELOMYS.DAT) 
were read in correctly. [e.g use the functions dim(), 
summary(), str(), edit(), head(), tail() to explore, check 
the help how to use them e.g. ?dim, ?str etc.] 

Note that the data columns don't have meaningful names at this 
stage.  The data file did not have headings for each column (that’s 
why we used header=FALSE). We will use he names() function to 
give  the columns required names (remember you can check the help 
file to see how the names function works ?names).  

> names(MELOMYS) <- c("SPECIES","MONTH","SEX","REPCODE") 

We can now see that the data frame contains column names: 

> head(MELOMYS) #this shows only the first (six) entries of 
the data set 

  SPECIES MONTH   SEX REPCODE 
1 MELOMYS   JAN FALSE       1 
2 MELOMYS   JAN FALSE       1 
3 MELOMYS   JAN FALSE       2 
4 MELOMYS   JAN FALSE       2 
5 MELOMYS   JAN FALSE       2 
6 MELOMYS   JAN FALSE       2 



Biometry  

 

 26 University of Canberra 

 

> tail(MELOMYS) #and this the last entries 

    SPECIES MONTH   SEX REPCODE 
254 MELOMYS   DEC FALSE       3 
255 MELOMYS   DEC FALSE       3 
256 MELOMYS   DEC FALSE       4 
257 MELOMYS   DEC FALSE       4 
258 MELOMYS   DEC FALSE       4 
259 MELOMYS   DEC FALSE       4 

Because the reproductive status codes are 1 to 4 and are not very 
informative, it is also best to generate a new variable with value 
labels.  We use REPRODUCTIVE.STATUS as a heading for this new 
variable in place of the rather obscure REPCODE.  Be advised to 
use a period (.) or underscore (_) between two words, as spaces are 
fiddly to deal with. 

> MELOMYS$REPRODUCTIVE.STATUS[MELOMYS$REPCODE==1] <- 
"JUVENILE" 
> MELOMYS$REPRODUCTIVE.STATUS[MELOMYS$REPCODE==2] <- "NON-
BREEDING ADULT" 
> MELOMYS$REPRODUCTIVE.STATUS[MELOMYS$REPCODE==3] <- 
"PREGNANT" 
> MELOMYS$REPRODUCTIVE.STATUS[MELOMYS$REPCODE==4] <- 
"LACTATING" 

We can check that the new variable REPRODUCTIVE.STATUS has 
indeed been added to our data frame either by using the names() 
function, or listing the data frame again: 

> names(MELOMYS) 

[1] "SPECIES"             "MONTH"               "SEX"                 
[4] "REPCODE"            "REPRODUCTIVE.STATUS" 

To save space we will leave it to you to list the data frame and check 
its contents (you can use the same function to check the data as 
suggested above). 

You can use the fix() function to peruse the data at this point to 
see if it has been read as intended, and make change if needed.  
However, we strongly discourage the use of fix()and  advise that 
you ensure your code correctly reads in the data, and give columns 
the appropriate labels etc.  This way, you will be able to repeat your 
analyses much more easily as by using the fix() function the 
change of data is not recorded and you maybe have forgotten about 
it, when you restart your analysis the next morning.  Type in the 
following to open the Data Editor window: 

> fix(MELOMYS) 

It is save to use the edit() function as strangely this function does 
not allow to change your data in the edit window. (As a matter of fact 
you can change the data using edit(), but it will not be saved.) 
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Close the Data Editor window when you have finished.  If you are 
sure that the data frame is as required, attach it using the attach() 
function so that we need only type the variable name of interest (e.g. 
MONTH), rather than the data frame and variable name (e.g. 
MELOYMS$MONTH).  

> attach(MELOMYS) 

 

Frequency tabulation 

Now let us analyse the data to determine the numbers of rats falling 
into each reproductive class.  The following code will yield an 
appropriate frequency tabulation.  
 

> table(REPRODUCTIVE.STATUS) 

REPRODUCTIVE.STATUS 
JUVENILE     LACTATING NON-BREEDING ADULT      PREGNANT  
      49            30                133            47   

Within the data frame MELOMYS, the variable 
REPRODUCTIVE.STATUS is classified as a character.  We can 
check this using the class() function: 

> class(REPRODUCTIVE.STATUS) 

[1] "character" 

 

Or using summary(). 

> summary(REPRODUCTIVE.STATUS) 

Length     Class      Mode  
      259 character character 

 At this stage R does not recognize the new variable is a catergorical 
one, it is only a number of character strings. Therefore we need to 
tell R that REPRODUCTIVE.STATUS is a factor. Furthermore when 
using the table() function, we often want data to be tabulated into 
classes in a set order, otherwise R will default to alphabetical as 
seen above.  We can specify the required factor levels and their 
order by converting a variable to a factor using the factor() function.  
For example: 

> MELOMYS$REPRODUCTIVE.STATUS <- 
factor(MELOMYS$REPRODUCTIVE.STATUS, 
levels=c("JUVENILE","NON-BREEDING 
ADULT","PREGNANT","LACTATING")) 
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We can check that REPRODUCTIVE.STATUS has been converted 
to a factor as required [after first de- and reattaching the modified 
data frame]: 

> detach(MELOMYS) #necessary to update the change in  
> attach(MELOMYS) #REPRODUCTIVE.STATUS 
> class(REPRODUCTIVE.STATUS) 

[1] "factor" 

If we now repeat the table() command as above, the frequency 
tabulation will be in the order of the factor levels that we have 
specified. 

> table(REPRODUCTIVE.STATUS) 

REPRODUCTIVE.STATUS 
     JUVENILE NON-BREEDING ADULT        PREGNANT    
LACTATING  
           49                133              47           
30  
 

 Move to your text editor (e.g. Notepad) and type in the above 
steps. Save the program then submit it for execution.  

The summarized results are shown in Table 2–6. 
 

Table 2-6.  
A frequency 

tabulation showing 
the relative 

representation of 
four reproductive 
classes for female 
Melomys burtoni 

from Cobourg 
Penninsula. 

Reproductive 
status 

Frequency Per cent Cumulative 
frequency 

Cumulative 
per cent 

Juvenile 49 18.9 49 18.9 

Non-breeding adult 133 51.4 182 70.3 

Pregnant 47 18.1 229 88.4 

Lactating 30 11.6 259 100.0 

Barchart 

Some would prefer to see these summary data presented in 
graphical form. This can be done by applying the barplot() function to 
our tabulated data:  

> barplot(table(REPRODUCTIVE.STATUS))  

To be able to see all labels you may have to resize ploting window. 
Another possibility is to specify the names that should be plotted 
below the bars using the names.arg parameter of the barplot() 
function. Make sure the order of the labels is the same as the order 
of the levels. 

> levels(REPRODUCTIVE.STATUS) 
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[1] "JUVENILE"           "NON-BREEDING ADULT" "PREGNANT"           
[4] "LACTATING"   

> 
barplot(table(REPRODUCTIVE.STATUS),names.arg=c("Juvenile","
NB-Adult","Pregnant","Lactating")) 

Should we want the height of the bars on the barchart to represent 
percentages, we would divide our tabulated data by the total number 
of observations prior to calling the barplot() function.  For example: 

> percent.status <-          
table(REPRODUCTIVE.STATUS) / length(REPRODUCTIVE.STATUS) 

Check the content of percent.status to see what we have 
created. Actually the line of code above gives you a flavour how 
cryptic and sleek R can be, when several functions are performed in 
one line of code. A good idea to learn and understand how R works 
is to run functions separately. First type in the length() function, 

> length(REPRODUCTIVE.STATUS) 

[1] 259 

which gives you the total number of observations. The function 
table() gives you four numbers, namely the number of observation 
for each reproductive status, 

> table(REPRODUCTIVE.STATUS) 

REPRODUCTIVE.STATUS 
    JUVENILE NON-BREEDING ADULT        PREGNANT     LACTATING  
              49                133              47            30  

and some labels. The final function here was to divide the four 
numbers by a single number. As R is vectorized and reuses the 259 
as often as it needed to do the required number of division, R divides 
each number of the table by the total number of observation, which is 
exactly what we wanted. 

> table(REPRODUCTIVE.STATUS) / length(REPRODUCTIVE.STATUS) 

REPRODUCTIVE.STATUS 
      JUVENILE NON-BREEDING ADULT           PREGNANT          LACTATING  
     0.1891892          0.5135135          0.1814672          0.1158301 

Finally we can make a barplot for these for numbers adjusting the 
labels below the bars to fit in the plotting area. You can check further 
arguments of barplot(), e.g. find out how to change the color of the 
bars to green. 

> barplot(percent.status, names=c("Juvenile","NB-
Adult","Pregnant","Lactating"),ylab="Percentage (%)") 
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 Submit the above program for execution. 

The resulting barchart is shown in Figure 2-7. The modal class, non-
breeding adults [NB-adult], is clearly evident.  

Figure 2-7.  
A barchart 

showing the 
relative 

percentages of 
female 

Melomys 
burtoni in each 

of four 
reproductive 

classes. 
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Barcharts with subgroups 

Next it might be of interest to see if the relative proportions of animals 
in each reproductive class change as the year progresses, as most 
animals have a seasonal breeding season, at least in the temperate 
zone. What of the tropics?  First we need to convert MONTH to a 
factor with levels in the order that we wish to chart the data:   

> MONTH <- factor(MONTH, levels= 
c("JAN","FEB","MAR","APR","MAY","JUN", 
"JUL","AUG","SEP","OCT","NOV","DEC")) 

Be sure to use only uppercase characters for the months if that is how they are in the 
raw data frame. Make sure all quotes are balanced. 

For a shotcut you could have used the month.abb object, which is a predefined object in 
R and has all the abbreviated names of the month stored into a vector. To complicate 
things again, you would have to convert all characters into upper cases using 
toupper(). You can check this by typing month.abb and toupper(month.abb) 
separately in the R-console. 

> MONTH <- factor(MONTH, levels= toupper(month.abb)) 

Next we tabulate the data for each level of 
REPRODUCTIVE.STATUS: 

> table(REPRODUCTIVE.STATUS, MONTH) 

                   MONTH 



 Module 2 — Univariate Descriptive Statistics 

 

University of Canberra   31 

 

REPRODUCTIVE.STATUS  JAN FEB MAR APR MAY JUN JUL AUG SEP 
OCT NOV DEC 
  JUVENILE             2   0   1   4   5   7   6   4   2   
7   4   7 
  NON-BREEDING ADULT  19   8   6   9  17  11  12   9  16  
12   9   5 
  PREGNANT             9   1   4   3   4   5   3   0   3   
6   2   7 
  LACTATING            3   0   2   2   3   4   1   4   2   
4   1   4 

Finally, we call the barplot() function, supplying it with the 
frequencies and a range of arguments requesting bars are not 
plotted side-by-side, but staggered (beside=F), specifying bar labels 
are perpendicular to the axis (las=2), and specifying the colours to 
use, and the legend labels: 

> barplot(table(REPRODUCTIVE.STATUS, MONTH), beside=F, 
las=2, col=c(5,6,1,0), legend=c("JUV","NB","PREG","LACT")) 

 Submit the above program for execution.  Try altering the 
argument "beside=F" to "beside=T" 

The results are shown in Figure 2-8. With the exception of February 
when the sample size was very low, juvenile animals are present 
throughout the year. The same is true for pregnant and lactating 
females, so the conclusion of Begg et al (1983) that breeding occurs 
throughout the year in Melomys burtoni appears well supported.  

Figure 2–8.  
Seasonal 

variation in the 
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Multiple plots 

There may be differences between the wet season (November to 
March) and the dry season (May to September) but it is difficult to 
see clearly with the data presented in the form shown in Figure 2-8.  
Higher order graphics parameters within R are set using the par() 
function.  For example, to ask for two plotting panels side by side we 
enter the following: 

> par(mfrow=c(1,2)) #sets up two plotting areas [one row, 
two columns] 

This essentially asks for "one row and two columns."  Then we need 
to specify the dry season. A possible way is to create a new variable 
called season, which is a factor and has two levels (wet and dry) in 
accordance to the month when the individuals where sampled. 

 

To first plot  the data of the dry season:    

> season <- ifelse(MONTH=="MAY" | MONTH=="JUN" | 
MONTH=="JUL" | MONTH=="AUG" | MONTH=="SEP"  , "DRY", NA)  

The ifelse command checks each entry in a vector if the condition 
(MONTH==”MAY” etc.) is true and creates the entry “DRY” in the 
new vector if this is the case otherwise it creates an NA. Now we are 
set up to first plot the data of the dry season:    

> barplot(table(REPRODUCTIVE.STATUS[season=="DRY"]), 
names=c("Juvenile", "NB-Adult","Pregnant","Lactating"), 
las=2, ylim=c(0,80), main="Dry season")  

Next the wet season. 
 

> season <- ifelse(MONTH=="NOV" | MONTH=="DEC" | 
MONTH=="JAN" | MONTH=="FEB" , "WET", NA)  
> barplot(table(REPRODUCTIVE.STATUS[season=="WET"]), 
names=c("Juvenile", "NB-Adult","Pregnant","Lactating"), 
las=2, ylim=c(0,80), main="Wet season")  

 Submit the above program for execution. 

The output is as shown in Figure 2–9. The differences between the 
wet and dry seasons, though slight, are now more clearly evident.  
Begg et al (1983) concluded that breeding of the Melomys burtoni at 
Cobourg Peninsula occurred throughout the year, with increased 
incidence in the wet season. Juveniles entered the populations over 
an extended period, though recruitment was low. 
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Figure 2–9.  
Relative 
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 Tidy up the program by ensuring there are no elements 
remaining of the program that did not work.  Save the 
program to disk within Tinn-R for future reference. You may 
also want to save your workspace and Rhistory, if you want 
to return to this example at some stage. 

Exit from R and Tinn-R by choosing File->Exit from the Menu Bar. 

 

Source 

Begg, R, Walsh, B, Woerle, F. and King, S. (1993). Ecology of 
Melomys Burtoni, the grassland Melomys (Rodentia : Muridae) at 
Cobourg Peninsula, N.T. Australian Wildlife Research 10:259-267.  
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Example 2-2: Chesapeake blue crabs 

This is a sample analysis of nominal level data 

The Chesapeake Bay is the largest, most productive estuary in the 
United States of America, providing a natural habitat for more than 
2,700 migratory and resident wildlife species. It supports important 
commercial fisheries that supply millions of kilograms of seafood 
annually, and year-round recreational fisheries for species such as 
striped bass, blue crabs and bluefish which are a multi-million dollar 
industry. These Chesapeake Bay resources are studied, monitored, 
and managed in an effort to conserve them for future generations.  

The Virginia Institute of Marine Science (VIMS) conducts a Juvenile 
Trawl Survey project that has been an integral part in this process for 
over 40 years. The project began sampling in 1955 and continues in 
similar fashion today. The primary objective of the trawl survey is to 
monitor trends in seasonal distribution and abundance of juvenile fish 
of about twenty important finfish and invertebrates. 

Currently, the survey includes waters from the mouth of the 
Chesapeake Bay up to the freshwater interface at the fall line of the 
James, York, and Rappahannock Rivers. Samples from about 60 
stations are collected every month of the year by the research vessel 
Fish Hawk. At each station, a 30 foot wide shrimp trawl is towed for 
five minutes. Once on board, the catch is sorted by species, the 
number of fish of each species is counted, a large proportion of the 
fish are measured, and all are released. Each month, 20 to 50 
thousand fish, crabs, and other invertebrates are processed. About 
70 species are commonly caught, though a total of 223 species have 
been identified over the last 40 years. 

We queried the VIMS online database and downloaded a subset of 
data on the commercially valuable blue crab Callanectes sapidus.  
The data includes information on 934 crabs, including their sex, 
reproductive status and carapace width in mm. We are interested in 
the reproductive status of the caught individuals. In which state is the 
majority of individuals and does this change over the cause of the 
year? The data for sex and maturity are clearly at the nominal level of 
measurement. 

The data are held in the file BLUECRAB.DAT and are arranged as 
follows:  

APR F 1 72  
MAY F 1 99   
MAY F 1 21   
JUN F 2 59   
JUN F 2 46 
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The first column is the month in which the sample was collected, 
second column is the sex of the crab (M or F), the third column is the 
reproductive status of the crab (1: Undetermined; 2: Immature; 3: 
Mature), and the fourth column is the carapace width in mm.   

As reproductive status is a measurement made at the nominal level, 
it cannot be validly analysed in terms of means, standard deviations 
and other such statistics. This is true even though the classes are 
represented by the numerical values 1 to 3 and the calculation of 
such statistics is manually possible. Instead, we have at our disposal, 
procedures that yield frequency tabulations and bar charts, from 
which the modal class are to be determined.  

Start a R-session  

  Double click on the Tinn-R icon and launch R from within 
Tinn-R (Click in the Menu on R->Initiate/Close Rgui->Initiate 
preferred Rgui). 
 

 

Prepare the Data 

First familiarise yourself with the data by importing it and peruse its 
form (a mixture of character and numeric data) and structure (a 
series of fixed field columns).  

 Use  the read.table() function to read the data file 
“BLUECRAB.DAT” into a data frame object in R. Do not forget 
to set your working directory [setwd(“c:\\...where 
the\\data is...”) Peruse the data frame to check the 
data has been read in correctly (use functions such as 
dim(), names (), head(), tail(). 
 

 

> crab <- read.table("BLUECRAB.DAT", header=TRUE) 

Note this time the data already  had headings and therefore we used 
the option header=TRUE. You can check this using the names() 
function. 

Now let us analyse the data to determine the numbers of crabs falling 
into each reproductive class. Because the reproductive status codes 
are 1 to 3 and are not very informative, it is also best to give them 
value labels via indexing (see Workbook 1: Getting Started).  
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> crab$rep.status[crab$rep.status==1] <- "IMMATURE"  
> crab$rep.status[crab$rep.status==2] <-  "MATURE" 
> crab$rep.status[crab$rep.status==3] <-  "UNDETERMINED" 

There are other possibilities to convert numbers to factors. If you are 
keen read about it help pages of the ?factor() and ?label() 
functions. 

Submit the above commands for execution (e.g. by using the 
hotkey ALT-p within Tinn-R).  
 

You can peruse the data at this point to see if it has been read as 
intended.  You could check the number of rows in the data frame: 

> nrow(CRAB) 

[1] 1161 

Frequency Tabulation 

A complete frequency tabulation of the reproduction status consists 
of the counts of each level of the reproductive status, the percentage 
of these counts, the cumulative frequency and the cumulative 
percent. Think about what quantities do we need to calculate these 
values. 

The following code will yield an appropriate frequency tabulation.  

 
> attach(crab)       

This inserts the crab object into the search path and saves us to type 
the data.frame name each time. Be aware from now on you work on 
a copy of the original data.frame! (see Workbook 1 for details). 

> table(rep.status) 

rep.status 
    IMMATURE       MATURE UNDETERMINED  
         388          475          298   

This gives us the counts of each reproductive level. To calculate the 
percentage of each level we need to know the number of all valid 
observations. 

> n.observation <- length(rep.status) 

Another way would be to sum over all entries of the frequency table 
counts. 

> n.observation.alt <- sum(table(rep.status))  
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Now we can calculate the percentages 

> table(rep.status)/n.observation 

rep.status 
    IMMATURE       MATURE UNDETERMINED  
   0.3341947    0.4091301    0.2566753 

 

 

Note 

This only works because R recycles the value in n.observation and divide each 
value of the table object. 

 

To calculate the cumulative frequency, we use the cumsum() 
function. 

> cumsum(table(rep.status)) 

[1]  388  863 1161 

And finally the cumulative percentages: 
 
> cumsum(table(rep.status))/n.observation) 

    IMMATURE       MATURE UNDETERMINED  
   0.3341947    0.7433247    1.0000000 

Submit the above commands for execution. 

The summarised results are shown in Table 2–7. 

Table 2-7. A 
frequency 

tabulation for 
relative 

representation 
of three 

reproductive 
classes of blue 

crabs 
Callanectes 

sapidus from 
Chesapeake 

Bay. 

 

Reproductive 
status 

Frequency Percent Cumulative 
frequency 

Cumulative 
percent 

IMMATURE 388 33.42 388 33.42 

MATURE 475 40.91 863 74.33 

UNDETERMINED 298 25.67 1161 100.00 
 

 

 

Extra task 

Try to combine the results of the frequency analysis into a single R object 
freq.table using the function cbind(). Lookup how the function works in the 
help pages typing ?rbind. 
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Barchart 

Some would prefer to see these summary data presented in 
graphical form. This can be done with the barplot() function.  

> barplot(table(rep.status)) 

Should we want the height of the bars on the barchart to represent 
percentages, we need to divide our tabulated data by the total 
number of observations prior to calling the barplot() function.   

> percent.status <-table(rep.status)/n.observation 
> barplot(percent.status, ylab="Percentage [%]") 

Submit the above commands for execution. 

The resulting bar chart is shown in Figure 2–7. The modal class, 
mature females, is clearly evident.  

Figure 2–7.  
A barchart 

showing the 
relative 

percentages 
of blue 

crabs in 
each of 

three 
reproductive 

classes. 
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Extra task 

Change the colors of the bar chart to “lemonchiffon”. R has 657 named 
colours, try colours(). 
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Enhanced cross tables 

Next we are interested to see if the relative proportions of crabs in 
each reproductive class change as the year progresses, as most 
animals have a seasonal breeding season, at least in the temperate 
zone.   

So we have a closer look at the variable month. Just type month into 
the console to check how it looks. 

> month 

   [1] APR APR APR APR APR APR APR APR APR APR APR APR 
  [13] APR APR APR APR APR APR AUG AUG AUG AUG AUG AUG 
  [25] AUG AUG AUG AUG AUG AUG AUG AUG AUG AUG AUG AUG 

   ..... 

[1129] SEP SEP SEP SEP SEP SEP SEP SEP SEP SEP SEP SEP 
[1141] SEP SEP SEP SEP SEP SEP SEP SEP SEP SEP SEP SEP 
[1153] SEP SEP SEP SEP SEP SEP SEP SEP SEP 
Levels: APR AUG DEC FEB JUL JUN MAY NOV OCT SEP 

Or try  

> table(month) 

month 
APR AUG DEC FEB JUL JUN MAY NOV OCT SEP  
 18 265  50   6 199 119  56 119 167 162 

So month seems to be a factor, but obviously no crabs were caught 
in some months (e.g. January and March). We still would like to have 
a barplot for all months of the year. Therefore we need to convert 
month to a factor with additional levels, which are also in the right 
order (not in the alphabetical order as this is the default of R) 

> month <- factor(month, levels=c("JAN","FEB","MAR", 
"APR","MAY","JUN","JUL","AUG","SEP","OCT","NOV","DEC")) 
 
> table(month) 
 

This look better! 

month 
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC  
  0   6   0  18  56 119 199 265 162 167 119  50 

Next we tabulate the data for each month and level of rep.status: 

> frt.rep.month <- table(rep.status, month) 
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Check the new created object frt.rep.month by typing it into the 
console directly. 

> frt.rep.month 

              month 
rep.status     JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 
  IMMATURE       0   0   0   2  23  30  86 100  47  63  30   7 
  MATURE         0   6   0  15  20  59  60 115  47  48  67  38 
  UNDETERMINED   0   0   0   1  13  30  53  50  68  56  22   5 

Finally, we call the barplot() function with a range of arguments to 
make the plot a bit nicer. We specify bar labels are perpendicular to 
the axis (las=2), and the colours (col=) to use. In addition we plot a 
legend for the color coding. 

> barplot(frt.rep.month, beside=F, las=2, 
col=c(“green”,”red”,”blue”), legend=c("JUV","MAT","UND"), 
ylab="Frequency") 

The results are shown in Figure 2-8. With the exception of January 
through March when the sample size was zero, immature crabs are 
present throughout the year.  

Figure 2–8.  
Seasonal 

variation in 
the relative 
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Visually it is difficult to decide whether the reproductive status 
changed between months, therefore we would like to calculate the 
ratio of mature to immature over months. This is a classic case for 
indexing our data. Let’s have a look again at our table 

> frt.rep.month 

              month 
rep.status     JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV 
DEC 
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  IMMATURE       0   0   0   2  23  30  86 100  47  63  30   
7 
  MATURE         0   6   0  15  20  59  60 115  47  48  67  
38 
  UNDETERMINED   0   0   0   1  13  30  53  50  68  56  22   
5 

To calculate the ratio of immature to mature over the seasons, we 
could calculate this for each month separately. 

For April we would type 

> 2/15 

[1] 0.1333333 

Resulting in a ratio of 0.133.  

Now we could go on to do this for each month separately. A much 
quicker way is to use the vector capabilities of R and devide all 2x12 
numbers at once. First we need to somehow access the 12 values of 
counts for the immature crabs.  

> frt.rep.month[1,] 

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC  
  0   0   0   2  23  30  86 100  47  63  30   7 

The squared brackets is a way in R to index values in an object. [1,] 
means select the first row and then all the colomns of this object. 
Instead we could have used [1,1:12] which means take all values of 
the first row and columns 1 to 12. Then we do the same for the 
mature values. Here we have to index the second row. 

> frt.rep.month[2,] 

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC  
  0   6   0  15  20  59  60 115  47  48  67  38 

We get the ratio simply by dividing these 2 x 12 values. 

> frt.rep.month[1,] / frt.rep.month[2,] 

      JAN       FEB       MAR       APR       MAY       JUN       
JUL       AUG       SEP       OCT       NOV       DEC  
      NaN 0.0000000       NaN 0.1333333 1.1500000 0.5084746 
1.4333333 0.8695652 1.0000000 1.3125000 0.4477612 0.1842105 

It is easier to read if we use the round() function. 

> round( frt.rep.month[1,] / frt.rep.month[2,] ,3 )   

JAN   FEB   MAR   APR   MAY   JUN   JUL   AUG   SEP   OCT   
NOV   DEC  
NaN   0.000 NaN   0.133 1.150 0.508 1.433 0.870 1.000 1.312 
0.448 0.184 
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Submit the above commands for execution. 
 

 

 

Extra task 

Create a barplot like 2.8 that shows the counts of different sex classes and calculate 
the sex ratio for each month. 

Regrouping nominal data 

There may be differences between the winter season (November to 
March) and the summer season (May to September) but it is difficult 
to see clearly with the data presented in the form shown in Figure 2-
8. To create such a graph we need to regroup our month variable 
into winter and summer season. One way to do this is to create a 
new variable called season, which is based on month. 

> season <- ifelse(month=="NOV" | month=="DEC" | 
month=="JAN" | month=="FEB" | month=="MAR","winter",NA) 
 

The ifelse function is a convenient way to repeat an instruction for 
all values in a vector. So the ifelse statement above says literally: Go 
trough all values of month and check if it is a winter month. If this is 
the case then write “winter” in the season vector, if not then write 
“NA” (Rs default for missing value). Now we have to redo the whole 
thing for “summer”. Note that this time we write season as the last 
argument of the ifelse function as we do not want to override the 
previously generated winter season. 

> season <- ifelse(month=="MAY" | month=="JUN" | 
month=="JUL" | month=="AUG" | month=="SEP","summer",season) 
 

A nice way to test if this was the right thing to do, we tabulate 
season against month. 

> table(season,month) 

        month 
season   JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 
  summer   0   0   0   0  56 119 199 265 162   0   0   0 
  winter   0   6   0   0   0   0   0   0   0   0 119  50 

 

> barplot(table(rep.status,season),beside=T) 
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Submit the above commands for execution. 

The output is as shown in Figure 2–9. The differences between the 
winter and summer seasons are now more clearly evident.  Would 
you conclude that breeding occurred throughout the year, with 
increased incidence in the summer. Juveniles entered the 
populations over an extended period, though recruitment was low. 

Figure 2–9.  
Relative 

proportions 
of blue 

crabs in 
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classes in 
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compared 
with those 
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 Tidy up the program by ensuring there are no elements 
remaining of the program that did not work.  Save the 
program to disk within Tinn-R for future reference. You may 
also want to save your workspace and Rhistory, if you want 
to return to this example at some stage. 

Exit from R and Tinn-R by choosing File->Exit from the Menu Bar. 

 

Source 

The length frequency data on blue crabs were kindly provided by the 
Virginia Institute of Marine Science, Juvenile Fish and Blue Crab 
Trawl Survey.  The web-based data retrieval system appears online 
[http://www.fisheries.vims.edu/vimstrawldata 
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Example 2-3: Water Quality of Lake Burley Griffin  

This is a sample analysis of ratio level data, normal and non-normal. 

As part of the requirements for the third year unit Special Studies in 
Science at the University of Canberra, Kurt Hammerschmidt, aided 
by staff of the Lakes Ecology Unit of the Parks and Conservation 
Service, collected ten replicate samples of water from each of the 
sites in Lake Burley Griffin. Turbidity (ntu) was measured once and 
total filterable phosphorus (mg/l) was measured twice for each 
sample. The data are held in the disk file KURT.DAT, and the form of 
the data is shown below.  

 

Note 

Missing values are represented by a period (.). 

 

 site tfp1 tfp2 turbid 

SITE 01 0.045 0.052 43 

SITE 01 0.053 . 28 

SITE 01 0.067 0.073 43 

SITE 01 0.063 0.066 28 

SITE 01 0.066 0.073 42 

SITE 01 0.66 0.073 42 

SITE 01 0.66 0.073 42 

SITE 10 0.058 0.057 19 

SITE 10 0.063 0.065 16 

SITE 10 0.063 0.061 15 

SITE 10 0.061 0.063 11 

SITE 10 0.059 0.061 15 

The first field contains the site number, the second and third fields 
contain the two determinations of total filterable phosphorus, and the 
last field contains the turbidity measurements. 

Kurt was interested to summarise these measurements for Lake 
Burley Griffin. He also wanted to learn something of the distribution 
of each measurement as this may influence decisions made later in 
analyses. Many analysis options require that the data are normally 
distributed.  
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Start a R-session  

  Double click on the Tinn-R icon and launch R from within 
Tinn-R (Click in the Menu on R->Initiate/Close Rgui->Initiate 
preferred Rgui) 

 

Prepare the data 

The first step in a R analysis is to read data from your data file folder 
KURT.DAT and convert it to a form suitable for use by R, in this case 
a data frame. At the same time we wish to combine the two 
determinations for total filterable phosphorus. The appropriate code 
would look like this:  

> setwd(“c:\\where your\\data\\is”) #set the working 
directory 
> rt <-read.table("KURT.DAT", na.strings=".", header=T) 

The resulting R data frame kurt should contain four variables—
site, tfp1,tfp2 and turbid.  You can check the column 
headings using the names() function: 

> names(KURT) 
[1] "SITE"   "TFPl"   "TFP2"   "TURBID" "TFP"    

 Please make sure you check if the data at has been read as 
intended (e.g.  head(), tail(), edit(), dim()): 

> head(kurt) 

     site  tfp1  tfp2 turbid 
1 SITE-01 0.045 0.052     43 
2 SITE-01 0.053    NA     28 
3 SITE-01 0.047 0.053     43 
4 SITE-01 0.063 0.066     28 
5 SITE-01 0.066 0.073     42 
6 SITE-01 0.041 0.062     43 

Once finished we create a new variable, which is the mean between 
tfp1 and tfp2 for each measurement. To add a new variable to the 
data.frame simply invent a new name such as tfpmean and link it 
to the data.frame using the $ symbol. 

> kurt$tfpmean <- (kurt$tfp1+kurt$tfp2)/2 # Create a new 
variable 
attach(KURT) 
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The resulting R data frame KURT should now contain five 
variables—site, tfp1, tfp2, turbid and tfpmean.  You 
can check the column headings using the names() function: 

> names(kurt) 
[1] "SITE"   "TFPl"   "TFP2"   "TURBID" "TFP"    

 It is a good idea to check if the calculation of the new variable was 
successful. So use head(kurt) to check the first six entries of 
tfpmean.  

> head(kurt) 

     site  tfp1  tfp2 turbid tfpmean 
1 SITE-01 0.045 0.052     43  0.0485 
2 SITE-01 0.053    NA     28      NA 
3 SITE-01 0.047 0.053     43  0.0500 
4 SITE-01 0.063 0.066     28  0.0645 
5 SITE-01 0.066 0.073     42  0.0695 
6 SITE-01 0.041 0.062     43  0.0515 

 Type in the above steps starting with the setwd() 
statement, and submit the program to the R Console for 
execution. Remember to ignore the ">" at the start of each 
line where it occurs. 

Summary statistics 

Now that the data are read in, we can use summary() to compute 
some basic descriptive statistics. Means, standard deviations, 
standard errors, minimums, maximums and sample sizes are of 
interest, and the appropriate step is as follows:  

> summary(kurt) 

 Enter the above command to the R Console for execution. 

The results of the analysis should look like those shown in Box 2–1.  
 

Box 2–1.  
Summary 

statistics for 
total filterable 

phosphorus and 
turbidity in 

Lake Burley 
Griffin, 

Canberra, 
produced by 

PROC MEANS. 

      site         tfp1              tfp2             turbid      
 SITE-01:10   Min.   :0.04100   Min.   :0.04200   Min.   : 9.00   
 SITE-02:10   1st Qu.:0.06350   1st Qu.:0.06300   1st Qu.:15.00   
 SITE-03:10   Median :0.06700   Median :0.06700   Median :18.00   
 SITE-04:10   Mean   :0.06699   Mean   :0.06756   Mean   :21.73   
 SITE-05:10   3rd Qu.:0.07100   3rd Qu.:0.07150   3rd Qu.:26.00   
 SITE-06:10   Max.   :0.08500   Max.   :0.08800   Max.   :43.00   
 (Other):40   NA's   :1.00000   NA's   :1.00000   NA's   : 3.00   
    tfpmean        
 Min.   :0.04850   
 1st Qu.:0.06350   
 Median :0.06725   
 Mean   :0.06738   
 3rd Qu.:0.07037   
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 Max.   :0.08500   
 NA's   :2.00000   

We want to check the new variable tfpmean more closely. So we 
simply type its name to have it printed. 

> tfpmean 

Into the console. We get an error 

Error: object 'tfpmean' not found 

This is because the headings of a data.frame are not known to R 
unless we attach the object to the search.path using the attach() 
function so R knows where to look for it. 

> attach(kurt) 
> tfpmean 

  [1] 0.0485     NA 0.0500 0.0645 0.0695 0.0515 0.0570 
0.0560 0.0745 0.0765 0.0795 0.0850 0.0805 
 [14] 0.0740 0.0845 0.0800 0.0825 0.0815 0.0680 0.0740 
0.0720 0.0670 0.0665 0.0660 0.0665 0.0675 
 [27] 0.0650 0.0640 0.0540 0.0700 0.0670 0.0675 0.0680 
0.0650 0.0675     NA 0.0625 0.0605 0.0560 
 [40] 0.0620 0.0690 0.0690 0.0650 0.0665 0.0625 0.0680 
0.0660 0.0695 0.0665 0.0675 0.0675 0.0650 
 [53] 0.0675 0.0705 0.0740 0.0640 0.0695 0.0685 0.0710 
0.0680 0.0750 0.0795 0.0765 0.0765 0.0720 
 [66] 0.0745 0.0765 0.0780 0.0755 0.0750 0.0655 0.0625 
0.0640 0.0685 0.0660 0.0695 0.0680 0.0675 
 [79] 0.0695 0.0645 0.0635 0.0640 0.0625 0.0685 0.0645 
0.0595 0.0620 0.0635 0.0645 0.0690 0.0595 
 [92] 0.0625 0.0630 0.0600 0.0600 0.0575 0.0640 0.0620 
0.0620 0.0600 

Now we can have a closer look and a more detailed analysis on just 
the variable tfpmean. Before we do any further analysis, we can 
check for missing cases by summing how many of the entries the 
complete.cases() function returns a FALSE result when the variable 
TFP is passed to it: 

> sum(complete.cases(tfpmean)==FALSE) 

[1] 2 

 

Note 

The above example is a good example how several R functions can be combined 
elegantly. So let’s do this step by step from the inner function to the outer functions. 

Type  

> complete.cases(tfpmean)  

this gives you a vector with TRUE and FALSE entries for each entry in tfpmean.  
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So everywhere where is a complete case we get a TRUE otherwise a FALSE. Now 
we could sum all TRUE cases as TRUE is internally coded as 1 and FALSE as 0.  

> sum(complete.cases(tfpmean))  # results in 98  

As we are interested in the number of FALSE cases we need to have the opposite 
vector so each TRUE should be a FALSE and vice versa. This is achieved by 
comparing the vector by FALSE.  

> complete.cases(tfpmean) ==FALSE 

And sum these TRUEs up.  

> sum(complete.cases(tfpmean) ==FALSE)      #results is 2 

  

 

 

Extra task 

To check these case we could use the which function. Write the following and try to 
understand each step by decomposing the command from the inner to the outer 
function as done above. 

>kurt[ which( complete.cases(tfpmean)==FALSE ) ] 

Hence we see that tfpmean has 2 missing cases.  For small datasets 
such as the one we are analyzing here, we could have seen these 
missing observations by inspecting the data visually, however for 
much larger datasets this will not be possible.  

It is easy to calculate some basic statistical measures such as the 
mean, median, sum, standard deviation, variance and range.  As the 
variable contains missing values, we need to specify the argument 
for removing the missing values when calculating the desired 
statistics:  

> mean(tfpmean,na.rm=T) 

[1] 0.06738265 

> median(tfpmean,na.rm=T) 

[1] 0.06725 

> sum(tfpmean,na.rm=T) 

[1] 6.6035 

> sd(tfpmean,na.rm=T) 

[1] 0.007125098 

> var(tfpmean,na.rm=T) 

[1] 5.076702e-05 

> range(tfpmean,na.rm=T) 

[1] 0.0485 0.0850 
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Finding the mode using R is a little tricky. First we tabulate the data 
using the function table() 

>table(tfpmean) 
 

0.0485   0.05 0.0515  0.054  0.056  0.057 0.0575 0.0595   
0.06  
     1      1      1      1      2      1      1      2      
3  
0.0605  0.062 0.0625  0.063 0.0635  0.064 0.0645  0.065 
0.0655  
     1      4      5      1      2      5      4      4      
1  
 0.066 0.0665  0.067 0.0675  0.068 0.0685  0.069 0.0695   
0.07  
     3      4      2      7      5      3      3      5      
1  
0.0705  0.071  0.072  0.074 0.0745  0.075 0.0755 0.0765  
0.078  
     1      1      2      3      2      2      1      4      
1  
0.0795   0.08 0.0805 0.0815 0.0825 0.0845  0.085  
     2      1      1      1      1      1      1 

, by eye we see that the mode is at 0.0675 (this value occurs 7 times) 
We can use which.max() to find where the maximum number of 
observations are: 

> which.max(table(tfpmean)) 

0.0675  
    22 

This tells us that the mode is 0.0675, which occurs at the 22nd  
observation in the table. We can confirm this by checking the result 
of using table(TFP) and checking how many observations occurred:   

> table(tfpmean)[22] 

0.0675  
     7 

Now we move on to calculating some other common statistics that 
are useful for describing data. The coefficient of variation is found by 
dividing the standard deviation by the mean:  

> sd(tfpmean,na.rm=T)/mean(tfpmean,na.rm=T) 

[1] 0.1057408  

The uncorrected sum of squares (Uncorrected SS) is the sum of the 
squared values for TFP: 

> sum(tfpmean[is.na(tfpmean)==FALSE]^2) 

[1] 0.4498858 
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The corrected sum of squares (Corrected SS) is the sum of the 
squared deviations of each value from the mean value for tfpmean.  

> sum((tfpmean[is.na(tfpmean)==FALSE]-
mean(tfpmean,na.rm=T))^2) 

[1] 0.004924401 

The standard error of the mean can be calculated as the standard 
deviation divided by the square root of the sample size (in this case 
98): 

> sd(tfpmean,na.rm=T)/sqrt(98) 

[1] 0.0007197435 

The quartiles can be found as the default output from the 
quantile() function:  

> quantile(TFP,na.rm=T) 

      0%      25%      50%      75%     100%  
0.048500 0.063500 0.067250 0.070375 0.085000 

We can undertake some standard tests such as the t-test and 
Wilcoxon sign-rank test to compare the mean of tfpmean with a 
chosen value, say zero.    

> t.test(tfpmean, mu=0) 

 
        One Sample t-test 
 
data:  tfpmean  
t = 93.6204, df = 97, p-value < 2.2e-16 
alternative hypothesis: true mean is not equal to 0  
95 percent confidence interval: 
 0.06595416 0.06881114  
sample estimates: 
 mean of x  
0.06738265 

 

> wilcox.test(tfpmean, mu=0) 

 
        Wilcoxon signed rank test with continuity 
correction 
 
data:  tfpmean  
V = 4851, p-value < 2.2e-16 
alternative hypothesis: true mu is not equal to 0   

The Shapiro-Wilk’s Test is the test for normality recommended in this 
course. 

> shapiro.test(tfpmean) 
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        Shapiro-Wilk normality test 
 
data:  TFP  
W = 0.9777, p-value = 0.09475 

There is no significant deviation from normality (Shapiro-Wilk W = 
0.9777    Pr < W = 0.09475). 

Should we want particular quantile values, we achieve this by telling 
the quantile() function exactly which probabilities we require (you 
may check the help page for this function ?quantile).  For 
example: 

> quantile(tfpmean, 
probs=c(0,0.01,0.10,0.5,0.9,0.99,1),na.rm=T) 

      0%       1%      10%      50%      90%      99%     100%  
0.048500 0.049955 0.059850 0.067250 0.076500 0.084515 0.085000  

The mode is not very useful as the data are not grouped. Percentiles 
are useful for defining extreme events, for example if phosphorus is 
implicated in algal blooms, the water authorities might wish to be 
notified if the total filterable phosphorus exceeds the 90th percentile, 
in this case 0.0765 mg/l. 

To calculate the interquartile range (the difference between the 25th  
and 75th percentile), we calculate the difference between the 25th and 
75th percentile: 

> quantile(tfpmean,0.75,na.rm=T)-quantile(tfpmean, 
0.25,na.rm=T) 

     75%  
0.006875 

To find extreme observations, say the 5 lowest and 5 highest, we can 
sort the variable then index the required observations: 

> sort(tfpmean)[1:5] 

[1] 0.0485 0.0500 0.0515 0.0540 0.0560 

> sort(tfpmean)[93:98] 

[1] 0.0800 0.0805 0.0815 0.0825 0.0845 0.0850 

To find where these observations can be found in the data set, we 
use sort.list().  

> sort.list(tfpmean)[1:5] 

[1]  1  3  6 29 39 

> sort.list(tfpmean)[93:98] 

[1] 16 13 18 17 15 12 
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To actually see all the data corresponding to these observations, we 
index the dataframe for the required rows.  First the five smallest 
observations: 

> kurt[sort.list(tfpmean)[1:5],] 

      site  tfp1  tfp2 turbid tfpmean 
1  SITE-01 0.045 0.052     43  0.0485 
3  SITE-01 0.047 0.053     43  0.0500 
6  SITE-01 0.041 0.062     43  0.0515 
29 SITE-03 0.054 0.054     15  0.0540 
39 SITE-04 0.053 0.059     NA  0.0560 

Next the five biggest observations: 

> kurt[sort.list(tfpmean, decreasing=TRUE)[1:5],] 

      site  tfp1  tfp2 turbid tfpmean 
12 SITE-02 0.082 0.088     28  0.0850 
15 SITE-02 0.085 0.084     25  0.0845 
17 SITE-02 0.085 0.080     26  0.0825 
18 SITE-02 0.083 0.080     25  0.0815 
13 SITE-02 0.079 0.082     28  0.0805 

Quick plots for examining raw data include the stem and leaf plot, 
boxplot and histogram. First the "Stem and Leaf Plot", which is 
effectively a histogram on its side.  

> stem(tfpmean) 

  The decimal point is 2 digit(s) to the left of the | 
 
  4 | 9 
  5 | 024 
  5 | 667899 
  6 | 000022223333334444444 
  6 | 555555556666777777888888888888999999 
  7 | 000000112244444 
  7 | 55566668 
  8 | 000123 
  8 | 55 

The scale for the measurement variable needs to be multiplied by 10-

2 (0.01) to be expressed in mg/l. The various digits used to make up 
the bars of the histogram indicate the value of an extra decimal 
place. For example, 2 of the 6 measurements in the column labeled 
"5" were 0.059 mg/l.  Next we try a boxplot: 

> boxplot(tfpmean, col="grey") 

The resulting plot is shown  in Figure 2-9.  The bottom and top edges 
of the box show the 25th and 75th percentiles; the horizontal line 
shows the median. You can check the help for this function 
(?boxplot) to find out that the whiskers extend from the box are 1.5 
times the inter-quartile range whichever is the lesser. It can be seen 
that the distrubtion is quite nicely symmetrical and probably normally 
distributed. 
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Figure 2–9.  
Boxplot of variable 
TFP obtained using 

the boxplot() 
function..  
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To check for normality (as suggested by the Shapiro-Wilk’s Test) we 
can create a "Normal Probability Plot" using the qqnorm() function.  
This is similar in application to a plot of cumulative relative 
frequencies on probability paper. Normally distributed data appear as 
a straight line, whereas deviation from linearity indicates deviation 
from normality.  We can plot this straight line using the qqline() 
function.  For the total filterable phosphorous: 

> qqnorm(tfpmean) 
> qqline(tfpmean) 

The results are shown in (Figure 2-10).  There is only marginal 
evidence of deviation from a normal distribution in this plot. It can be 
seen that outer values left of the mean are a bit underrepresented 
and outer values right from the mean a bit overrepresented. 
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Figure 2–10. 
Normal 

probability plot 
for total 

filterable 
phosphorus 

from Lake 
Burley Griffin, 

Canberra.  
Obtained using 

the qqnorm() 
function. 
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Graphical Presentation 

We might choose at this point to draw upon the superior graphical 
capabilities of the function hist(), to produce a histogram of the 
tfpmean measurements for a report. 

> hist(tfpmean, breaks=seq(0.04,0.09,0.005), xlab="tfpmean 
Midpoint", col="grey") 

 

Note 

To specify the breakpoints (R can do it automatically) we use the seq() 
function, so check what this function does. 

 

 

 Submit the above program for execution. 
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Figure 2–11. 
Distribution of 
measurements 

of total filterable 
phosphorus in 

Lake Burley 
Griffin. The data 

are normally 
distributed. 
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Report the results 

The resulting histogram (Figure 2–11) is nicely bell-shaped, 
consistent with normal distribution.  But what does this all mean for 
total filterable phosphorus? There is no evidence for suspecting that 
the data are not from a normally distributed population. The format of 
the following summary is appropriate for describing data that is 
normally distributed, and should be carefully followed in reports. 

 “Total Filterable Phosphorus in Lake Burley Griffin ranged from 48.5 µg/l to 85.0 µg/1 
(Mean 67.4 ± 0.72, n=98) during the period of study. The variable was normally 
distributed (Shapiro Wilk Statistic=0.98, p=0.09, ns; visual examination of probability 
plot, Figure 2-11). The mean plus 3 standard deviations, useful as a definition of an 
extreme event, was 88.8 µg/l." 

The mean is presented with its standard error for reasons that will 
become clear when the topic of statistical inference is covered in 
Workbook 3. Inclusion of the histogram shown in Figure 2–11 is 
optional, depending upon the emphasis you wish to place on the 
frequency distribution of TFP measurements in your report. 

Note that no mention is made of the mode, median, quartiles or inter-
quartile range. These statistics add no additional information for 
normally distributed data.  

For normally distributed data, an equally useful alternative definition 
of extreme events could be made in terms of standard deviations 
from the mean. Less than 1% of values would be expected to lie 
outside three standard deviations from the mean.  
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 Tidy up the program by ensuring there are no elements 
remaining of the program that did not work.  Save the 
program to disk within Tinn-R for future reference. You may 
also want to save your workspace and Rhistory, if you want 
to return to this example at some stage. 

Exit from R and Tinn-R by choosing File->Exit from the Menu Bar. 

 

Non-Normal data 

Consider the output from a similar analysis for turbidity (turbid) taken 
from the previous example. 

> summary(turbid) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  
   9.00   15.00   18.00   21.73   26.00   43.00    3.00  

> quantile(turbid,probs=c(0.05,0.25,0.5,0.75,0.95),na.rm=T) 

  5%  25%  50%  75%  95%  
12.8 15.0 18.0 26.0 42.0 

 Submit the above programs for execution. 

The main qualitative difference between the results for turbidity and 
those for total filterable phosphorus is that all indications suggest that 
turbidity is not normally distributed.  We examine this as before: 

> qqnorm(turbid) 
> qqline(turbid) 

The probability plot (Figure 2-12) reveals obvious deviations from 
linearity.  



 Module 2 — Univariate Descriptive Statistics 

 

University of Canberra   57 

 

Figure  2-12. 
Tests of 

normality for 
turbidity in Lake 

Burley Griffin, 
Canberra. 
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The Shapiro-Wilk's test was significant (W = 0.89, p< 0.0001).  

> shapiro.test(turbid) 

 
        Shapiro-Wilk normality test 
 
data:  TURBID  
W = 0.8926, p-value = 8.9e-07 

We draw a histogram as before: 

> hist(turbid, breaks=seq(0,50,2.5), col="grey") 

Perusal of the histogram (Figure 2–13) reveals a bi-modal distribution 
(a primary mode and a secondary mode) with clear deviations from 
normality.   
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Figure 2–13. 
Distribution of 
measurements 
of turbidity in 

Lake Burley 
Griffin. The 

data are not 
normally 

distributed. 
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Report the results 

A verbal summary of these non-normal data is more complicated 
than for the normally distributed TFP: 

"Turbidity in Lake Burley Griffin ranged from 9 to 43 ntu (Mean 21.7 ± 0.88, n = 97) 
during the period of the study. The variable was not normally distributed (Shapiro-Wilk 
Statistic = 0.89, p < 0.0001; visual examination of probability plot, Figure 2–11). The 
frequency distribution was bi-modal (highest mode at 14 ntu and skewed to the right, 
with a median of 18 and an inter-quartile range of 11. The 95th percentile, useful as a 
definition of an extreme event, was 42 ntu." 

Again, you should be careful to follow this format for the description 
of non-normal data in your reports.  

 

 

 

 Tidy up the program by ensuring there are no elements 
remaining of the program that did not work.  Save the 
program to disk within Tinn-R for future reference. You may 
also want to save your workspace and Rhistory, if you want 
to return to this example at some stage. 

Exit from R and Tinn-R by choosing File->Exit from the Menu Bar. 
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Example 2-4: Blue crab sizes 

This is a sample analysis of ratio-level data, both normal and non-
normal. 

The Virginia Institute of Marine Science (VIMS) has conducted a 
routine trawl survey of Chesapeake Bay for over 40 years. The 
project began sampling in 1955 and continues in similar fashion 
today. The primary objective of the trawl survey is to monitor trends 
in seasonal distribution and abundance of juvenile fish of about 
twenty important finfish and invertebrates. 

The data below were taken from 934 crabs, and includes a 
measurement of carapace width in mm and a variable containing sex 
and maturity status as follows: 

JF:  Juvenile Female 

JM:  Juvenile Male 

FF:  Mature Female 

MM:  Mature Male 

The data are held in the disk file CRABLEN.DAT, with two columns 
of data, the first being MATURITY and the second being CARAPACE 
WIDTH. 

We are interested to summarise these measurements for the blue 
Crab. We also want to learn something of the distribution of crab 
sizes as this may influence decisions made later in analyses. Many 
analysis options require that the data are normally distributed.  

Start a R session 

  Double click on the Tinn-R icon and launch R from within 
Tinn-R (Click in the Menu on R->Initiate/Close Rgui->Initiate 
preferred Rgui) 

Prepare the data 

 

 

Note 

Make sure you set your working directory using the setwd(“here is 
my//data”) function. 
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The first step is to read data from the disk The name of the data file 
is “CRABLEN.DAT”. The appropriate step would look like this:  

> crab <- read.table("CRABLEN.DAT”, header=FALSE, 
na.strings=".") 
 
> head(crab) 

  V1 V2 
1 JF 13 
2 JF 14 
3 JF 16 
4 JF 17 
5 JF 18 
6 JF 18 

This time there are no headings on top of the data columns, so R has 
generated V1 and V2 for us, which is not really informative. Therefore 
we need to change the headings using the names() function. 

> names(crab) <- c(“maturity”,”carawidth”) 

The resulting data.frame crab should now contain two variables— 
maturity and carawidth. Please check the data at this point to see if it 
has been read as intended (e.g head(), tail(), summary(), dim()).  

To see if there is any missing data, this time we use the is.na() 
function. Obviously we could also use the complete.cases() function 
as in the previous example. 

> sum(is.na(crab)) 

[1] 0 

Then we attach the crab data.frame to avoid retyping crab all the 
time. 

> attach(crab) 

Summary Statistics 

Now that the data are read in, we can use summary() to compute 
some basic descriptive statistics. Means, standard deviations, 
standard errors, minimums, maximums and sample sizes are of 
interest, and the appropriate step is as follows:  

> summary(carawidth) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  11.00   56.00   73.00   82.26  114.00  165.00  

To calculate the standard deviation we need to use the sd() 
function. 

> sd(carawidth) 
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[1] 35.51195 

Submit the above commands for execution. 

Now consider a more detailed analysis on just the variable CW. From 
the output above we see that the mean and median are quite 
different, which is a first indicator that the data are not normally 
distributed. To check this we first visualize our data by making a 
histrogramm (Figure 2-14). 

> hist(carawidth, col=”grey”) 
 

Figure 2–14. 
Distribution of 
measurements 
of turbidity in 

Lake Burley 
Griffin. The data 
are not normally 

distributed. 
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The histogram is not bell-shaped, as it would be if it were a normal 
distribution, but rather, is bimodal. Note that the median and mean 
shown on the box plot are not coincident, and that the interquartile 
range represented by the box is not symmetric about the mean. This 
indicates a skew to the right in this case.  

As mentioned before the "Stem Leaf Plot" is effectively a histogram 
on its side. The scale for the measurement variable is expressed in 
mm, and the raw frequencies are given in the column headed “|” 
(Figure 2-15).  
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Figure 2-15. 
Stem leaf plot 

for carapace 
widths of Blue 

Crabs from 
Chesapeake 

Bay, USA. 

  The decimal point is 1 digit(s) to the right of the | 

 

   1 | 1346677778899 

   2 | 00111111112222333333555677899999 

   3 | 01222334445556667777888888899 

   4 | 00000001111111222222222233333333333334444445555666666666677777778888+6 

   5 | 00000000000000011112222222222233333333333344444444455555555555555666+48 

   6 | 00000000000000000111111111111112222222222333333333333333333344444444+62 

   7 | 00000000111111111112222222222333333333333344444444444445555555555556+19 

   8 | 0000000000111222222233333444444444555566666677778888899999 

   9 | 000000011112333344445555555666677778889999999 

  10 | 0000111122333333334444555677777888999 

  11 | 00000012222222222233333334444444455555555666677779999999 

  12 | 00000000000111222222222333333333334444444444445555555556666666777777+8 

  13 | 000000011111122223334444445555555555566667777777788888999999 

  14 | 00000122222233333444445556666777888999999 

  15 | 0122234566666799 

  16 | 1135 

We clearly see that the distribution is bi-modal. A test on normality 
should reveal a significant deviation from normality. 

> shapiro.test(carawidth) 

        Shapiro-Wilk normality test 
 
data:  carawidth  
W = 0.9549, p-value = 2.406e-16 

The Shapiro-Wilks Test, (which is the one recommended in this 
course) indicate a strong evidence of deviation from normality 
(Shapiro-Wilk W = 0.95    [Pr < W] < 0.0001). 

We further test this by creating a probability plot (Figure 2-16). 

> qqnorm(carawidth) 
> qqline(carawidth)  

The "Normal Probability Plot" (Box 2–2G) is similar in application to a 
plot of cumulative relative frequencies on probability paper. Normally 
distributed data appear as a straight line, whereas deviation from 
linearity indicates deviation from normality. The data values are 
represented by *, whereas the + symbols define a reference straight 
line for comparison. The asterisks (*) depart from the linear trend (+), 
which is evidence of deviation from a normal distribution.  
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Figure 2–16. 
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 Submit the above program for execution. 

Again we see quite a deviation from normality. So we need other non 
parametric descriptions such as quantiles and extreme values to 
describe this distribution. 

> quantile(carawidth, probs = 
c(0,0.01,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.99,1)) 
    0%     1%     5%    10%    25%    50%    75%    90%    95%  
 11.00  18.00  31.65  42.00  56.00  73.00 114.00 135.00 143.00  
 
   99%   100%  
156.00 165.00  

The output contains the maximum (165), minimum (11) range, 
median, quartiles and various percentiles. The mode would not be 
useful as the data are not grouped. Percentiles are useful for defining 
extreme events or extreme individual sizes. A crab might be 
regarded as of exceptional size, for example, if its carapace width 
exceeds the 95th percentile, in this case 143 mm. 

To identify outliers we look for the 5 lowers and highest values. 

> sort(carawidth)[1:5]  # 5 lowest values 

[1] 11 13 14 16 16 

> sort(carawidth, decreasing=TRUE)[1:5] # 5 highest values 

[1] 165 163 161 161 159 

This information can be very useful in identifying aberrant outliers. 
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Finally we create a boxplot (Figure 2-17). This boxplot is another way 
to identify outliers. These would be plotted as open circles above the 
whiskers. Here we do not see outliers,but be careful as we are not 
dealing with unimodal data, the search for outliers is difficult anyway. 

> boxplot(carawidth) 

To make this plot a bit more informative we include the mean as a 
red cross. 

> points(1,mean(carawidth), pch=3,col="red") 

Figure 2–17. 
Tests of 

normality based 
on a probability 

plot of the 
distribution of 

carapace widths 
for blue crabs in 

Chesapeake 
Bay. 
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The box plot is drawn on the basis of the scale on the histogram. The 
bottom and top edges of the box show the 25th and 75th percentiles; 
the horizontal line shows the median. The vertical line extends from 
the box as far as the range of the data or 1.5 times the inter-quartile 
range whichever is the lesser. Values more extreme than 1.5 inter-
quartile ranges from the box are shown as 0 if they are less extreme 
than 3 inter-quartile ranges and as * otherwise. 

Thus we have several lines of evidence to suggest that the size 
distribution of blue crabs is not normal. The Shapiro-Wilkes test 
demonstrated significant deviation from normality. This was evident 
in the stem-leaf plot, which showed the distribution to be bimodal and 
slightly skewed to the right. The mean and median did not coincide in 
the box diagram, and the probability plot showed considerable 
systematic deviation from linearity. 

Submit the above program for execution. 
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Report the results 

But what does this all mean for carapace widths of blue crabs? There 
is strong evidence for suspecting that the data are not from a 
normally distributed population. The format of the following summary 
is appropriate for describing data that is not normally distributed, and 
should be carefully followed in reports. 

"Blue crabs in Chesapeake Bay ranged from 11 to 165 mm (Mean 82.3 ± 1.16, n 
= 934) during the period of study. The distribution of crab sizes was not normally 
distributed, (Shapiro-Wilk Statistic = 0.95, p < 0.0001; visual examination of 
probability plot, Figure 2–9). The frequency distribution was bi-modal (highest 
mode at 65 mm) and skewed to the right, with a median of 73 mm and an inter-
quartile range of 58 mm. A definition of a particularly large crab could be based 
on the 95th percentile of 143 mm." 

The mean is presented with its standard error for reasons that will 
become clear when the topic of statistical inference is covered in 
Module 3. Inclusion of the histogram shown in Figure 2–14 is 
optional, depending upon the emphasis you wish to place on the 
frequency distribution of carapace width measurements in your 
report. 

Note that the mean and standard deviation are insufficient to 
describe the data when it is drawn from a non-normal distribution. 
For this reason, we need to include the mode and median (which 
might differ from the mean), and selected percentiles.  These 
statistics add additional information for non-normally distributed data 
beyond what is conveyed by the mean and standard deviation.  

For non-normally distributed data, a useful definition of extreme 
events or exceptionally large individuals should be made in terms of 
an appropriate percentile, not in terms of standard deviations from 
the mean.  

 

 Tidy up the program by ensuring there are no elements 
remaining of the program that did not work.  Save the 
program to disk within Tinn-R for future reference. You may 
also want to save your workspace and Rhistory, if you want 
to return to this example at some stage. 

Exit from R and Tinn-R by choosing File->Exit from the Menu Bar. 

Normal data 

We might now ask why the size distribution of crabs is not “Normal”. 
Recall that normality arises when a myriad of small influences come 
to bear upon the value taken by a variable. In this case however, 
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there are two dominating influential factors – sex and age. Why 
would we expect normality when the two sexes might differ in size, 
leading to bimodality, or if age has a dominant influence on size and 
cohorts differ in their contribution to the dataset. 

We might expect crab sizes to be normal for a given sex and age, so 
let’s have a look at the size distribution of mature female crabs only. 

There are different ways of selecting only mature females. One is to 
define a new subset of the data that contains only mature female 
crabs using the subset() function. 

> crab.ff <- subset(crab, maturity=="FF") 

Now we need to calculate the same statistics as above. For 
convenience we include now crab.ff to the search path. Note before 
we do this we have to detach the crab data.frame because otherwise 
our new data will be masked by this data.frame, because their 
headings have the same name. 

> detach(crab) 
> attach(crab.ff) 
> summary(crab.ff) 

maturity   carawidth     
 FF:129   Min.   :107.0   
 JF:  0   1st Qu.:125.0   
 JM:  0   Median :135.0   
 MM:  0   Mean   :134.9   
          3rd Qu.:144.0   
          Max.   :163.0 

 

As you see there are no other cases than FF in the maturity variable 
left. The mean and mode are similar, which is a first indication for 
normally distributed data. We calculate the mode: 

>which.max(table(carawidth)) #mode 

135  
 27 

This should be read: The mode is 135, which is again similar to the 
mean and median. This value appears 27 times in the dataset. 
Check this by typing table(carawidth) into the R console. 

Now we plot the histogram of the new data (Figure 2-18) and also 
test for normality using the Shapiro-Wilk’s Test. 

> hist(carawidth, col="grey") 
> shapiro.test(carawidth) 

        Shapiro-Wilk normality test 
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data:  carawidth  
W = 0.9889, p-value = 0.3865 

Figure 2–18. 
Tests of 

normality based 
on a probability 
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distribution of 

carapace widths 
for blue crabs in 
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There is no indication from the Shapiro-Wilks Test of significant 
deviation from normality (Shapiro-Wilk W = 0.99    [Pr < W] = 0.39) 
(Box 2-3A). 

The histogram is bell-shaped, consistent with expectation for a 
normal distribution. Note that the median and mean shown on the 
box plot are coincident. This output is consistent with normally 
distributed data. 

Finally the "Normal Probability Plot" (Figure 2-19) does not depart 
from the linear trend, which would be evidence of deviation from a 
normal distribution.  

> qqnorm(carawidth) 
> qqline(carawidth) 
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Figure 2- 19. 
Tests of normality 

based on a 
probability plot of 

the distribution  
of carapace 

widths for mature 
female blue crabs 

in Chesapeake 
Bay. 
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Thus we have several lines of evidence to suggest that the size 
distribution of mature female blue crabs is normal. The Shapiro-
Wilkes test did not demonstrate significant deviation from normality. 
A bell-shaped curve was evident in the histogramm plot. The mean, 
median and mode were coincident, and the probability plot showed 
no systematic deviation from linearity. 

The format of the following summary is appropriate for describing 
data that is normally distributed, and should be carefully followed in 
reports. 

"Mature female blue crabs in Chesapeake Bay ranged from 107 to 163 mm 
(Mean 134.8 ± 1.13, n = 129) during the period of study. The distribution of 
mature female crab sizes was normally distributed, (Shapiro-Wilk Statistic = 
0.99, p < 0.39; visual examination of probability plot, Figure 2–13). A definition of 
a particularly large female crab could be based on the 95th percentile of 156 
mm." 

The mean is presented with its standard error for reasons that will 
become clear when the topic of statistical inference is covered in 
Module 3. Inclusion of the histogram shown in Figure 2–13 is 
optional, depending upon the emphasis you wish to place on the 
frequency distribution of CW measurements in your report. 

Note that no mention is made of the mode, median, quartiles or inter-
quartile range. These statistics add no additional information for 
normally distributed data.  

For normally distributed data, an equally useful alternative definition 
of extreme events could be made in terms of standard deviations 
from the mean. Less than 1% of values would be expected to lie 
outside three standard deviations from the mean.  
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 Tidy up the program by ensuring there are no elements 
remaining of the program that did not work.  Save the 
program to disk within Tinn-R for future reference. You may 
also want to save your workspace and Rhistory, if you want 
to return to this example at some stage. 

Exit from R and Tinn-R by choosing File->Exit from the Menu Bar. 

Source 

The length frequency data on blue crabs were sourced from the 
Virginia Institute of Marine Science, Juvenile Fish and Blue Crab 
Trawl Survey.  The web-based data retrieval system appears online 
[http://www.fisheries.vims.edu/vimstrawldata/] 
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Where have we come? 

With some sound theory behind us from Lessons 1 and 2, it was time 
to get our hands dirty with some analyses. Here you were required to 
dust off what you learned about the R programming language in 
Module 1, and undertake some analyses by following the blow-by-
blow sample analyses. 

Skills imparted in Lesson 3 include 

 How to analyse catagorical data by constructing frequency 
tabulations, histograms and barcharts using table(). We 
introduced a few extra bells and whisles by using indexing to 
subgroup data, which we visualized using barplot. 

 How to compute summary statistics with summary(),  
quantile(), mean(), var(), sd(), the mode and the 
coefficient of variation. Some statistics had to be calculated using 
several R functions such as the mode (e.g which.max( 
table(variable)). The analyses included how to make an 
assessment of whether the data were drawn from a normal 
distribution using histograms, stem-leaf plots, probability plots and 
a comparison of mean, median and mode. 

 How to report the results of your analysis for normal and non-
normal data respectively. There is a very strong distinction in the 
statistics you report in each case, and you must be aware of this. 

And of course, working through these examples should have 
reinforced a number of skills required to use R for statistical 
analyses, including the use of the read.table() function to read 
data in, assigning labels to values of a variable and how to index 
data from a vector in R, etc. 
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Lesson 4: Some Challenging Exercises 

Exercise 2-1: Trawl Catch Statistics  

A proforma in Word can be downloaded from the course website to 
assist in preparing your answer to this question. 

Many fisheries agencies keep detailed statistics on fish stocks, 
sampling specifically for that purpose from research vessels. We 
have at hand trawl catch statistics for a coastal estuary for the years 
1999 and 2000. The data are in the form: 

SMALLMOUTH_FLOUNDER 1999 JUN    84  

SPOT                 1999 JUL   180  

BLUE_CRAB            1999 MAY    27  

BAY_ANCHOVY          1999 AUG    43  

ATLANTIC_CROAKER     1999 FEB   253  

where the first column is the fish species, the second column is the 
year, the third column is the month and the fourth column is fish 
length in mm. There are data for 53,856 fish in the dataset. In this 
exercise, you are asked to interrogate the dataset to answer some 
questions of specific interest. 

Input the data to a data.frame called trawl.  

Add the following headings to the data: “species”, “year”, “month”, 
“length.mm”. Transform the length measurements from mm to cm 
and  add a new column named “length.cm” to the data.frame. 

Confirm that that the data have been correctly input.  
 

Generate summary statistics for each species, including only sample 
size, minimum, maximum and mean fish size.  

Generate a barchart showing the relative abundance of the different 
species in the trawl dataset. Your analysis should yield a high quality 
barchart. It would be nice if you add a title to your graph. 

Generate a histogram showing the size distribution for the most 
abundant fish species in the dataset. Use a subset statement to 
select only data for that fish species. Your analysis should yield a 
high quality histogram. Again a title would be nice. 

Calculate a full set of summary statistics for length of the above 
species. Prepare a complete statistical summary for fish length (mm) 
of the above species. Make sure that your summary conforms to the 
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standard outlined in the worked examples. 
 

Perform an appropriate analysis to yield a histogram showing the 
size distribution for Spotted Hake. Your analysis should yield a high 
quality histogram. Be sure to add a title to your graph. 
 

Clearly fish length for Spotted Hake is not normally distributed, but it 
is unimodal. Repeat the analysis on this variable following a standard 
square root transformation and a log transformation. 
 

Calculate a full set of summary statistics for length of the above 
species after applying the transformation that was most effective in 
normalizing the data.  
 

Succinctly summarise what you conclude about the Normality of fish 
length for the above species following transformation.  Include 
reference to supporting evidence in the form of graphs and/or tables. 
 

Prepare a barplot to compare the size distributions of the two most 
common species in the dataset.  
 

Prepare a barplot to compare the size distributions of the most 
common species in 1999 and 2000.  
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Exercise 2-2: Water Chemistry of Lake Carcoar 

A proforma in Word can be downloaded from the course website to 
assist in preparing your answer to this question. 

Data on chemical composition of the water of Lake Carcoar, near 
Cowra, were entered as part of a project on water quality 
management conducted at the University of Canberra. 

Lake Carcoar is a relatively small storage in an agricultural district, so 
its water quality is of particular concern to the New South Wales 
water authorities.   

The data are held in disk file CARCOAR.DAT and the measurements 
have been selected because of their known relationship to algal 
production, particularly production by diatoms.  These algae are 
single-celled and secrete elaborate silica skeletons. Blooms of these 
microscopic organisms can cause severe deterioration of water 
quality.   
 

Variable Columns Units 

STATION NUMBER 1- 7  

DATE 8-13 ddmmyy 

NITRATE 16-22 mg/l 

SILICA 25-30 mg/l 

SOLUBLE PHOS 33-37 mg/l 

TOTAL PHOSPHORUS 40-44 mg/l 

AMMONIA 47-51 mg/l 

CHLOROPHYLL-A 54-56 UNESCO units 

CONDUCTIVITY 59-61 microsiemens/cm 

TURBIDITY  NTU 

 
The Water Authorities would like to design a monitoring programme 
for this lake, based on knowledge of the typical concentrations of 
each of these key measurements.  They would also like forewarning 
of algal blooms, and information that can be used to define upper 
acceptable limits for each of these variables would be most welcome.  

Perform the appropriate analyses for one of NITRATE, TOTAL 
PHOSPHORUS or SILICA, and provide a brief reports on each for 
the Water Authorities, using the proforma supplied. 

Undertake the appropriate analyses to determine whether the 
concentration is normally distributed.  Present the outcomes of the 
analysis below. Be sure to include a histogram. 
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Compute a comprehensive set of summary statistics for the variable. 
Present the full set of statistics below in tabular form. 
 

What do you conclude regarding the normality of the variable?  Be 
sure to include supporting statistics or cross-references to diagrams 
and tables produced during the analysis. 
 

Provide a concise summary of the results, such as might appear in 
the results section of a manuscript or report.  Include in your 
summary, a description of the distribution of values, only those 
descriptive statistics appropriate to the data, and a working definition 
of an extreme value. 
 

With regard to normality, are your results consistent with expectation 
for the variable?  Why? 
 

What advice would you give to anyone planning further statistical 
analyses on the variable? 
 

What recommendations would you like to make to the NSW Water 
Authorities? 
 

Append a full R program listing, cleaned up and free from error or 
redundant code. 
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Exercise 2-3: Inflows to Burrinjuck Dam 
Data on water flow for Burrinjuck Dam were collected as part of a 
project on water quality management conducted by the University of 
Canberra for the Land and Water Resources Research and 
Development Corporation.  

The data were provided by the New South Wales Department of 
Water Resources and comprise the following variables stored in the 
file BJUCK.DAT.  DATE represents the date at which the water 
collections were taken.  Depth, volume in megalitres (ML) and area 
were measured or estimated for that date, and inflow and outflow 
were measured using appropriate gauging stations.   

The format of the data in BJUCK.DAT is shown in the table below. 
For example, the measurement for depth occupies position 9 to 13 
on each line in the data file. 

Variable Columns Units 
DEPTH 9-13  m 

VOLUME 16-21  ml 

AREA 24-27  ha 

INFLOW 30-34  ml/d 

OUTFLOW 36-40  ml/d 

RAINFALL 43-46  mm/d 

EVAPORATION 49-52  mm/d 

The New South Wales Department of Water Resources requires a 
detailed summary of the flows, rainfall and evaporation for Burrinjuck 
Dam.   

Analysis of inflows  

Perform the appropriate analyses for INFLOW only, and provide a 
brief report for the NSW Department of Water Resources, using the 
proforma supplied. 

It is sound practice when analysing data that is not your own, to 
examine it before analysis.  You should read the raw data into the 
Editor for perusal before beginning the analysis.  Once you are 
satisfied, undertake the appropriate analyses, graphical and 
otherwise, to determine whether the inflows are normally distributed. 

What do you conclude regarding the normality of the variable 
INFLOW?  Be sure to include supporting statistics or cross-
references to diagrams and tables produced during the analysis. 
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Compute a comprehensive set of summary statistics for the variable 
INFLOW. Provide a concise summary of the results, such as might 
appear in the results section of a manuscript or report.  Include in 
your summary, a description of the distribution of INFLOW values, 
only those descriptive statistics appropriate to the data, and a 
working definition of an extreme inflow. 

With regard to normality, are your results consistent with expectation 
for a variable such as INFLOW?  Why? 

What advice would you give to anyone planning further statistical 
analyses on INFLOW? 

Append a full R program listing, cleaned up and free from error or 
redundant code. 

Analysis following transformation 

If the analysis of the Burrinjuck inflows shows that the variable 
INFLOW is not normally distributed, repeat the analysis on this 
variable following a standard log transformation and a square root 
transformation. 

Undertake the appropriate analyses to determine whether the logged 
inflows are normally distributed.  Repeat for the square root flows. 
Select the transformation that is the most successful in normalising 
the inflows. Present the outcomes of the analysis using the best 
transformation below. Be sure to include a histogram. 

Compute a comprehensive set of summary statistics for the 
transformed inflows. Present the full set of statistics below in tabular 
form. 

What do you conclude regarding the normality of the transformed 
inflows?  Be sure to include supporting statistics or cross-references 
to diagrams and tables produced during the analysis. 

Provide a concise summary of the results, such as might appear in 
the results section of a manuscript or report.  Include in your 
summary, a description of the distribution of the transformed inflows, 
only those descriptive statistics appropriate to the data, and a 
working definition of an extreme inflow. 

What advice would you give to anyone planning further statistical 
analyses on inflows? 

What recommendations would you like to make to Department of 
Water Resources? 

Append a full R program listing, cleaned up and free from error or 
redundant code. 
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Where have we come? 

Lesson 4 is where the real learning occurs. In earlier lessons, you 
have read and understood written material and been led through 
worked examples. It is a bit like watching television. In Lesson 4 you 
were required to recall and integrate the information to complete 
some challenging real-world exercises. Recall in the context of 
problem solving is one of the best ways of achieving lasting learning. 
It is hard yakka. 
 
In completing this module successfully, you will have achieved a 
number of core competencies, namely, 

 Knowledge of the options available to you for summarizing data in 
tablular form, in graphical form and in the form of summary 
statistics. 

 Understanding the distinction between the various statistical 
options available for summarizing univariate data, and when and 
when not to use them. 

 A working knowledge of the R interface, the function of each 
window, and how to navigate among them in order to perform the 
statistical analyses. 

 The ability and confidence to to interpret the results of the 
analyses in a biological context based on demonstrated 
understanding of the analyses. 

 The ability to present findings in a style appropriate to the scientific 
literature. 

 Appropriate attitudes and efficient strategies for extending your 
abilities to conduct analyses and solve problems beyond the 
scope of this module, by using resource materials such as 
statistical texts, software manuals, and your colleagues. 
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