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Key Concepts of Statistical Tests 

The role of statistics in science 

In Module 2 (Univariate Descriptive Statistics), the focus of attention 
was on samples. Powerful statistical tools were introduced for 
condensing and summarising single samples to more easily convey 
the essential features of the data in what is said and written. While 
this is an important aspect of statistical endeavour, much of 
statistical theory is concerned with a second topic—statistical 
inference. 

When we study samples, we are seldom directly interested in them 
per se. We study them to learn something of the population from 
which the samples were drawn. We infer properties of the entire 
population, which we have not studied in its entirety, from our 
detailed knowledge of a sample of observations. The convenience of 
studying finite samples rather than the population as a whole comes 
at a cost. Samples, because they are finite and often relatively small, 
are somewhat akin to a fuzzy snapshot—the general impression of the 
population is evident, but the sample is an inexact representation. No 
matter how intensively we study the sample, there will be a level of 
uncertainty in what we discover, if we try to extrapolate our findings 
to the entire population. This uncertainty is often referred to as 
sampling error. 

Sampling error has important practical consequences namely: 

 Sample statistics will typically differ somewhat from the 
corresponding true values for the entire population. Estimating by 
how much they differ is a problem addressed under the heading of 
parameter estimation. 

 Any two samples, even if taken from identical populations, will 
differ typically in all of their statistics. Determining whether the 
observed difference in sample statistics is great enough to 
conclude that the true population values differ is a problem 
addressed under the heading of hypothesis testing. 

Because they deal with making inferences about population 
parameters on the basis of sample statistics, parameter estimation 
and hypothesis testing are grouped under the broader heading of 
statistical inference. 

Parameter estimation 

In the first category of analysis, parameter estimation, sample 
statistics are used to estimate the true values of the populations from 
which the samples are drawn. Say that we wish to know something of 
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the heights of students on a university campus, for the sake of future 
planning or the design of lecture theatres and seating. Time or 
resources may not permit an examination of the entire student 
population, so we choose instead to select and examine a 
representative sample of say 100 students. We then measure their 
heights and calculate the average height of people in the sample to 
yield a sample mean, Y . 

If we obtained a figure of 170 cm for the mean of our sample, then 
provided our sample was reasonably large and provided we selected 
our sample at random to ensure it was representative of the entire 
population, we can be reasonably sure that the mean height of all 
students on campus, the true mean  , is around the value calculated 
for the sample.  

But how sure, and how close is our estimate to the real figure? 

Statistical analysis provides a way of answering these questions. We 
might not know the value of the true population mean, but statistical 
analysis allows us to determine a range within which we can be 95% 
sure that it will lie. It allows us to use the statistics calculated from a 
sample to place bounds, or confidence limits, on the true value for the 
population from which the sample was drawn. 

Hypothesis testing 

The most common application of statistics in biology is to test 
specific scientific hypotheses. Consider a hypothetical example, 
rather trivial because of the magnitude of the difference between the 
populations under study. Two forests are of the same age. One forest 
was treated with fertiliser in a fashion consistent with past practice, 
the other with a new fertiliser and a new procedure. The Forestry 
Department is interested in knowing if the new procedure has 
produced significant increases in yield. The forests were large and it 
was not feasible to measure every tree, so the forester selected two 
random samples, each of 100 trees, from each forest. A variable was 
then selected to measure tree girth, one that would give an indication 
of the size of trees in each forest and of subsequent yields. Frequency 
histograms were constructed for each sample, and perused for an 
indication of whether girths were different in the forest subjected to 
the new treatment (Figure 3–1). 
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Figure 3–1. 
Frequency 

histograms for 
random samples 

of pine trees 
(n=100) selected 
from each of two 

forests of the 
same age. A: 

Traditional 
fertiliser 

treatment; B: 
New fertiliser 

treatment. 

 

A

  

 

B

 

You might conclude by simple inspection that the girths of the trees 
in the two forests are different. The samples are different most 
definitely, but when taking repeated samples even from the same 
population, one can expect them to differ to some degree just through 
chance.  

The samples are different, but how can you be sure the two 
populations are really different? 

An hypothesis test allows us to calculate the probability of obtaining 
two samples as divergent as the above two, on the assumption that 
they were drawn from two identical populations of trees. If this 
probability is very low, then the forests are probably actually 
different. If it is high, then the differences we observe may well have 
been nothing more than random fluctuations between samples, that 
is, sampling error. 

Clearly, by resolving the ambiguity that arises from sampling error, 
statistics in general, and hypothesis testing in particular, provide very 
important tools for science. 

To digress for a moment, a test you could use in this instance is the t-
test, to compare two means. Applying the t-test to this example, we 
find that the probability of obtaining two samples as divergent as 
these two (or worse) from the one population is very small (less than 
0.001). We therefore conclude that the two populations (the two 
forests) differ in reality and that the new fertiliser and procedure are 
superior. 

The case of the two forests was fairly clear-cut and one might argue 
that the use of statistics was not required to arrive at a sound 
conclusion. But there are many cases where a decision cannot easily 
be made without relying on statistical techniques. 

In a series of eight trials, specimens of the bush rat, Rattus fuscipes, 
were provided with a choice of two baits to test the rats' preferences 
for one bait over the other. The results are shown in Table 3–1. In all 
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but two cases, R. fuscipes chose bait A over bait B. Clearly the rats are 
showing preference for bait A—or are they?  
 

Table 3–1. Bait 
preference of 

Rattus fuscipes, in 
an experiment 
involving eight 

trials. 

 Individual 

 1 2 3 4 5 6 7 8 
Bait A 1 1 2 1 1 1 2 1 

Bait B 2 2 1 2 2 2 1 2 

Before we can come to a conclusion one way or the other, we need to 
know what probability there was of obtaining the above result had we 
used rats that were unable to distinguish between baits A and B.  

For interest only, the appropriate test to use in this case would be 
based on the binomial distribution. There are k = 8 trials, P{choose 
A} = 0.5, P{6 or more choices of A} = 0.145. This test gives the 
probability of obtaining the observed result (or one more divergent 
from expectation), on the assumption that the rats have no 
preference for one bait over the other. The probability in this instance 
turns out to be 0.145 (= 14.5%). That is, if the entire experiment of 
eight trials was repeated 100 times, then a result at least as 
convincing as the one shown in Table 3–1 would be expected to occur 
about fourteen times—fourteen times out of 100 using rats unable to 
distinguish between baits A and B! Most would consider a probability 
of 14.5% too high to conclude that Rattus fuscipes prefers bait A over 
bait B. 

Summary 

In summary then, a fundamental raison d'être of statistics arises 
because any two samples, even if taken from the same population, 
typically will differ in all of their statistics. They will differ because of 
sampling error, that is, because finite samples will be inexact 
representations of the populations from which they are drawn. How 
then can a scientist evaluate the observed difference in means 
between two samples? They might differ by chance, because any two 
samples would be expected to differ, or they might differ because the 
populations from which they were drawn differ. Statistical tests 
provide a means for rationally deciding between these two 
possibilities. 

A fundamental problem for the scientist: Does an observed difference 
or trend for the samples reflect a true difference or trend for the 
populations from which the samples were drawn, or did the observed 
difference or trend occur by chance alone? 

Statistical analysis enables us to assign a measure of reliability to 
inferences made about the world around us from observations on 
finite samples. This is not true of science alone. We draw conclusions 
about the real world based on finite sets of observations throughout 
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our lives. It is just that in science, we need to assign an objective 
measure of reliability, in the form of a probability statement, to the 
inferences we make. Such measures of reliability give us confidence 
in the conclusions we draw from our data, and provide a formal 
structure for conveying that confidence to others in what we write. 

Lesson 1: Estimation and Confidence Limits 

Samples and populations 

The totality of observations with which we are concerned, whether 
finite or infinite, constitutes what we call a population. Once, the 
word population referred to observations on people, but today it 
applies to measurements of any entities of interest, whether it be 
people, animals, plants or objects. The number of entities that 
comprise the population is called the size of the population which, in 
many circumstances may be regarded as infinite. 

A sample is a subset of the population. A random sample is a 
sample taken in such a way that each element of the population has 
the same probability of being selected. We take random samples to 
ensure that our samples are representative of the population from 
which they are taken, so that what we learn from the study of the 
samples will be more or less true of the populations themselves. 

Figure 3–2. 
A series of 

samples, of 
increasing size, of 
shoots of Banksia 
ericifolia from the 

Jervis Bay 
National Park. 
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Samples should be considered fuzzy snapshots of the populations 
from which they are drawn, with the degree of fuzziness diminishing 
as the intensity of sampling or the sample size increases. Consider 
again the samples of Banksia shoots presented in Workbook 2. 
Figure 3-2 shows the frequency distributions for a series of samples 
taken from the Jervis Bay study site, increasing in sample size from 
25 to 1000. Here we have a series of better and better approximations 
of the true but unknown frequency distribution for the population 
being sampled. 

The sample frequency distribution approximates the true but 
unknown distribution for the entire population, and the 
approximation becomes progressively better as the sample size 
increases. 

A parallel situation arises when we consider sample statistics. We 
could approach our study of Banksia ericifolia by measuring the 
lengths of each and every shoot in the study site, and then we might 
summarise the data by calculating the average or mean shoot length. 

In this case, we would be examining the entire population of shoots 
at the study site and the average that we calculate would be called the 
population mean, designated  . Note that the population mean is 
a fixed figure characteristic of the population. It is not subject to 
variation—no matter who calculates such a mean or how many times 
it is calculated, barring mistakes, the same value will be obtained in 
each case. As such the population mean is called a parameter. 

Alternatively, time or resources may not permit an examination of 
the entire population of shoots, and we might choose instead to select 
and examine a random sample of say 100 shoots. We could then 
measure their lengths and calculate the average length of shoots in 
the sample—the sample mean, usually designated X  or Y . The 
difference between the sample mean Y  and the population mean   is 
that the sample mean is subject to natural variation or, as it is called, 
sampling error. If we were to repeat our sampling procedure by 
selecting another 100 shoots, we would obtain a value for Y  that 
differed from the first one, and if we repeated the procedure once 
more, a third value would most likely result. For this reason, the 
sample mean is called a statistic. 

The statistic Y  is said to estimate the population mean  . 

In taking a sample of shoots and calculating their mean length, we 
have one object in mind. The sample itself is of little interest — we 
wish to learn something of the population. If we obtained a figure of 
29.8 mm for the mean of our sample, then provided our sample was 
reasonably large and provided we selected our sample at random to 
ensure it was representative of the entire population, we can be 
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reasonably sure that the mean length of all shoots at the study site is 
around the value calculated for the sample. 

Key Point

Statistics, calculated from samples, are estimates of true population 
parameters. The estimation improves as sample size increases. 

Sampling distributions 

Consider what happens if we replicate our sampling by taking, say, 
30 samples of Banksia shoots each with a sample size of 50 shoots. 
For each sample, we can calculate a sample mean, and the values 
obtained will vary from one mean to another simply by chance, 
because of sampling error. It is not likely that any one of them will 
equal the true but unknown population mean, but with sample sizes 
of 50, they will be pretty close.  

It turns out that the means of replicated samples from a normally 
distributed population, such as the population of Banksia shoots, are 
themselves normally distributed regardless of the sample size. The 
true mean for this sampling distribution is equal to the mean for the 
parent population,  . Its standard deviation is called the standard 
error, to distinguish it from the standard deviation of the parent 
population. The standard error of the distribution of replicated 

means, Y
 , and the standard deviation of the parent population,  , 

are related by: 

A standard error is the standard deviation of a distribution 
for a sample statistic, such as the sample mean. 

What is even more remarkable is that means for replicated samples 
taken from populations with distributions of any shape will follow a 
normal distribution, provided sufficiently large samples are collected. 
This concept is usually presented in the form of the Central Limit 
Theorem, which states that: 

Sample means drawn repeatedly from a single population 
with mean   and standard deviation  , will be normally 

distributed with mean   and standard error n



, irrespective 
of the distribution of the population from which the 
samples are drawn, provided the size of the samples (n) is 
large. 

nY
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Consider a population with a uniform distribution, such as the 
population represented by wooden balls numbered from 1 to 10 in a 
bag from which we select balls at random with replacement. The 
distribution for this population is shown in Figure 3–3.  

Figure 3–3. The 
distribution of 
means from a 

series of samples 
of increasing size 

taken from a 
population of 

numbered balls 
(top) each with an 

equal probability 
of selection. 

   

Entire Population 1000 samples of one 

 

1000 samples of two 1000 samples of five 

 

If we take samples of size 1, then the distribution of sample means 
will be uniform and very similar to that of the parent population 
(Figure 3–3), as each possible mean value, 1 to 10, has an equal 
probability of 1/10 of occurring. 

If, however, we take samples of two, the probability of obtaining a 
mean of 1 will be substantially lowered, because to obtain such a 
mean, two successive ones will need to be drawn, with a probability 
of 1/100. Similarly, a mean rounding to 2 can occur with ball 
combinations 1-2, 2-1, 2-2, 1-3 and 3-1 with a probability of 5/100. 
The probabilities of means falling at the extremes of the range will be 
depressed while those centrally will be inflated (Figure 3–3). It is not 
difficult to convince yourself of the truth of the Central Limit 
Theorem, and come to understand how it comes about, by perusing 
the results of sampling from the uniform distribution shown in 
Figure 3–3.  

This knowledge is of great practical value. Because the sampling 
distribution of the mean is normally distributed under certain 
conditions, we are able to place objective measures of reliability on 
the inferences we make about the population mean. In particular, we 
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can calculate confidence limits for the population mean, using the 
above knowledge of the distribution of the sample mean. 

Confidence limits 

If a sample is selected from a normal population or, failing this, if the 
sample is sufficiently large, say n > 30, we can establish a confidence 
interval for the population mean by considering the sampling 
distribution of Y . Because the sampling distribution of Y  will be 
approximately normally distributed with mean   and standard error 

n

 , we have: 

95.096.196.1Pr 









n
Y

n


 

All we are doing here is using knowledge of the normal distribution 
to say that 95% of sample means will lie between the true population 
mean and + 1.96 times the standard error. 

This equation can be rearranged to yield one that is much more 
useful. By subtracting Y  and   from each term and multiplying each 
term by -1, we have: 

95.096.196.1Pr 









n
Y

n
Y


 

So now, although the true population mean  is unknown, we can at 
least define an interval within which we can be 95% sure it will lie. 
The catch is that the equation for the interval still contains an 
unknown, the population standard deviation  . 

If   is known, the distribution of sample means about the true 
population mean will be normal, but if   is only available as an 
estimate we must call upon another distribution worked out by 
statisticians — the t–distribution (Figure 3–5). 
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Figure 3–5.  
The t-distribution. 

Normal = t [    ] 

              t [1] 

              t [2] 

 
 

The t–distribution has the following properties: 

 The area under the curve = 1, as is the case for all continuous 
probability distributions. 

 It is bell-shaped, symmetrical about the mean, median and mode, 
which are all of equal value. 

 It has a complex formula defined uniquely by three parameters, 
the mean  , the standard deviation   and the sample size n. Note 
that the shape of the t–distribution depends on the sample size 
(Figure 3–5), unlike that of the normal distribution. 

 It approximates normality as n . The approximation is 
reasonably good for n > 30 and can be regarded as exact for n > 
120. 

The boundaries of the interval within which 95% of values lie, vary 
according to sample size, but have been tabulated for the t  
distribution by statisticians. These tabulated values replace 1.96 in 
the equation for the 95% confidence interval. 

    95.0Pr ,2,05.0,2,05.0 









n

S
tY

n

S
tY    

where t[0.05,2,] marks the boundary of the region within which 95% of 
t values would be expected to lie (5% spread over the two tails). 

At last we have a formula that can be used. If our sample is selected 
from a normal population or, failing this, if our sample is sufficiently 
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large, then we can use attributes from our sample (sample mean, 
standard deviation and sample size) to determine the interval within 
which we can be 95% sure the true population mean lies.  

This is an immense step forward, given that previously all we could 
do was make vague unsupported statements to the effect that the 
population mean was somewhere near our sample mean. 

Key Point

Confidence limits provide bounds within which you can be 95% sure, say, that 
a true population parameter lies. 

Lesson 2: Hypothesis testing 

Rationale 

It is worth repeating a fundamental dilemma faced by scientists in a 
wide range of disciplines. Any two samples, even if taken from the 
same population, typically will differ in all of their statistics. How 
then can a scientist evaluate the observed difference in means 
between samples taken from two populations? The samples might 
differ by chance, because any two samples would be expected to 
differ, or they might differ because the populations from which they 
were drawn differ. 

This dilemma is resolved through the decision-making process of 
hypothesis testing. 

Hypothesis tests rely on a perverse form of logic, pioneered by Euclid 
in his proof that 2  is irrational. Recall that an irrational number is 
one that cannot be expressed as a conventional fraction p/q, where p 
and q are whole numbers. Euclid must have been a lateral thinker, 
because he approached the problem in an odd way. He began by 
assuming what he set out to disprove, that is, he began by assuming 
that 2  was a rational number. He put: 

q

p
2  

where p and q have no common divisor. It is possible to do this for all 
rational numbers. By simple rearrangement this gives: 

22 2qp   



Biometry  

 

 16 University of Canberra 

 

and so p2 must be even, as it is equal to a number that is a multiple of 
2. If p2 is even, then p must be even. If p is even, it can be written as 
being equal to 2k, giving: 

  22 22 qk   

 or: 

222 qk   

so q2 and q must be both even.  

If p and q are both even, this is a contradiction of the initial 
assumption that 2  was expressed as a fraction of two whole 
numbers with no common divisor. Hence the initial assumption of 
the rationality of 2  must be false. 

What has Euclid done? 

 He wished to prove what he suspected—that 2  is irrational (not in 
Euclid's words of course). 

 He began by assuming the opposite—that 2  is rational. 

 A chain of logical reasoning resting upon this assumption led 
Euclid to an impossibility. 

 Euclid was thus forced to reject his initial assumption and to 
accept the alternative. 

I ask you to hold in your mind for a few minutes, Euclid's lateral 
approach to a mathematical proof. 

Consider for the moment that you are part of a large class of students 
undertaking a subject in elementary statistics. The lecturer puts a 
proposition to the class. He has a coin that he will toss repeatedly, 
and admits that the coin may be double-headed. He offers a small 
prize, a bag of marshmallows, to the first student to claim that the 
coin is indeed double-headed, provided they are correct in their 
assertion. However if they are incorrect, they must pay a penalty of 
$300 to their favourite charity. 

 The coin is tossed, and it comes up heads. No one hazards a guess, 
because the cost of being wrong is high ($300) and the prize is of 
relatively low value ($1.65). After all, the probability of getting a 
head if the coin has heads on one side, tails on the other, is 50:50 
or 0.5.  

 The coin is tossed again. Heads! No response from anyone in the 
class. The evidence for bias in the coin is still too weak, because 
even with an unbiased coin, two heads may be thrown by chance. 
There is a 1 in 4 probability of this. 
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 Again—heads! Suspicions are aroused, but still, three heads in 
succession occurs with a probability of 0.53 or 12.5%. Enough to 
risk losing $300 in the hope of gaining a packet of marshmallows? 
I think not. 

 Another toss, and another head. There may be someone in the 
audience willing to take a punt on 0.54 or 6.3%, but certainly when 
a fifth head is thrown, the hands begin to rise. Five heads in a row 
from an unbiased coin would be expected to occur only 0.55 or 
3.1% of experiments of this nature. 

How is this process related to the proof of Euclid? When confronted 
with the need to conclude that the coin was double-headed, we 
automatically work on the assumption that the reverse is true. We 
ask, if the coin is unbiased, what would be the probability of 
obtaining the observed results. It is only when the probability is low 
enough, that we decide that our assumption of no bias is poorly 
founded and conclude that the coin is double-headed.  

Like Euclid, we assume what we hope to disprove, and rely on 
mathematics to lead us to an unacceptable result. The difference is 
that Euclid made his decision when he arrived at an impossible result 
(a contradiction), whereas we make our decision when we arrive at an 
improbable result. 

This is the foundation of hypothesis testing. We begin by making an 
assumption, called the null hypothesis (the coin is unbiased). We 
then take the observed result and use mathematical theory to 
determine the probability of obtaining that result by chance alone, if 
the null hypothesis is true. If this probability is low, then we have 
some foundation for deciding that the initial assumption, the null 
hypothesis, is false.  

How small this probability must be before we are willing to reject the 
null hypothesis will depend on the costs of a decision to reject the 
null hypothesis when it is true ($300) relative to the benefits gained 
by a correct decision (one packet of marshmallows valued at $1.65). 
If the penalty had been $3000, then few hands would have risen on 
the fifth head in a row. By convention, in general science at least, the 
probability required to justify a decision to reject the null hypothesis 
is 0.05 or less. 

Formal procedure 

Let us now apply this rationale in a more serious vein. A statistical 
hypothesis is an assumption or statement, which may or may not be 
true, about one or more populations. If we have taken two 
independent samples, one from each of two populations, and we wish 
to know if the means of these two populations differ, we should begin 
by assuming that they are the same. Such an assumption, or null 
hypothesis, is written: 
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210 :  H  

It is the hypothesis that we would often hope to reject, provided there 
is sufficient evidence to do so. A corresponding alternative hypothesis 
might be: 

211 :  H  

Next we ask how sample estimates of these population means might 
be expected to differ, if the null hypothesis is true?  

Each null hypothesis has a test statistic associated with it. Clearly, if 
the null hypothesis is true, then we would expect the sample means of 
our two samples to be about the same and in fact, on average, we 
would expect the test statistic  21 YY   to be equal to zero (Figure 3–6). 
Of course in practice, it will hardly ever be exactly equal to zero 
because of sampling error. Repeated measures of this statistic will 
vary around the value zero. 

Figure 3–6. 
A diagram 

showing how a 
theoretical 

distribution, based 
on the assumption 

that the null 
hypothesis is true, 

is used to decide 
the validity of that 

assumption (see 
text). 

A
p = 0.02  

B 
p = 0.27  

21 YY 21 YY 
 

Provided you know the mathematical relationship that describes the 
distribution of the test statistic, you can make informed statements 
about whether an observed value for the test statistic is probable or 
improbable, if the null hypothesis is true. This provides us with the 
foundation for making a decision. 

If you find the probability of obtaining the observed value for the test 
statistic or a more extreme value is very low (< 0.05), then you have a 
sound basis for rejecting the null hypothesis. In Figure 3–6A, the 
probability of obtaining a value for the test statistic, or a more 
extreme value, is 0.02, shown by the shaded area, and the null 
hypothesis is rejected. If on the other hand, the probability is very 
high, our observed value of the test statistic may well have occurred 
by chance, and we have no firm evidence for rejecting the null 
hypothesis. In Figure 3–6B, the probability of obtaining a value for 
the test statistic or a more extreme value is 0.27, shown by the 
shaded area, and we have insufficient evidence to reject the null 
hypothesis. 
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Key Point

The end product of an hypothesis test is a value, p, which is the probability of 
obtaining the observed value of the test statistic by chance alone, if the null 
hypothesis is true. Small values of p, say p < 0.05, provide a sound basis for 
rejecting the null hypothesis. Large values, say p > 0.05, provide insufficient 
evidence to reject the null hypothesis. 

If the value of p indicates that the observed value of the test statistic 
could not have reasonably occurred by chance (say p < 0.05), you 
reject the null hypothesis. If, on the other hand, the value of p 
indicates that the value of the test statistic might well have occurred 
by chance alone, you have insufficient evidence to reject the null 
hypothesis. You do not accept the null hypothesis because failure to 
reject it is ambiguous—the null hypothesis might be true, or you may 
have insufficient data at hand to reject it. 

One-tailed and two-tailed tests 

Usually when a test is performed, the null hypothesis is an hypothesis 
of no difference or no trend, for example: 

210 :  H  

The alternative hypothesis proposes that there is a difference, for 
example: 

211 :  H  

Occasionally, we may have evidence, quite independent of the data 
we have collected, to believe that a difference in the true population 
means, if any, is in one direction only. Note that we must have 
extrinsic evidence that the true population parameters differ in one 
direction only. A one tailed test is not appropriate simply because the 
difference between the samples is clearly in one direction or the 
other. 

The alternative hypothesis then takes the form: 

211 :  H   or   211 :  H  

Tests involving such alternative hypotheses are referred to as one-
tailed tests. The probability of obtaining a particular value of the 
test statistic, or one more extreme, in a one-tailed test is only half the 
probability that would have been obtained in a two-tailed test (Figure 
3–7). Hence, the one-tailed test is more powerful and a priori 
knowledge of the direction of the true difference in population means 
should be used if available. In the example of Figure 3–7, a 
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significant result is obtained for the one-tailed test whereas the two-
tailed test applied to the same data yielded a non-significant result. 

Figure 3–7.  
A comparison of 
the probabilities 

arising from (A) a 
two-tailed test 

( 210 :  H ) and 
(B) a one-tailed 

test ( 211 :  H ).  

 

Both tests are comparing the test statistic –2.7 with the critical values 
at the 95% level of significance. The two-tailed test yields a non-
significant result; the one-tailed test yields a significant result. This 
illustrates the advantage of using a one-tailed test when extrinsic 
information on the direction of the difference permits it.  

Statistical significance 

In hypothesis testing, deciding whether to reject the null hypothesis 
depends upon a prior decision on what level of significance or 
alpha level to use in the test. We might choose, for example, to reject 
the null hypothesis if the probability of obtaining the observed results 
by chance alone is less than 5% or 05.0 . The level set for   depends 
upon what chance you are willing to take in being wrong when you 
decide to reject the null hypothesis. In science, we typically set   at 
0.05 or 5%, and so are willing to be wrong in rejecting the null 
hypothesis in 5 of every 100 tests we choose to apply. If the costs of 
wrongly rejecting a null hypothesis are particularly high, then 01.0  
or a 1% level of significance may be more appropriate. If, however, 
you are conducting studies where the consequences of falsely 
rejecting the null hypothesis are not quite so severe, then a 
significance level of 10.0 may be appropriate. There is no hard and 
fast rule on the appropriate level of significance. It depends very 
much on contemporary practice in your particular discipline. 

Key Point

When the null hypothesis is rejected, we say that the result is statistically significant 

For example, we may state that there is a significant difference 
between two means. This is shorthand for the statement that the 
observed difference between sample means is unlikely to have 
occurred by chance alone, at the accepted level of significance, if the 
population means are the same. 
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Type I and Type II errors 

You will have gathered from the above discussion that hypothesis 
testing does not enable the researcher to make a cut and dried 
decision. A significant result at the 5% level of significance will lead 
to the decision that the true population means are different. When 
you make such a decision, you do so in the knowledge that there is a 
5% probability that you are incorrect. Nothing is certain.  

When a significant result is obtained at the 5% level, there are two 
possible scenarios. The null hypothesis may be true, and by virtue of 
the test result and the level of significance set, this is the most 
probable scenario. The null hypothesis may not be true, despite the 
outcome of the test, and you will have achieved a false positive result. 
The experimenter controls the probability of such an adverse 
outcome, usually at 5%. Your decision is to reject the null hypothesis 
is sound, on the balance of probabilities, but you may be wrong in 
doing so. 

A Type I error  (false positive) is made when we reject the null 
hypothesis when it is true. We might, for example, declare two 
population means to be different when, in fact, they are not (Table 3–
2). Equally, we may err in the other direction, that is, we may accept a 
null hypothesis when it is false. We might, for example, fail to detect 
a difference between two population means when, in fact, they are 
different (Table 3–2). In so doing, we make a Type II error (false 
negative).  

Table 3–2. 
Outcomes of an 
hypothesis test. 

Two outcomes 
are satisfactory, 

the other two 
are undesirable. 

 DECISION 
 H0 rejected H0 accepted 

 

H0 is false 

 

Correct decision 

False Negative 
Type II Error  
( p usually unknown) 

 

H0 is true 

False Positive 
Type I Error  
( p usually 0.05) 

 

Correct decision 

 

Type I and Type II errors have the following properties: 

 The probability of a Type I error is specified independently of the 
experiment, by convention. In the sciences generally, it is typically 
set at 05.0 . In medicine, where the costs of rejecting a true null 
hypothesis are higher, it may be set higher, say at 01.0 .  

 The probability of committing a Type II error,  , cannot be 
calculated without detailed knowledge of the alternative 
hypothesis, that is the hypothesis we accept when we reject the 
null hypothesis.  

 If for a fixed sample size, we choose to reduce   from 0.05 to 0.01 
to increase our confidence in a significant result, we will be 
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increasing the value of  . This occurs because the more stringent 
we make our conditions for rejecting the null hypothesis, the more 
likely it is that we will not reject a null hypothesis when it is false. 

 Increasing the sample size does not affect the probability of a Type 
I error, but will progressively reduce the probability of a Type II 
error as the power of the test progressively increases. 

Power of the test 

Ideally, a test of significance should reject the null hypothesis when it 
is false. Power is the probability of getting a significant result when 
the null hypothesis is false. Power is defined as 1 , where   is the 
probability of a false negative, accepting the null hypothesis when it 
is false.  

A test becomes more powerful as the data available increases, so 
power is usually presented as a curve plotted against sample size, a 
power curve. A more powerful test for a given sample size is 
sometimes called a more sensitive test or a less conservative test. 

Importance or strength of result 

The observation that the power of a test to detect a true difference 
increases with sample size has an important practical consequence. 
Minuscule differences between parameters, while of no practical 
consequence, can be eventually detected as significant by a statistical 
test, provided we have a large enough sample size. So if we have very 
large samples, a highly significant difference may be so small in 
magnitude as to be of no biological importance. 

Imagine that we are comparing male and female body depth for the 
introduced carp. Over a period of many years, data accumulates until 
we have approximately 7000 fish of each sex, and a t-test 
demonstrates that the difference in body depth of 0.1 mm between 
males and females is highly significant (p < 0.0001). What are we to 
conclude? The difference is real, but is it likely to be of any biological 
consequence to the fish? 

Hence there are two considerations in hypothesis testing. The first is 
the probability that the result occurred by chance, that is, whether or 
not the result is significant in the statistical sense (usually written as 
p < 0.05 or 0.01 or 0.005 etc). The second is the strength of the 
result, which enables us to gauge whether or not the result is of 
biological importance. We cannot uncritically accept a result that is 
highly statistically significant at the 0.001 or 0.00001 level as being 
an important finding. We must also check the magnitude of the 
difference or trend, and assess whether it is substantial enough to 
warrant further attention. 
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Planning of experiments 

The likelihood of obtaining useful results in both parameter 
estimation and hypothesis testing is greatly influenced by sample 
sizes. When estimating parameters, sample sizes need to be adequate 
to ensure that the estimates are sufficiently precise to be useful. In 
hypothesis testing, sample sizes need to be adequate to be reasonably 
certain of detecting an important difference when it exists. At the 
same time, sample sizes should not be so large that the cost of the 
study becomes excessive, nor is there much value in having weak, 
unimportant differences becoming highly significant. Planning the 
intensity of sampling is important in the design of experimental and 
observational studies. 

Optimal sample size for a t-test will be affected by: 

 The size of the smallest difference that it is important to 
detect. The smaller the difference, the larger will be the sample 
size required to detect it, all other things being constant. 

 The variability of the data. The more variable the data within 
samples, the more difficult it will be to demonstrate a given 
difference between samples against the backdrop of that 
variability. 

 The acceptable probability of detection. The more certain 
you want to be of detecting a difference of a given size, the larger 
will be the samples required to give you that greater certainty. 

 The level of significance of the test. It will take larger 
samples to be reasonably sure of detecting a given difference at the 
1% level of significance than at the 5% level of significance. 

These elements are encapsulated in the formula for the optimal 
sample size for a t-test. To be 80% sure ( 8.01  P ) of detecting a 
given difference between two means (  ) at the 5% level of 
significance ( 05.0 ), you will require a sample size of: 

     212

2

2 


Pttn 





  

where n is the required size of each sample,  is the true parametric 
standard deviation, 121  nn  degrees of freedom, P is the intended 
power of the test,  t  is the value from a two-tailed t-table with 

 degrees of freedom and level of significance   and   )1(2 t  is the 
value from a two-tailed t-table with  degrees of freedom and level of 
significance  P12 . 

You might have noticed also that n is on both sides of the equation, 
since   is a function of n. This means that the equation must be used 
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in iterative fashion, in the same way that Robinson Crusoe made his 
wheelbarrow. He fashioned a crude wheel with which he made a 
crude lathe. He used the lathe to make a better wheel, and from there 
a better lathe to make a still better wheel and so on, until he had a 
very good wheel for his wheelbarrow. In the formula above, we guess 
a value of n and use the formula to obtain a better estimate of n, 
which we again feed into the formula, and so on, until n does not 
change from iteration to subsequent iteration. 

To use this formula, you need also to make some hard decisions. 
First, you need to decide on what is the smallest difference  (  ) upon 
which you will place some importance. You must decide that 
differences smaller than that value are of little or no consequence. 
Second, you need to estimate the parametric standard deviation,  , 
and this must be estimated before you collect the data. You can use a 
ball-park figure based on experience, or you can undertake a pilot 
study to estimate   and then the desired sample size before 
expending resources on the major optimised study. You may find the 
ratio of   to   easier to estimate.  

Finally, you need to decide on the risk you are willing to take (  1P ) 
in not finding an important difference when it actually exists. There 
us no general agreement on the value of P . The value of 0.80 seems 
to have currency in the same way as 0.05 has currency for  . Some 
would argue for higher values of 0.90 and 0.95, but ultimately it 
comes down to how important to you it is to detect a true difference 
of  if it exists. What risk are you willing to take of missing it? 

Regardless of the problems of its computation, the cost savings of this 
approach can be considerable, either through minimising the risk of 
undertaking the study only to find that no difference can be 
demonstrated (when it exists) or by avoiding the expense of 
collecting more data than is required for success. 

The above analysis is sometimes called prospective power 
analysis. 

Interpretation of non-significant results 

Nothing is certain in statistics. A significant result is ambiguous—the 
result could be real, or it could be a Type I error—but the risk of an 
error is quantified. At the 5% level of significance, rejecting the null 
hypothesis carries with it a 5% chance of being incorrect in making 
that decision. 

There is also ambiguity in a non-significant result—there may well be 
no difference between samples, or the sample sizes may not be large 
enough to detect a difference that is there (you make a Type II error). 
The risk of this type of error cannot usually be quantified, unless the 
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alternative hypothesis H1 is known (see above). A non-significant 
result, therefore, is very difficult to interpret. 

Strictly speaking, you would interpret a non-significant result as 
having failed to demonstrate a difference. Occam’s razor rules in 
favour of the status quo. You cannot firmly conclude that no 
difference exists, as inadequate sample size might be the villain. 

The way out of this dilemma, should you wish to draw inference from 
a non-significant result, is a retrospective power analysis.  

In a retrospective power analysis, you ask, given your sample sizes, 
what might be the smallest difference  (  ) you could be reasonably 
confident of detecting ( 80.01  P ). Using S as an estimate of  , 
the formula for the smallest difference likely to be detected by a t-test 
with sample sizes of n, is: 

     
n

S
tt P

2

12

2ˆ
   

If ̂  is so small as to be of no consequence, then your interpretation 
of the negative result is acceptable. If, on the other hand, even a large 
difference would often go undetected with your sample sizes, you 
have nothing to report except your embarrassment at not having 
collected more data. 

Retrospective power analysis is a controversial area, and the analyses 
have not adequately been incorporated into statistical packages. 
Many power analysis algorithms give you the optimal sample size to 
be reasonably sure of detecting the difference you observed in your 
analysis, which is about as useful as teats on a bull. What you need is 
the probability of detecting the smallest important difference, given 
the current design and sample sizes. Only then can you judge 
whether a non-significant result derived from inadequate design, or 
absence of a true effect. 

Controversial also is the value chosen for the probability of detecting 
the difference if it exists. It has been argued that just as a small   
(Type I Error) is required to declare a difference to be nonzero, so too 
a small  (Type II Error) should be required to declare a difference to 
be zero. We have chosen 80.01  P  above, which is developing 
similar currency as 05.0 , the defacto standard for the Type I Error. 
Cogent arguments can be made for 0.84, 0.90 and 0.95 and 
corresponding values for  . 
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Robustness 

All tests are derived from statistical theories based on various 
assumptions. For example, the t-test is based on the assumption that 
the populations from which the samples are drawn are normally 
distributed with equal variances and that there has been randomness 
and independence in sampling. But in the end all we are concerned 
with is an objective basis for making a decision. The possibility exists 
that the results of a statistical test may be little affected by moderate 
violations of the theoretical assumptions. A statistical test is said to 
be robust with respect to one or more of its assumptions if its 
predictions are little affected by moderate violations of its 
assumptions. 

Degrees of freedom 

The concept of degrees of freedom is important in hypothesis testing, 
primarily because many of the theoretical distributions used to 
obtain a p value depend on the number of degrees of freedom. It is a 
difficult concept to grasp without a full appreciation of the 
mathematical basis of statistics. For a particular test statistic, the 
number of degrees of freedom is equal to: 

 ndf  

where n is the number of measurements making up the sample and 
  is the number of parameter estimates calculated from the sample 
and used to calculate the value of the test statistic. The standard 
deviation 

 
1

2





n

YY
S  

has n-1 degrees of freedom because there are n values from which we 
subtract 1 for the sample mean which appears in the formula.  

Essentially, ten independent values comprise ten independent pieces 
of information, because knowledge of one value provides no 
information per se on any other value. Knowledge of the sample 
mean uses up one piece of information, because if you know the 
mean and nine of the sample values, then the tenth sample value is 
uniquely determined (you have 10 equations in ten unknowns). 
Similarly, once you specify nine deviations from the sample mean, 
the tenth is uniquely determined, since the sum of deviations about 
the mean must be zero. Only nine of the ten deviations are free to 
vary, that is there are nine degrees of freedom. 
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Significance, power, strength – putting it all together 

A general approach to hypothesis testing is as follows. 

 Formulate the research question as a statistical null hypothesis. 
This is the proposition that you wish to accept or reject. It is your 
initial assumption. 

 Use statistical theory to carry that initial assumption forward to 
yield a p value. The p value is the probability of getting the 
observed data if the null hypothesis is true. Additional 
assumptions are generally necessary to move from the initial null 
hypothesis to a p value. 

 Convince yourself that the additional assumptions made in 
arriving at the p value are upheld, or take measures to ensure that 
they are upheld, such as transformation. 

If the p value suggests that our observed results are improbable 
(assuming the null hypothesis is true), then we reject the null 
hypothesis. We state that we have demonstrated a statistically 
significant result. 

If the p value suggests that our observed results are quite probable, 
even if the null hypothesis is true, then we are unable to reject the 
null hypothesis. We state that our observed difference is not 
statistically significant. 

If a result is statistically significant, there are three possible 
scenarios: 

 The populations really are different, so the outcome of the test is 
correct. The difference is large enough to be of biological or 
practical importance and so is scientifically interesting. We accept 
the result of the test and interpret the difference as an 
important finding. 

 The populations really are different, so the outcome of the test is 
correct. However, the difference is tiny, not large enough to be of 
any biological or practical importance. We accept the result of 
the test but do not proceed to interpret the difference as if it were 
important. 

 The populations are identical, so there really is no difference. By 
chance, we have obtained larger values in one sample and smaller 
values in the other. At the 95% level of significance, such a 
spurious significant result will occur in 5% of experiments where 
there really is no difference. Of course we cannot know that our 
result is spurious, and we accept the result of the test. In doing 
so, we have made a Type I error. 

If a result is not significant, then there are two possible scenarios: 
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 The populations are identical, so the outcome of the test is correct. 

 The populations really are different, but we have been unable to 
demonstrate it. Our samples are too small to yield a reasonable 
probability of detecting an important true difference.  

In practice, we are unable to draw a firm conclusion from a non-
significant result without a retrospective power analysis. A power 
analysis will yield one of two outcomes: 

 There is a reasonable probability of detecting an important 
difference if it exists, given our sample sizes. We have failed to 
detect such a difference, so we accept the negative result of 
the test. We conclude that there is no difference between the 
populations and interpret this result accordingly. In so doing, we 
run a calculable risk of making a Type II error.  

 Even a substantial difference is unlikely to be detected, given our 
sample sizes. We cannot make a decision one way or the other. 
We conclude that we have insufficient evidence to detect a 
difference, should one exist. We can place no interpretation on the 
lack of significance from the test. 

Of course, all this is contingent on the assumptions of our test being 
met, or at least not violated to an extent that would invalidate the 
outcome of the test. 
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Lesson 3: The F-test 

Comparing two variances 

Let us see how this general approach of hypothesis testing applies in 
a specific case, where we wish to know if the difference in two sample 
variances is sufficient evidence to conclude that two population 
variances differ. The F-test is appropriate for this sort of problem. 

Consider an experiment on a species of native waterfowl involving 
birds both in the wild and in captivity. We wish to determine if the 
number of eggs produced per clutch is more or less variable among 
birds held in captivity than for birds in the wild. Wild birds were 
sampled at random from within the known range of the species, and 
captive birds were selected at random from within available breeding 
colonies. Relevant data were collected with the statistics shown in 
Table 3–3. 
 

Table 3–3. 
Summary 

statistics for 
clutch size in 

captive and wild 
waterfowl. 

   Captive birds      Wild birds 
Mean  9.9  10.0 

Variance  0.4762  3.3333 

Sample Size  7  10 

The variance in clutch size differs between our samples of wild and 
captive birds, but then one would expect the variances of any two 
samples to differ, even if drawn from the same population. Our 
problem is to decide whether the observed difference in sample 
variances occurred simply through chance, or whether it reflects a 
true difference in the variability of clutch sizes between captive and 
wild birds. We must conduct an hypothesis test by drawing upon 
statistical theory, which allows us to estimate the probability of 
obtaining our observed pair of sample variances by chance alone. 

Such theory predicts that: 

If 2
1S  and 2

2S  are the variances of independent, random samples of 
sizes n1 and n2 taken from normal populations with an unknown but 
common variance 2 , then the statistic 

2
2

2
1

S

S
F   

will follow an F distribution with (n1 - 1) and (n2 - 1) degrees of 
freedom. 

Here we have assumed: 
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 Randomness: items in each sample were selected from their 
respective populations at random, that is, each entity in a 
population had an equal likelihood of selection. 

 Independence: each item in a sample was independent of the 
other items. In sampling a broader population, birds taken from a 
single flock are unlikely to be independent in any measurement, as 
they may be closely related. Measuring yields of a crop from 
adjacent plots in a field may lead to problems of dependence. 

 Normality: the populations from which the samples are drawn 
are normally distributed. 

We have also assumed that the variances in the clutch sizes for wild 
and captive birds are the same. This latter assumption is the null 
hypothesis:  

2
2

2
10 :  H  

It is the assertion that we hope either to accept or reject having 
performed the F–test. The alternative hypothesis is that the variances 
are unequal. 

2
2

2
11 :  H  

Under the null hypothesis, the ratio of sample variances will follow 
an F distribution, which has the following properties: 

 The area under the curve = 1, as for all continuous probability 
distributions. 

 It is strongly skewed to the right (Figure 3–8). 

 The F variable ranges from zero to  . 

 It has a complex formula but is uniquely defined by two 
parameters, 1 and 2, the degrees of freedom associated with each 
of the two samples. 

 The mean is approximately 1, but more exactly    31 22  nn . 
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Figure 3–8. 
 The F distribution 
for various values 

of 1 , the 
degrees of 

freedom for the 
sample with the 
larger variance, 

and 2 , the 
degrees of 

freedom for the 
sample with the 

smaller variance. 

0.8
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0.6

0.5

0.4
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F[6,28]

F[28,6]

F[1,40]

 

By convention, F is calculated by placing the larger sample variance 
over the smaller sample variance, when the alternative hypothesis is 
that the variances are unequal. 

The F ratio for our data is given by:  

0.7
4762.0

3333.3
2
2

2
1 

S

S
F  

with 9 and 6 degrees of freedom respectively. 

R uses the F distribution with 9 and 6 degrees of freedom to calculate 
the probability of obtaining an F ratio of 7.0 if the null hypothesis is 
true (Figure 3–9). This probability is low at 0.0279, certainly less 
than 0.05. In fact, we could expect variance ratios of 7.0 or greater to 
occur by chance in only 2.79% of experiments of this nature. So we 
conclude that there is a significant difference between the true 
variances in clutch size of wild and captive birds. The clutches of wild 
birds are more variable than those of captive birds. 
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Figure 3–9. 
A diagram 

showing how the F 
distribution is 

used to determine 
the probability of 

obtaining a 
sample F statistic 

of 7.0 or one 
more extreme. 

F[9,6]

P = 0.0279

7.0 

 
The rationale of the F‐test is shown diagrammatically in Figure 3–10. 

Figure 3–10. 
Rationale of the 

 F-test. 

 



Biometry  

 

University of Canberra   33 

 

We would summarise the results of the analysis as follows: 

The difference in variability in clutch size of wild and 
captive birds was significant (F = 7.0; df = 9,6; p < 0.05). 
Clutches of wild birds were more variable than those of 
captive birds of the same species. 

Now that we have established that the difference in variances is 
probably a true reflection of reality, we might ask why? The captive 
birds were almost certainly subject to less variable environmental 
conditions than wild birds. The availability of food and shelter would 
have been more constant in captivity and captive birds would have 
been isolated from predators and other potential sources of injury. 
Hence, for birds in captivity, one would expect the allocation of 
energy to reproduction to have been much more constant than for 
wild birds whose energy must be spent in responding to conditions in 
a much more variable environment. 

Lesson 4: The t-test 

Comparing two means 

A student's t-test is used to decide whether two population means 
can be considered different on the basis of their respective sample 
means. Consider an example. 

In a study of the bearded dragon, Pogona barbatus, a herpetologist 
was interested to know if the mean calorific content of eggs differed 
between first and second clutches of the season. Lizards found 
nesting were returned to the laboratory and examined with a 
laparoscope to determine whether the clutch was the first or second 
of the season, and the nest was robbed of one egg. Data on calorific 
content, in calories per egg, are shown for several clutches (Table 3–
4). 

 

Table 3–4. 
Summary 

statistics for mean 
calorific content of 

yolks of eggs of 
the lizard Pogona 

barbatus. The 
data are for first 

and second 
clutches, but are 

not paired. 

 First clutch Second clutch 
Mean 643.0 623.6 

Variance 1990.05 5532.70 

Sample Size 6 13 

   

The mean calorific content of eggs from first and second clutches 
certainly differ in the samples, by some 19.4 calories. But any two 
sample means, even for samples taken from the same population, can 
be expected to differ, perhaps by as much as 19.4 calories. Perusal of 
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the sample means per se does not permit us to make a decision. We 
need to apply an hypothesis test—the t-test—to obtain the probability 
of obtaining a difference of 19.4 calories by chance alone. Let us make 
the following assumptions: 

Randomness: items in each sample were selected from their 
respective populations at random, that is, each entity in a population 
had an equal likelihood of selection. 

Independence: each item in a sample was independent of the other 
items. 

Equality of variances: the variances of the two populations are 
equal. Of course the sample variances may differ through sampling 
error. 

Normality: the populations from which the samples are drawn are 
normally distributed, at least when the samples are small (df). 

Let us also assume the null hypothesis:  

210 :  H  

Consider the test statistic: 
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Statistical theory predicts that the observed t will follow a standard t 
distribution with a mean of zero, a standard error of about 1 and n1 + 
n2 -2 degrees of freedom. 

The characteristics of the t distribution have been described earlier 
when we dealt with confidence limits. 

The t value from our data is: 

   
5883.0

13

1

6

1
.

2136

70.553211305.199016

58.62303.643








 





t  

R uses the t distribution with 17 degrees of freedom to calculate the 
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probability of obtaining a t value of 0.5883 if the null hypothesis is 
true (Figure 3–11). This probability of 0.5641 is very high, much 
greater than 0.05. In fact, we could expect differences in magnitude 
of 19.4 calories or greater to occur by chance in 56.4% of experiments 
of this nature, if Ho is true. We have no evidence to suggest that the 
null hypothesis is false. 

Figure 3–11. 
 A diagram 

showing how the t  
distribution is 

used to determine 
the probability of 

obtaining a 
sample t value of 

0.5883. 

t

p = 0.5641  

t = 0.5883  

 

We report that we are unable to demonstrate a significant difference 
in calorific content of eggs between first and second clutches of 
Pogona barbatus (t = 0.59, df = 17, p = 0.5641). 

A diagrammatic representation of the rationale of the t-test is 
presented in Figure 3–12. 
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Figure 3–12. 
Rationale of the 

 t-test. 

 
 

Other analysis options 
Wilcoxon rank-sum test 

When at least ordinal measurement has been achieved, the Wilcoxon 
rank-sum test may be used to test whether two independent samples 
have been drawn from the same population. It is an alternative to the 
t-test, and does not have the restrictive assumptions of normality and 
homogeneity of variances, though it should be realised that the 
Wilcoxon rank-sum test is not a test of means. Instead it tests 
whether two independent samples have been drawn from identical 
populations. The test assumes randomness and independence in 
sampling. 

The test is applied by combining the two samples and then ranking 
the measurements in order of increasing magnitude. If the 
populations from which the samples are drawn are identical, we 
would expect the values of both samples to be randomly spread 



Biometry  

 

University of Canberra   37 

 

through the combined sample. However, if Population 2 has larger 
values than Population 1, we would expect a tendency for the Sample 
2 values to be better represented among the higher ranks of the 
combined sample. The Wilcoxon rank-sum test measures this 
tendency, and yields a probability of it occurring by chance alone. 

The use of the Wilcoxon rank-sum test is not restricted to non-
normal populations. It can be used in place of the t-test when the 
populations are normal, although it is not as powerful as the t-test for 
detecting a true difference between populations. The Wilcoxon rank-
sum test is typically superior to the t-test for non-normal 
populations. 

Paired t-test 

The standard t-test requires that samples are completely 
independent, that is that knowledge of one sample value provides no 
information on the value taken by a second value in either sample, 
with respect to their sample means. The paired t-test is designed to 
compare samples that are pairwise dependent. We might wish to 
compare growth rates of an aquatic plant Vallisneria sp. before and 
after administration of a substrate nutrient. A pair of growth 
measurements is taken from each plant, one measurement before, 
and one after, administration of the nutrient. The growth of some 
plants may be more rapid than for others, quite irrespective of our 
manipulations, and so the before-after measurements will depend, 
jointly, on which plant is considered. 

Alternatively, total filterable phosphorus might be measured at each 
of ten randomly selected sites in a lake, in two seasons. We might 
want to know if there are seasonal differences in the levels of total 
filterable phosphorus. If the same sites are visited in each season, this 
is a paired experiment with two measurements per site. If on the 
other hand, the sites were chosen randomly on each sampling 
occasion, the experiment would not be paired. 

With paired samples, the procedure is to calculate the difference 
between members of each pair, and then to test whether the mean of 
these differences (as opposed to the difference in means used by the 
standard t-test) is significantly different from zero. 

The paired t-test assumes that: 

 The entities selected for repeated measurement are independent 
and selected at random from a large pool of possible choices. In 
the above case, we assume that the Vallisneria plants are selected 
at random from a large population of individual plants. 

 The differences between repeated measurements are normally 
distributed, or if not, the sample size is large. 
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The Wilcoxon signed-ranks test 

The Wilcoxon signed-ranks test is a non-parametric alternative to the 
paired t-test. As with the paired t-test, it relies on calculating the 
differences between the paired values in the sample, but rather than 
calculating the mean difference, the differences are first ranked from 
smallest to largest without regard to sign. The sign of the original 
difference (+ or -) is attached to each rank, and the positive and 
negative ranks are separately summed. 

If there is no difference between our two populations, the differences 
observed between pairs would occur by chance alone. Some of the 
larger ranked differences would be positive and some negative, and 
the sum of the positive ranks should approximately equal the sum of 
the negative ranks. However, if there is a true difference between 
pairs, these two sums will be quite divergent. The Wilcoxon signed-
ranks test determines the probability of obtaining the observed 
difference in summed ranks by chance alone, and so provides a basis 
for decision. 

The Wilcoxon signed-ranks test is considered to be an excellent 
alternative to the paired t-test because it is almost as powerful in 
rejecting a false null hypothesis, when the assumptions of the t-test 
are satisfied. When the assumption of normality is violated, it is 
usually more powerful than the paired t-test. 
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Lesson 5: Application 

Standard deviation or standard error? 

Means reported in scientific papers are often followed by a + and a 
second value. It is not always clear what this second value represents. 
Some authors report means with the standard deviation, others with 
the standard error. Which is correct? 

There is no simple answer to this question, as it depends upon the 
context in which the statistics are reported. If the author is describing 
a sample, with no implication regarding the population from which 
the sample was drawn, then the mean plus or minus the standard 
deviation provides the reader with an indication of the average value 
for the sample and the spread of values about that average. The focus 
of attention is on the sample itself, not the population from which it 
was drawn. In presenting a mean and standard deviation, it is 
implied that the population is normally distributed, for otherwise the 
standard deviation provides limited information on the spread of 
values in the sample. 

If, on the other hand, the authors are reporting the mean with the 
implication that it is approximately true of the population from which 
the sample was drawn, then the mean plus or minus the standard 
error is appropriate. This provides the reader with an indication of 
precision of the mean, that is, a range within which he or she can be 
67% sure the true population mean lies. If we are simply describing 
the sample in terms of means and standard deviations, then data 
yielding 

30.4 + 0.2 mm 

are as informative as data yielding 

30.4 + 9.6 mm. 

If the above data were means and standard errors, then the first set 
would be far more informative than the second set. In the first 
instance, we can be 99% sure that the true population mean lies in 
the range 29.8–31.0 mm (mean + 3 SE). In the second instance, the 
corresponding range is 1.6–59.2 mm, and not very useful.  

When reporting means and standard errors in this way, it is assumed 
that the sampling distribution of the mean is normal. The samples 
must be large, or if they are small, the population from which the 
samples were drawn must be normally distributed. 

Some authors present the sample mean plus or minus the 95% 
confidence limits for the population mean, and others use the mean 
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plus or minus two standard errors as a large sample approximation to 
the 95% confidence limits. This last approach should be generally 
avoided. 

You should always clearly specify whether you are reporting the 
standard error, standard deviation or confidence limits with means, 
usually in the Materials and Methods section of the manuscript. 
Always report the sample size to enable the reader to convert from 
one form to the other, and the range is also useful. For example: 

30.4 + 0.2 mm (range = 27.1 — 37.1 mm, n = 74) 

Confidence limits or the T-test 

A common graphical technique for comparing two samples is to 
construct figures depicting the sample ranges, means and 95% 
confidence limits (Dice and Leraas, 1936). If the confidence limits do 
not overlap, then we conclude that the population means are 
different. If they do overlap, then we have insufficient evidence to 
support such a conclusion. Unfortunately, the use of confidence 
limits in this way for comparing two means is extraordinarily 
conservative, as the example in Table 3–5 shows. 

Note that the 95% confidence limits just meet, so our decision on 
whether the data support a difference in population means is 
borderline.  

On the other hand, applying a t-test to the data yields a sample t of -
3.014 with a probability of occurring by chance alone of only 0.0052. 
The result is highly significant, and demonstrates that the t-test is a 
far more powerful approach to demonstrating differences between 
means. 

 

Table 3–5.  
Data for two 

samples. The 95% 
confidence limits 

just overlap, 
whereas the t-test 

demonstrates a 
clear difference 

between 
population means 

(p = 0.0052). 

 Sample A Sample B 
Mean 9.74 14.0 

Standard deviation 4.00 4.00 

Standard error 1.00 1.00 

Sample size 16 16 

Range 1.0 – 15.0 4.0 – 21.0 

Confidence limits (95%) 7.61 – 11.87 11.67 – 16.13 

   

If a graphical presentation showing the statistical significance of the 
difference between means is necessary, then a graph of the 
confidence interval of the difference between means is appropriate, 
as it has similar power to the t-test. 
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Choosing a statistical test  

Students and researchers alike are often confused by the array of 
statistical tests that might be used to address a specific hypothesis. 
We need some rational basis for choosing among them. We need to 
ask: 

 Is the test appropriate for the hypothesis being tested? 

 Are the data measured at a level appropriate to the test and the 
statistics manipulated by that test? 

Are the assumptions of the test tenable? If not, is the test robust to 
the violations of the assumptions? 

 Is the test the most powerful appropriate to the problem and the 
data at hand? 

Level of measurement 

Level of measurement has a profound influence on the selection of 
appropriate descriptive statistics (Workbook 2). Since hypothesis 
tests are conducted on statistics, level of measurement is equally 
important for choosing an appropriate hypothesis test. 

 

Table 3–6 provides recommendations on the test appropriate to the 
data at hand. Not all of these tests are covered in this Workbook. 

Table 3–6. 
 Recommended 

tests for different 
levels of 

measurement. 
Only those tests 
marked with an 

asterisk*  are 
covered in this 

Workbook. 

 

 Independent Samples Dependent Samples 
Nominal 2 Test of association 

 
Fisher exact test 

McNemar test 

Ordinal Wilcoxon rank-sum test* Sign test* 

Interval and Ratio Student’s t-test * 
 
Welch (Satterthwaite’s) 
approximate  
t-test * 

Paired t-test * 
 
Wilcoxon signed-ranks test* 

Note that because data at a higher level of measurement can always 
be converted to a lower level, albeit with some loss of information, 
tests that apply at the nominal and ordinal levels of measurement can 
also be applied to data measured at the interval and ratio levels. 
Hence the Wilcoxon rank-sum test can be applied in place of the 
student's t-test and the Wilcoxon signed-ranks test may be used in 
place of the paired t-test, but in so doing the measurements or 
intermediate values must be converted to ranks. 
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Are the assumptions tenable? 

The assumptions of the t-test are quite restrictive, and the difficulty 
for the student and researcher is summed up quite nicely by Boneau 
(1960). He writes: 

Psychological [and biological] data too frequently have an 
exasperating tendency to manifest themselves in a form which 
violates one or more of the assumptions underlying the usual 
statistical tests of significance. Faced with the problem of analysing 
such data, the researcher usually attempts to transform them in 
such a way that the assumptions are tenable, or he may look 
elsewhere [among the non-parametric alternatives] for a statistical 
test. 

A further difficulty faced by a researcher proposing to do a two-
sample comparison is that there are generally insufficient data at 
hand for a rigorous test of the assumptions of the chosen test. The 
irony of this is brought home most clearly when we consider the 
assumption of normality. 

Normality 

Several tests of normality are available, such as the probability plots 
and Shapiro-Wilk's tests introduced in Module 2. The Catch-22 is 
that reasonably large samples are required to be sure of accepting the 
null hypothesis of normality, when the data are normal, but when 
you have large samples, the assumption of normality is not at issue 
because of the central limit effect. Normality is important when the 
samples are small, but when they are small, tests for deviation from 
normality are very weak. Often, decisions on whether the assumption 
of normality is tenable depend on experience with the type of data at 
hand. Alternatively, the judgment may be based on more extensive 
studies reported in the literature. 

Homogeneity of variances 

The assumption of equality of variances can be tested with the two-
tailed F-test described earlier. Many researchers routinely apply an 
F-test of variances before a t-test on means. Use of the F-test in this 
way has been criticised because it is quite sensitive to violations of 
the assumption of normality, much more sensitive than the t-test is 
to either the assumption of normality or the assumption of equality of 
variances. Applying an F-test before a t-test has been likened to 
testing the mood of the sea in a rowboat before setting sail in an 
ocean liner. There are however few alternatives to its use when there 
are two samples in total. 
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Randomness and independence 

Randomness and independence in sampling are essential if the 
samples are to be representative of the populations from which they 
are drawn. There are tests available (eg the runs test) but again, these 
are useful only if sufficient data are at hand to enable confidence in 
the decision to accept the null hypothesis of randomness or 
independence. Both are best ensured by careful experimental and 
sampling design. If these assumptions are violated, then one has little 
choice but to discard the data then redesign and repeat the 
experiment. 

How can violations be overcome? 

There are several options for responding to perceived violations of 
the assumptions of normality and homogeneity of variances. You can 
attempt to manipulate the data in various ways by screening outliers 
or by transformation so that the assumptions are met. You can trust 
that the test is robust enough to be little affected, in a practical sense, 
by the violations. You can choose alternative approximate procedures 
developed to cater for known violations of the assumptions of the 
test. Or you can seek other tests in the domain of non-parametric or 
distribution-free tests, that do not have such restrictive assumptions, 
though these non-parametric procedures may be less powerful. 

Relying upon the robustness of the t-test 

Many researchers perform t-tests routinely provided there are no 
gross and obvious violations of the assumptions, and trust that the t-
test is sufficiently robust to withstand any minor violations of the 
assumptions. Fortunately, several empirical studies have shown that 
the t-test is robust enough to withstand considerable violations of its 
theoretical assumptions (eg Lindquist, 1953; Srivastava, 1958; 
Boneau, 1960). The study of Boneau is worth reading to see how such 
an empirical study is conducted. 

These empirical studies have established the following points: 

 If the sample sizes are equal or nearly so, then the t-test is 
remarkably robust, and  

 the larger the samples, the more robust the test.  

The latter point is supported by both theory (read around the Central 
Limit Theorem) and the empirical studies. As a rule of thumb, equal 
sample sizes of 30 or more are sufficient to overcome all but gross 
deviations from normality and homogeneity of variances. If, in 
addition, the parent distributions are symmetrical, much smaller 
sample sizes are acceptable (say as low as 15). If the variances of 
those symmetrical populations are equal, then sample sizes as small 
as five will suffice. 
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 A combination of unequal sample sizes and unequal variances 
invalidates the standard student's t-test. 

If the larger sample is taken from the population with the larger 
variance, then the student's t-test will be too conservative. If the 
larger sample is taken from the population with the smaller variance, 
then the standard t-test will be too liberal. In either case, Welch 
(Satterthwaite's) approximate t-test should be used (Satterthwaite, 
1946; Steel and Torrie, 1980). 

 One-tailed tests are seriously affected by samples drawn from 
skewed populations, whether or not the sample sizes are equal. 

Despite these results, many researchers remain unmoved and choose 
to routinely apply one of the non-parametric procedures discussed 
below. The choice is yours. 

Turning to non-parametric tests 

Tests at the nominal or ordinal level of measurement, such as the 
Wilcoxon rank-sum test and the Wilcoxon signed rank test, have 
fewer assumptions than the ‘parametric’ F and t-tests. 

Any test that is appropriate at the nominal or ordinal level can be 
applied at the interval or ratio level, and because of their fewer 
assumptions, many researchers prefer to routinely apply non-
parametric tests in place of the F- and t-tests. But what are the pros 
and cons involved in making this decision? 

Probability statements obtained from most non-parametric tests are 
exact probabilities (except in the case of large samples where very 
good approximations are used), regardless of the shape of the 
distribution for the population from which the samples are drawn. 
These exact probabilities apply even for very small samples. In 
contrast, many parametric tests such as the t-test become more 
robust only as sample size increases, and if applied to very small 
samples, they are valid only if the nature of the population 
distribution is known exactly. 

So with fewer assumptions, exact probabilities and a broader range of 
data types acceptable to the non-parametric tests, why persevere with 
parametric tests at all? For many, the answer lies in a consideration 
of power.  

There is a trade-off when one decides to use a non-parametric test as 
an alternative to the t-test. Non-parametric tests such as the 
Wilcoxon rank-sum test (see Siegel and Castellan, 1988) are generally 
less powerful than their parametric counterparts. That is, non-
parametric alternatives to the t-test will be less likely to detect a true 
difference between populations than the t-test, in situations where 
the assumptions of the t-test are upheld. Thus if you play it by the 
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book, select a non-parametric test when you are unsure of the validity 
of the assumptions of the t-test, and then get a non-significant result, 
you find yourself plagued by the nagging doubt that the result might 
have been significant if a t-test could have been applied. 

The difference in power between parametric and non-parametric 
tests is sometimes over-emphasised. For example, if the Wilcoxon 
rank-sum test is applied to data that might be properly analysed by 
the more powerful t-test, its power efficiency approaches 95.5% as 
sample size increases and is close to 95% even for samples of 
moderate size. It is therefore an excellent alternative to the t-test and 
does not have the restrictive assumptions of the t-test. The power of 
the Wilcoxon signed-ranks test compares equally well with that of the 
paired t-test. 

Caveats for paired comparisons 

The paired t-test has three assumptions—first, that the entities 
selected for repeated measurement are independent; second, that 
they are selected at random from a large pool of possible choices; and 
third, that the differences between paired measurements are 
normally distributed.  

Often the paired t-test is applied without recognition of these 
constraints, as when environmental scientists ‘replicate in time’ to 
avoid the additional costs of true replication. For example, in a study 
of the effects of sewage on the abundance of various species of 
benthic macro-invertebrate, a biologist collected data on the numbers 
of the mayfly Baetis sp. caught in drift nets at various times of the 
day and night, upstream and downstream of a sewage outlet on a 
small stream. The data, after a log transformation, are shown in 
Table 3–7. 

Table 3–7. Counts 
of mayfly nymphs 

(Baetis sp.) 
caught in drift 

nets at various 
times of the day 

and night, 
upstream and 

downstream of a 
sewage outlet on 

a small stream. 

 

Time Upstream Downstream 
14:00 3.33 3.52 

16:00 3.22 3.02 

18:00 3.07 2.26 

20:00 3.31 3.22 

22:00 4.20 3.91 

Midnight 4.12 4.07 

02:00 4.18 4.18 

04:00 4.31 3.57 

06:00 3.76 3.04 

08:00 3.46 3.12 

10:00 3.16 3.04 

12:00 3.03 3.04 

As the observations are paired, one pair per time period, a paired t-
test might seem appropriate. However, the times selected for 
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repeated measurement were systematically, not randomly, chosen. 
This can present some difficulties. 

There is the possibility of a systematic trend in time in the counts of 
drifting invertebrates. This in itself is not a problem, as the 
differences between upstream and downstream members of each pair 
may still behave like random and independent measurements. If 
however there is a trend in time, and the magnitude or direction of 
the trend differs between the upstream and downstream sites, then 
the differences between sites will no longer be independent. A 
systematic component to the differences, brought about by differing 
trends through time at the upstream and downstream sites, will also 
destroy any likelihood of normality of the differences. 

Hence, the paired t-test is effective where we have "replication 
through time" only if any trend through time is the same for both 
upstream and downstream localities. The true abundance of drifting 
invertebrates at upstream and downstream localities must differ by a 
constant magnitude across the times. This is unlikely to be true in 
general for studies of this kind.  

Compensating trends through time for the upstream and 
downstream sites will severely reduce the power of the paired t-test 
for detecting an impact, to the delight of those responsible for the 
discharge. Carried to extreme, we can imagine that there is a steady 
linear increase in abundance of drifting invertebrates with time at the 
upstream site, and a reverse but compensating trend at the 
downstream site. The mean difference between upstream and 
downstream will be zero, and non-significant. Yet at any one time, 
there is typically a substantial difference between upstream and 
downstream sites, and a clear impact of the discharge. 

In summary, if we cannot consider the entities to be randomly 
selected from a large pool of possibilities (we might have two 
localities sampled at fixed times), then we must assume that any 
trend across the entities is of an identical nature. If there is any true 
difference between first and final measurements, then it must be one 
of constant magnitude only. So-called ‘replication through time’ 
should be avoided in studies of the type described above. 

Reporting the results of a test 

Having deliberated over the correct procedure to apply, and having 
performed all the calculations and interpreted the outcome of the 
tests, you would be forgiven for feeling obliged to make your labours 
apparent to the reader by including full details of the workings 
involved. You must resist this temptation. In reporting the results of 
a test, such as a t-test, in a manuscript or report, all that is required is 
a statement to the effect: 
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The difference of 1.2 g between mean weights of male and female 
hatchlings was significant (t = 2.74, d.f. = 29, p < 0.05). The male 
hatchlings were heaviest. 

The p value refers to the probability that the sample t value occurred 
by chance alone. Had the result been significant at the 1% level, then 
the statement p < 0.01 would have been used. It is customary to 
report significant results by rounding the exact probability to the next 
highest value in the set 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001 etc. 
Exact probabilities are reported when the result is not significant (ie 
p = 0.34). 

A description of the statistical procedures used should appear in the 
Materials and Methods section of the report. For example: 

Means were compared using a standard Student's t-test, unless 
population variances could not be assumed equal, in which case a 
modified procedure (Snedecor and Cochran 1980:96-98) was 
employed. Population variances were compared with an F-test. 
Means are presented with their standard errors, unless otherwise 
specified. 

Summary 

You should by now have acquired some important tools for your 
statistical arsenal. It is possible to: 

 construct confidence limits on the true population mean using 
statistics calculated from a single sample. 

 determine the probability that two samples have been drawn from 
the same population using a variety of procedures depending on 
whether the samples are independent or pairwise dependent, on 
the level of measurement chosen when collecting the data, and on 
whether various assumptions of the tests available are tenable. 

You should be aware of key concepts, such as: 

 the difference between samples and populations; statistics and 
parameters. 

 the meanings of the terms null hypothesis and alternative 
hypothesis. 

 the meaning of statistical significance and how it is distinct from 
the strength of the result. 

 the distinction between Type I and Type II errors. 

 the power of a test, how to estimate an appropriate sample size 
and when to rely on a negative result. 

 the robustness of a test. 
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It is now appropriate to put this knowledge to use via worked 
examples and exercises.  
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Lesson 6: Step-through Examples 

Example 3-1: Copper in Carp Tissue 

This is an example of a t–test applied where the population variances 
have been shown to be unequal. 

The problem 

After reports of people becoming ill on eating European carp, a 
laboratory decided to formalise procedures for routinely analysing 
metals in fish tissue. Two methods were considered suitable for the 
analysis of copper (Cu) in fish tissue — Graphite Furnace Atomic 
Absorption Spectroscopy (AAS) and Flame AAS.  

The trade-offs are that Graphite Furnace AAS has a lower through-
put rate and is therefore costly, and replicated measurements 
obtained by this technique are inherently more variable than Flame 
AAS. Graphite Furnace AAS is more sensitive however, and can 
measure lower concentrations of copper than can Flame AAS. 

With the anticipated greater variability of the Graphite Furnace 
measurements in mind, the environmental chemist chose to perform 
more measurements by this technique than by Flame AAS to balance 
precision of the estimates of the mean copper determination for the 
two techniques, regardless of cost. 

The foundation for this decision lies in an understanding that the precision of the mean, 
represented by the standard error, is directly proportional to the standard deviation and 
inversely proportional to the [root] sample size. 

n

SD
SE   

Hence, we wish to analyse the data to determine first whether the 
Graphite Furnace technique produces more variable results than the 
Flame technique, as anticipated. Second, we wish to determine 
whether the two techniques yield the same determinations. Finally, 
we need to make a recommendation on which technique to employ 
for assay of copper in carp, taking into account precision and cost. 
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The data 

The data shown in Table 3-8 are concentrations of copper in the flesh 
of carp expressed in g/l. 

Table 3-8. 
Concentrations 

of copper in the 
flesh of carp 

extracted by two 
methods of 

Atomic 
Absorption 

Spectroscopy. 

FLAME GRAPHITE FURNACE 

25 23 

24 18 

25 22 

26 18 

 17 

 25 

 19 

 16 

R expects the data in the form of pairs of values. The first is a discrete 
character variable indicating to which sample the measurement 
belongs, and the second is the measurement itself. Note that the 
sample sizes are unequal. The t.test() function in R can cope with 
this possibility. 

The data in this case are held in a disk file called CARP.DAT in the 
data folder, and look like this: 

FLAME        25 
FLAME        24 
FLAME        25 
FLAME        26 
GRAPHITE  23 
GRAPHITE  18 
GRAPHITE  22 
GRAPHITE  28 
GRAPHITE  17 
GRAPHITE  25 
GRAPHITE  19 
GRAPHITE  16 

 
The first field in the data, containing the character strings FLAME or 
GRAPHITE, is called a factor in the R manuals, but may be 
variously called a treatment, breakdown variable, dummy 
variable or indicator variable depending on which textbook you 
read. I prefer the term factor to distinguish discrete variables 
measured on the nominal scale from continuous variables. The 
second field in the data, containing the measurements of copper 
concentration, is referred to as the response variable. 
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The Analysis  

  Double click on the Tinn-R icon and launch R from within 
Tinn-R (Click in the Menu on R->Initiate/Close Rgui->Initiate 
preferred Rgui) 

A program needs to be written to read the data in to R and to perform 
the t–test. 

The function that does this for us in R is called t.test(). So lets 
check it by typing 

> ?t.test 

Try to understand the help for this function. Again the important 
sections are: Description, Usage, Arguments, Value and 
Examples. When you read the help carefully you see that there are 
two ways to specify the data for a t.test in R. First you can use two 
vectors x and y, which are then used to calculated the t.test. The other 
way is to use the formula interface, which can be convenient, 
depending on the way have the data are organised. We will try both 
ways to show how it is done. First thing we have to load the data, by 
setting the working directory and by using the read.table() 
function. 

> #set your working directory 
> setwd("d:\\bernd\\biometryworkbook\\data") 
> carp <- read.table("carp.dat", header=TRUE) 
> carp 

     method conc 
1     FLAME   25 
2     FLAME   24 
3     FLAME   25 
4     FLAME   26 
5  GRAPHITE   23 
6  GRAPHITE   18 
7  GRAPHITE   22 
8  GRAPHITE   28 
9  GRAPHITE   17 
10 GRAPHITE   25 
11 GRAPHITE   19 
12 GRAPHITE   16 

For the first way, we need to have two vectors, one that contain all 
measurements of concentration for the first method (“FLAME”) and 
one the contains the data for the second methd (“GRAPHITE”). 
There are many ways to get these numbers, here I will use simple 
indexing. 

> x <- carp$conc[carp$method==”FLAME”] 
> y <- carp$conc[carp$method==”GRAPHITE”] 
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We can check the content of x and y by typing their names into the R-
console. 

> x 

[1] 25 24 25 26 

> y 

[1] 23 18 22 28 17 25 19 16 

And now we perform the t.test. 

> t.test(x,y) 

Box 3-1 
Output of 

t.test() for 
determination of 

copper on fish 
tissue using two 

analytical 
techniques. 

        Welch Two Sample t-test 
 
data:  carp$conc by carp$method  
t = 2.5923, df = 7.988, p-value = 0.03204 
alternative hypothesis: true difference in means is not 
equal to 0  
95 percent confidence interval: 
 0.4408144 7.5591856  
sample estimates: 
   mean in group FLAME mean in group GRAPHITE  

                    25                     
21 

The output is shown in box 3.1. So what do we get here. The first line 
tells us that the Welch test has been used. The Welch test is used if 
sampling variances are not equal and this is the default option in the 
t.test() function. Check the help ?t.test and we find under Arguments, 
that var.equal=FALSE is the default. Hang on we would like to test, if 
this is assumption is correct, because otherwise we could have used 
the standard t-test for equal variances. So let us test for differences in 
variances. 

> var(x) 

[1] 0.6666667 

> var(y) 

[1] 17.71429 

So clearly they seem to be different, a formal test is the F-test (called 
var.test() in R). 

> var.test(x,y) 

       F test to compare two variances 
 
data:  x and y  
F = 0.0376, num df = 3, denom df = 7, p-value = 0.02121 
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alternative hypothesis: true ratio of variances is not 
equal to 1  
95 percent confidence interval: 
 0.006389739 0.550380458  
sample estimates: 
ratio of variances  
        0.03763441 

So the p-value is 0.021, hence we accept the alternative hypothesis 
(reject the null hypothesis) of: true ratio of variances is not equal to 1. 
(The ratio is in fact:  0.037) 

So let’s have a look at our t.test output of Box 3-1. Here the p-value is 
about 0.032, which is smaller than 0.05, therefore we reject the null 
hypothesis, that the difference between means of x and y is zero. We 
also get the actual mean of x (25) and mean of y(21). You can 
calculate them by yourself using the mean() function. In addition we 
get a confidence interval for the mean appropriate to the alternative 
hypothesis. This confidence interval does not include zero, which is 
another way to demonstrate that the difference in the mean is 
different from zero. 

Okay now let’s try the otherway of using the formula specification. 
Here it is a good idea to look at the Arguments and Example section 
of the help page to get an idea about the syntax required. Under 
Arguments we find the following statement:  

formula  a formula of the form lhs ~ rhs where lhs is a numeric 
variable giving the data values and rhs a factor with two 
levels giving the corresponding groups. 

So translated into our example we type: 

> t.test(conc, method, data=carp) 

The data= helps us to use the header names, without attaching our 
data.frame, a longer version using the $ sign would have been: 

> t.test(carp$conc, carp$method) 

Both versions give the same output as Box 3-1. 

Submit the above commands for execution. 
   

Results 

In this particular case, we have F = 0.037 with 7 and 3 degrees of 
freedom.  The probability of obtaining this result by chance alone if 
the population variances are equal (Ho true) is only 0.0212, 
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somewhat less than 0.05. We conclude that there is good evidence of 
a difference in the population variances, and cannot therefore 
perform a Student's t-test, but use the Welch (Satterthwaite's) 
approximate t-test, which is the default (var.equal=FALSE). We 
have t = 2.5923 with 8 degrees of freedom. The probability of 
obtaining this value by chance alone if the population means are 
equal (Ho true) is only 0.0320, less than 0.05. We conclude that there 
is a true difference in the mean concentration of the chemical as 
determined by the two methods.  
The results section of the report would include: 

Graphite Furnace AAS systematically under-estimates by an average 
of 4 g/l the concentration of copper when compared to Flame AAS (t 
= 2.59, d.f. = 8, p < 0.05).  Graphite Furnace AAS yields a larger 
variance in the determinations and as such is less precise than Flame 
AAS (F = 26.57; d.f. = 7,3; p <  0.05).  

Discussion 

As anticipated from prior knowledge of the two techniques, the 
results from the Graphic Furnace AAS yielded more variable 
determinations than those of the Flame AAS. Given that the Graphic 
Furnace technique costs approximately $6.00 per determination 
compared with $0.50 for Flame AAS, and that for concentrations of 
16 to 26 g/l sensitivity is not an issue, the cheaper, more precise 
Flame AAS is to be preferred. The observation that the two 
techniques differed in their mean estimates is of some concern, and 
the procedures followed in performing both analyses should be 
examined for potential sources of error. 



Biometry  

 

University of Canberra   55 

 

Example 3-2: Lowland Grassland Remnants 

This is an example of a Wilcoxon Rank-Sum test applied where the 
assumptions of the standard t-test are thought to be untenable. 

The problem 

In a study of lowland grassland remnants in the Australian Capital 
Territory, a subsidiary objective was to ascertain if the cover of 
dominant grass species were different at two grassland sites, Tharwa 
Road and Dudley Street, Canberra. The dominant grass species under 
consideration were Danthonia spp., Stipa bigeniculata and 
Bothriocloa macra. Combined percentage cover was estimated for 
each of 20 quadrats in the two grassland remnants. Because the data 
were in the form of percentages, often close to the extreme 
percentage of 100%, Sarah Sharp suspected that the data would not 
be normally distributed, and chose to do a non-parametric analysis. 
Turning to a non-parametric alternative to the t-test is common 
practice when faced with suspected failure of the assumptions of 
normality and homogeneity of variances. The R manuals provide for 
this option in the form of the Wilcoxon Rank-Sum Test. This test 
has few assumptions, namely that sampling is random and the 
measurements are independent.  
If the test is used to compare central tendencies only (equality of 
medians), then there is the additional assumption that the two 
distributions have the same shape.  

The data 

Sarah's data are shown in Table 3-9 and have been converted to a 
form suitable for R and stored in file GRASS.DAT as follows. 

Table 3-9. 
Percentage 

cover, combined 
for the three 

dominant grass 
species, in 20 

quadrats in each 
of two grassland 

remnants. 

SITE 1 
Tharwa Road Grassland 

SITE 2 
Dudley Street Grassland 

 40  61  55  55  55 
 50  60  36  40  40 
 30  55  25  20  45 
 20  46  35  54 100 

 95  74  95  90  32 
 64    .  95  75 100 
 75  80  60  85  90 
 85  80  60  57  60  

 

The analysis 

  Double click on the Tinn-R icon and launch R from within 
Tinn-R (Click in the Menu on R->Initiate/Close Rgui->Initiate 
preferred Rgui) 

 



Biometry  

 

 56 University of Canberra 

 

The following R code is required to read in the data  

> setwd("d:\\bernd\\biometryworkbook\\data") 
> grass <- read.table("grass.dat", header=TRUE) 

We check if the data are read in correctly. 

> summary(grass) 

     site      cover.perc 
 DUDLEY:20   55     : 4   
 THARWA:20   60     : 4   
             40     : 3   
             95     : 3   
             100    : 2   
             20     : 2   
             (Other):22   

So there are two variables named site and cover.perc, which is 
fine, but it seems to be strange that the summary of cover.perc is 
not showing the mean, min, max etc. So let us further check our data. 

> str(grass) 

'data.frame':   40 obs. of  2 variables: 
 $ site      : Factor w/ 2 levels "DUDLEY","THARWA": 2 2 2 2 2 2 
2 2 2 2 ... 
 $ cover.perc: Factor w/ 24 levels ".","100","20",..: 9 17 14 14 
14 12 16 8 9 9 ... 

So grass is a data.frame, but both columns are factors, which is odd. 
The reason for this can be seen if you have a closer look at the levels 
of cover.perc. The first is “.”, which should be the sign for missing 
data. As we did not specify this in the read.table() function R used the 
default symbol for missing data, which is NA and not “.”. Hence we 
have to read in our data again, this time with the option 
na.strings=”.”. 

> grass <- read.table("grass.dat", header=TRUE, 
na.strings=".") 
> summary(grass) 

     site      cover.perc     
 DUDLEY:20   Min.   : 20.00   
 THARWA:20   1st Qu.: 42.50   
             Median : 60.00   
             Mean   : 60.87   
             3rd Qu.: 80.00   
             Max.   :100.00   
             NA's   :  1.00   

> str(grass) 

'data.frame':   40 obs. of  2 variables: 
 $ site      : Factor w/ 2 levels "DUDLEY","THARWA": 2 2 2 
2 2 2 2 2 2 2 ... 
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 $ cover.perc: int  40 61 55 55 55 50 60 36 40 40 ... 

Now, this looks better, so we can start to do the Wilcoxon test 
(wilcox.test()). A quick look in at the help pages (?wilcox.test) 
reveals that there is a formula version just like in the previous 
example.  

> wilcox.test(cover.perc ~ site, data=grass) 

Submit the above commands for execution. 

The summary() function yields summary statistics such as means and 
medians useful for summarising the results. The output of 
wilcox.test() should be as given in Box 3-2. 

Box 3-2 
Output of 

wilcox.test used 
to perform a 

Wilcoxon Rank – 
Sums Test to 

compare percent 
cover at two 

grassland sites. 

data:  cover.perc by site  
W = 340, p-value = 2.578e-05 
alternative hypothesis: true location shift is not equal to 0  
 
 

The part of the printout of greatest interest is the W score and the 
probability value associated with W (Prob >> |W|). This is the 
probability of obtaining the observed difference in summed ranks by 
chance alone. If it is less than 0.05, then there is a significant 
difference between the two samples. In this case, there is a highly 
significant difference between the two methods (W = 340, p < 
0.0001). 

Results 

Sarah summarised her results as follows: 

Combined percentage cover of the three dominant native grass 
species, ranged from 20 to 100 for the Tharwa Road grassland 
remnant (mean 46.1 , n = 20) compared to a range of 32 to 100 for 
the Dudley Street grassland remnant (mean 76.4, n = 19). The greater 
percentage cover at Dudley Street compared to that of Tharwa Road 
was statistically significant (Wilcoxon Rank-Sum Test, W= 340, p < 
0.0001). 
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Example 3-3: Weight loss during incubation 

This is an example of a paired t-test. 

The problem 

It has long been known that soft-shelled reptile eggs absorb water 
from the surrounding substratum during incubation, whereas the 
opposite is true of hard-shelled birds’ eggs. Australian freshwater 
tortoises lay hard-shelled eggs in a chamber excavated in soil 
adjacent to the water in which the adults live. An experiment was 
designed to determine whether the hard-shelled eggs of an Australian 
species of tortoise gained or lost weight during incubation.  

The data 

One egg was chosen at random from each of ten clutches, then 
weighed and placed on moist vermiculite in constant environment 
chambers. The water potential of the substratum, the humidity and 
the temperature were all monitored and held constant throughout 
the experiment. After 14 days, each egg was again weighed. The data 
are shown in Table 3-10 and can be found in the file eggs.dat in your 
data folder on your hard disc. 

Table 3-10. 
Change in 

weight of eggs 
(grams) of the 

Australian 
tortoise 

Chelodina 
longicollis during 
incubation under 

controlled but 
moist conditions. 

EGG # INITIAL WEIGHT FINAL WEIGHT DIFFERENCE

1  
2  
3  
4  
5  
6  
7  
8  
9  
10 

6.21 
6.12 
6.61 
6.26 
6.44 
6.35 
6.44 
6.52 
6.12 
6.57 

6.39 
6.30 
6.48 
6.48 
6.39 
6.57 
6.71 
6.75 
6.39 
6.66 

+0.18 
+0.18 
-0.13 
+0.22 
-0.05 
+0.22 
+0.27 
+0.23 
+0.27 
+0.09 

To test the hypothesis of a change in egg weight over time we need to 
perform a paired t-test, because the measurements on each egg are 
repeated. Although the eggs have been selected at random, we do not 
have true replication within samples. Observations are matched as 
pairs.  

The analysis 

  Double click on the Tinn-R icon and launch R from within 
Tinn-R (Click in the Menu on R->Initiate/Close Rgui->Initiate 
preferred Rgui) 
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The t.test() function has been told that that it has to perform a 
paired t-test. If you check the help pages (?t.test) you should be 
able to find the option to tell the t.test() function that it has to 
calculate a paired version of the test.  

> setwd("d:\\bernd\\biometryworkbook\\data") 
> eggs <- read.table("eggs.dat", header=TRUE, 
na.strings=".") 

Check the data.frame egg if it contains the correct data (e.g. 
summary(), dim(), str(), names()). This time the  data are organised 
in two vectors with headings initials and final, therefore we 
need to use the vector version of the t.test() function. 

I hope you had a look at the help pages of t.test() and found the 
following argument paired.As a default paired is set to FALSE, 
hence to have a paired version of the t.test we set it to TRUE.  

> t.test(eggs$initial, eggs$final, paired=TRUE) 

The output is shown in Box 3-3. 

Box 3-3. Output 
of t.test() with 

argument 
paired=TRUE for 

egg weights of 
Chelodina 

expansa 

        Paired t-test 
 
data:  eggs$initial and eggs$final  
t = -3.4178, df = 9, p-value = 0.007654 
alternative hypothesis: true difference in means is not 
equal to 0  
95 percent confidence interval: 
 -0.24595718 -0.05004282  
sample estimates: 
mean of the differences  
                 -0.148 

Results 

The results can be summarised as follows. 

There was a significant difference between initial and final egg 
weights for eggs of Chelodina longicollis incubated under constant 
moist conditions for 14 days (Paired T = -3.42, d.f. = 9, p < 0.01). Egg 
weight increased on average by 0.148 + 0.043 g (range -0.13 to 0.27 
g). It appears that hard-shelled freshwater turtle eggs, like the soft-
shelled eggs of turtles of the northern hemisphere, take up water 
during incubation. 

Just for interest, consider what result we would have obtained if the 
data had been analysed inappropriately as a Students t-test (Box 3-
4). 

> t.test(eggs$initial, eggs$final, paired=FALSE) 
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Box 3-4. Output 
of t.test() with 

argument 
paired=FALSE 
comparing the 
initial and final 

weights of turtle 
eggs, without 
due regard to 

repeated 
measurement 

        Welch Two Sample t-test 
 
data:  eggs$initial and eggs$final  
t = -1.975, df = 17.561, p-value = 0.0642 
alternative hypothesis: true difference in means is not 
equal to 0  
95 percent confidence interval: 
 -0.305719199  0.009719199  
sample estimates: 
mean of x mean of y  
    6.364     6.512 

In contrast to the results of the paired t–test, the Student’s test for 
independent samples reveals no significant difference in the average 
weights of eggs before and after 14 days of incubation (p = 0.0642). 
The problem for the Student’s t-test in this case is that high 
variability in the initial weights of eggs is obscuring any differences 
there might be between initial and final weights, taken pairwise. This 
problem could be overcome by selecting eggs all with the same initial 
weight for our experiments, but this would be extremely wasteful of 
data (many eggs would be rejected), or perhaps impossible. Instead, 
with the paired t-test, variability in initial weights is eliminated by 
considering only weight change. 

To visualize our finding you could plot a boxplot of the two vectors 
(Box 3-6). 

> boxplot(eggs, ylab="weigth of  eggs [g]") 

Box 3-6. Boxplot 
comparing initial 
and final weight 

of turtle eggs 
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Example 3-4: Habitat complexity scores 

This is an example of a Wilcoxon Signed-Ranks test. 

The problem 

The Student's t-test has a non-parametric alternative in the Wilcoxon 
Rank-Sum test. Similarly, the paired t-test can be replaced by the 
Wilcoxon Signed-Ranks test. In the following example, two scientists 
independently applied Newsome's and Catling's (1979) habitat 
complexity scoring to the same 17 quadrats to assess the scoring 
method's reproducibility.  Newsome's and Catling's score is a 
composite value calculated from ratings for five measures — soil 
moisture content and percentage cover by tree canopy, shrub canopy, 
ground herbage and rocks/logs. Each of these attributes of a site are 
scored on an ordinal scale, and the resulting scores are summed for 
an overall habitat complexity score. 

In this analysis, we wish to determine if two trained scientists can 
reproduce each other’s scoring. 

The data and analysis 

A Wilcoxon Signed-Ranks test is used to determine if the two 
scientists obtained significantly different scores, as follows: 

  Double click on the Tinn-R icon and launch R from within 
Tinn-R (Click in the Menu on R->Initiate/Close Rgui->Initiate 
preferred Rgui) 

The data are stored in the file newcat.dat. Let us read in the data and 
check how they are organised. 

> setwd("d:\\bernd\\biometryworkbook\\data") 
> newcat <- read.table("newcat.dat", header=TRUE) 
> newcat 

   site john ralph 
1     A    5     3 
2     B    4     3 
3     C    6     4 
4     D    6     5 
5     E    3     3 
6     F    2     3 
7     G    5     2 
8     H    3     3 
9     I    1     2 
10    J    4     3 
11    K    5     2 
12    L    4     2 
13    M    4     5 
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14    N    7     2 
15    O    5     5 
16    P    5     3 
17    Q    5     1 

So this time there are three columns , the first is the site name and 
then we have the scores of John and Ralph. We need to use these 
scores and specify that we want to have the wilcox.test using a paired 
set of data. You may have guessed this is the same as in the example 
before, and that there is an argument paired we need to set to TRUE. 

> wilcox.test(newcat$john, newcat$ralph, paired=TRUE) 

The relevant component of the rather volumous output is contained 
in the block with heading "Tests for Location" (Box 3-5). The results 
of the Wilcoxon Signed-Rank test are on the line labelled "Signed 
Rank". 

Box 3-5. Ouput 
from PROC 

UNIVARIATE, 
used to perform 

a Wilcoxon Sign-
Rank test on 

habitat scores 

        Wilcoxon signed rank test with continuity 
correction 
 
data:  newcat$john and newcat$ralph  
V = 94.5, p-value = 0.008407 
alternative hypothesis: true location shift is not equal to 
0 

Results 

"There was a significant difference in the habitat complexity scores 
recorded by the two scientists for the same 17 quadrats (V = 94.5, p < 
0.01). Clearly greater effort must be made to ensure comparability 
between the two before any habitat surveys get underway". 

Source 

Newsome, A, & Catling, P. (1979). Habitat preferences of mammals 
inhabiting heathlands of warm temperate coastal, montane and 
alpine regions of south-eastern Australia  
pp. 310–316, in Ecosystems of the World,Volume 9A, Specht, R. (ed), 
Amsterdam: Elsevier Publishing. 
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Exercises 

Exercise 3-1: Macro-invertebrate Abundance 

A limnologist was interested to know if densities of the benthic 
invertebrate Jappa sp. (Ephemeroptera: Leptophlebiidae) differed 
between two lakes, Allom and Deepwater. The two lakes were in the 
same geographical area, but differed in physico-chemical 
characteristics and the amount and texture of particulate matter that 
overlaid the littoral substratum.  Lake Allom is a perched dune lake, 
that is, it resides well above the regional water table. Material of 
terrestrial origin accumulates in perched lakes, driving production. 
Deepwater Lake is a window lake, that is, it is formed when the lie of 
the land drops below the regional water table. Production tends to be 
lower in window lakes. 

Ten replicate collections were taken from random locations in each 
lake using a column sampler, and the animals were returned alive to 
the field station for sorting and identification.  Unfortunately, five 
collections from Lake Deepwater were destroyed in transit.  The data 
are raw counts of Jappa sp. and can be found in the lakes.dat file in 
your data folder. 

 

Table 3-11. 
Counts of benthic 

mayfly larvae in 
two dune lakes on 

Fraser Island, 
Queensland. 

Missing values 
are shown as 

periods 

Lake Allom Deepwater Lake 
4 . 
5 2 

36 . 
15 . 
14 4 
8 . 

14 12 
28 5 
19 7 
15 . 

We wish to know it the "standing crop" of Jappa sp. differs for the 
two lakes.  You will need to appreciate that counts of benthic 
invertebrates are notoriously skewed to the right, because the 
animals tend to aggregate in the environment.  Hence some form of 
transformation will be required to normalize the data prior to 
application of a parametric test.  Select an appropriate 
transformation and apply it before performing the test. 

(a)  Perform a T-Test to compare the standing crop of mayfly larvae in the 
two lakes, and provide a brief report using the proforma supplied. 

(b)  Briefly discuss the assumptions you have made and why they are likely 
or not likely to be true. 
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(c)  Name the transformation you have chosen and briefly justify your 
choice. 

(d)  State clearly the null hypothesis you are testing. 

(e)  Present the results of the analysis, in the form of an abbreviated 
printout. 

(f)  Summarise your statistical conclusions in a concisely worded paragraph, 
suitable for inclusion in the Results section of a publication or report. 

(g)  Discuss your results in a biological context, as you might when writing 
the Discussion section of a publication or report. 

Exercise 3-2: Elephant population counts 

Management of elephant populations, and particularly those in 
enclosed areas, relies on estimations of population sizes and growth 
rates (Whitehouse et al., 2001). Techniques used to count elephants 
include aerial total counts and sample surveys, direct counts from the 
ground using line-transect sampling and stratification, faecal counts, 
and intensive ground-based surveys providing total counts by means 
of registration of individually known animals. Evaluation of 
alternative techniques is crucial in order to assess the accuracy of 
results obtained. 

Whitehouse et al. (2001) used two methods to count the elephant 
(Loxodonta africana africana) population within the Addo Elephant 
National Park over a 20 year period. Helicopter surveys provided 
aerial total counts and intensive ground-based studies provided 
registration counts, based on individual recognition of the elephants.  

Addo Elephant National Park is 60 km from Port Elizabeth in the 
Eastern Cape Province of South Africa. The elephants are restricted 
to a fenced area of 103 km2, although the entire park currently covers 
approximately 700 km2. 

Intensive population monitoring from the ground should, 
intrinsically, provide a more reliable method of estimating total 
population size than aerial counts, particularly in small, confined 
populations. The researchers were interested in comparing the two 
methods to determine whether the less labour intensive aerial survey 
method produced adequate results. 

Table 3-12. 
Ground and aerial 

counts of the 
African Elephant 

Loxodonta 
Africana from 

Addo Elephant 
National Park. 

YEAR AERIAL COUNT REGISTRATION 
COUNT 

   
May-78 92 96 
Jun-79 102 102 
May-81 108 108 
May-83 116 116 
Apr-85 120 131 
May-86 118 138 
May-87 121 145 
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Oct-87 135 148 
Apr-88 140 152 
Apr-89 151 163 
Dec-89 162 170 
May-90 161 174 
Jun-91 173 185 
Jun-92 175 195 
Jun-93 183 200 
Oct-93 194 202 
Mar-94 195 208 
Apr-94 193 210 
Mar-95 212 220 
May-95 208 221 
Oct-95 209 229 
Mar-96 218 236 

 Read the data from the file “elephant.dat” in your data file folder. 

(a)  Analyse the data using a Wilcoxon Signed-Ranks Test to determine if 
there is a significant difference between the two methods of population 
determination. Show the relevant section of the output of your analysis 
here. 

(b)  What do you conclude from the comparison? Provide a concise 
summary of the results, such as might appear in the results section of a 
manuscript or report.  Remember to distinguish between the magnitude 
of the result and its statistical significance. 

(c)  What are the management implications of your results? 

Exercise 3-3: Mercury levels in Bonnethead Sharks 

Florida’s commercial and recreational shark landings represent a 
significant portion of the total U.S. Atlantic shark landings.  Shark 
landings have increased significantly during the past decade, because 
human consumption of shark meat has become increasingly 
acceptable, and especially in Asian markets where the demand for 
shark fins is very high -- as are the prices paid for them. 

Mercury is a toxic metallic element that bioaccumulates in fish tissue, 
and can therefore represent a major dietary source of mercury in 
humans.  Elevated mercury concentrations in fish have been a 
growing concern among resource management agencies.  Apex 
predators, particularly long-lived species such as billfishes, tunas, 
mackerels, and sharks are reported to accumulate relatively high 
levels of mercury. 

The Florida Department of Health and Rehabilitative Services 
released a Health Advisory Note in 1991 urging limited consumption 
of all shark species from Florida waters.  However, the Health 
Advisory Note was derived from a limited number of samples taken 
from retail sources and from studies that lacked important 
information regarding species, capture location, sex, and size of the 
sharks examined.   
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A more detailed study to rectify these shortcomings was later 
undertaken by Adams and McMichael (1999) who published a 
detailed analysis on total mercury on four sharks species -- bull shark 
(Carcharhinus leucas); blacktip shark (C. limbatus); Atlantic 
sharpnose shark (Rhizoprionodon terraenovae); and the bonnethead 
shark (Sphyrna tiburo).  All are from the east-central coast of 
Florida.  The data analysed by Adams and McMichael (1999) were 
augmented as new specimens were collected and tested for mercury 

The juvenile/adult bonnethead shark data are provided in the file 
BONNY.DAT.  The first variable in the data file is (sex), taking on the 
values M for male and F for female. The second variable contains the 
precaudal lengths (PCL) in mm and the third variable contains 
mercury concentrations (HG) in parts-per-million. 

We are asked to reanalyse their bonnethead data set, with the 
additional specimens, to answer several questions. 

(a)  Read the dataset (BONNY.DAT) into a data.frame suitable for analysis.  
Undertake an analysis to determine the proportion of sharks with 
mercury concentrations greater than 0.5 ppm Hg.  

(b)  Construct histograms for precaudal length and mercury separately for 
each sex. What do you conclude? If you were to proceed with a t-test, 
without transformation, what would be your justification?  

(c)  Analyse the data using appropriate two-sample tests to determine if 
there are significant differences in precaudal length (PCL) or total 
mercury level (Hg) between the sexes. Show the relevant sections of the 
output of your analyses here.  

(d) What do you conclude from the comparisons? Provide a concise 
summary of the results, such as might appear in the results section of a 
manuscript or report.  Remember to distinguish between the magnitude 
of the result and its statistical significance. 

(e) What are the management implications of these results? Feel free to 
conduct further analyses. 

Exercise 3-4: Organochlorine and Parasite Load in Gulls 

Pesticide resides from organochlorines are thought to suppress 
immune function in birds and mammals, but there have been few 
assessments of this idea in the field.  If establishment and survival of 
parasites is limited by host immunity, we would expect increased 
parasite intensities in animals with high organochlorine burdens.   

Kajetl Sagerup addressed this question in a study of Glaucous Gulls 
(Larus hyperboreus) on Bear Island in the western Barents Sea off 
the coast of Norway.  Forty gulls of similar size and age were collected 
by trapping or shooting and a liver sample was taken from each bird 
for analysis of nine selected polychlorinated biphenyls and four 
chlorinated pesticides.  The digestive tracts were removed for counts 
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of 12 species of intestinal parasite. The birds were weighed using a 
spring balance.  

Before the analysis could proceed, Kajetl needed to determine if there 
were significant differences in any of the variables with respect to the 
birds' sexes or method of capture. Kahetl was keen to pool the data 
across capture method and sex in order to increase sample sizes and 
the power of subsequent analyses. 

The data file gull.dat contains, in this order, the sex of the bird (male 
or female), its weight in grams, the method of capture (trapped 
or shot) and concentrations of the following organochlorines (ng/g 
wet weight): 

 

Chlorinated pesticides:  hexachloriobenzene, oxychlrodane, 

p,p'DDT, Mirex 

Polychlorinated biphenyls:  Total concentration of PCBs 28, 52,99, 

101,118, 138, 153, 170, and 180. 

Remaining columns of the data file are: 

Number of tapeworms  (Cestoda) 

Number of roundworms  (Nematoda) 

Number of flukes  (Digenea) 

Number of thorny-headed worms  (Acanthocephala) 

Counts for each species:  Cryptocotyle lingua, Anomotaenia 
micracantha, Alcataenia dominicana, 
Paricterotaenia porosa, Microsomacanthus 
ductilis, Aploparaksis larina, Tetrabothrius 
erostris, Anisakis simplex, Contracaecum 
osculatum, Paracuaria adunca, Stegophorus 
stellaepolaris, Corynosoma strumosum (12 
species). 

Use appropriate analyses to determine: 

  if male and female gulls of similar age differed significantly in load of 
any of the organochlorine pollutants, or in parasite load for any of the 
major parasite categories. 

  if gulls caught by shooting versus trapping differed significantly body 
weight or in load of any of the organochlorine pollutants, or in parasite 
load for any of the major parasite categories. 
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You will need to pay particular attention to the assumptions of 
normality and heterogeneity of variances in selecting an appropriate 
test as the sample sizes are moderate and unequal. 

(a)  Construct histograms and probability plots for each of the 
organochloride variables, each of the summary variables on parasite 
loads (cestode, nematode, etc) and for the variable weight. If they are 
not normally distributed, try a range of transformations. Give a 
summary of the outcome of this analysis below, and if transformation is 
not successful on one or more of them, explain why.  

(b) Analyse the data using appropriate two-sample tests to determine if 
there are significant differences between the two methods of capture or 
the two sexes as per the objectives outlined above. Treat the tests as 
independent. Show the relevant sections of the output of your analyses 
here. 

(c) What do you conclude from the comparisons? Provide a concise 
summary of the results, such as might appear in the results section of a 
manuscript or report.  Remember to distinguish between the magnitude 
of the result and its statistical significance. 

(d) What advice would you give Kajetl on pooling the data for capture 
methods or for sex prior to more advanced analysis? 
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Exercise 3-5: Does supplemental feeding deter sap-hungry 
bears? 

When black bears emerge from their winter dens, they forage 
ravenously to replenish their depleted body fat reserves.   Bears 
forage then on the new sapwood growth which they harvest by 
clawing or biting away the outer bark to access the underlying 
sapwood (xylem and phloem).  Damage is concentrated in 15-25 year 
old stands of managed conifer trees. Stand damage within the 
affected stands may be extensive because a single bear may peel bark 
from 50-70 trees a day.  Peeling results in partial or complete girdling 
of the tree, causing death or reduced growth.  Stand damage 
generally declines as summer foods, such as berries, become 
available. 

Stephen Partridge from Washington State University studied whether 
it was possible to meet the needs of the bears in the spring by 
providing alternative food sources for hungry bears. They set out 
feeders that dispensed pelleted food ad libitum for the duration of 
bear activity in spring until natural foods were available in summer.   
The feeders were established in a timber stand owned by a 
commercial timer company and control areas were on adjacent lands 
of a state natural resources agency, in similar habitat and vegetation 
types.  Bears were live-trapped, anesthetized, and weighed.  Body 
condition was determined by techniques of bioelectrical impedance 
analysis and isotopic water dilution.  Bears were recaptured later and 
remeasured so that gains or losses in mass or fat could be 
determined. 

 

Table 3-13. Body 
mass and 

condition for 
Black Bears with 
and without the 

benefits of 
supplementary 

feeding. 

Sex Age TRT 
Mass 

Change(g/d) 
Fat Change 

(g/d) 
     

Male Sub Control -23.08 . 
Female 2 Control -28.26 -17.71 
Female 4 Control -1.85 -1.56 
Female 4 Control -78.05 -51.66 
Female Adult Control 190.63 86.37 

Male 2 Treatment 145.45 16.65 
Male 1 Treatment 197.83 29.32 
Male Sub Treatment 14.58 3.95 
Male (1-2) Treatment 127.27 . 
Male 4 Treatment 153.52 30.18 

Female 3 Treatment 86.76 20.38 
Female 2 Treatment 90.91 12.18 
Female 2 Treatment 129.79 29.26 
Female 14 Treatment 395.24 142.61 
Female 11 Treatment 358.21 114.03 
Female 11 Treatment 224.19 48.42 
Female (10-14) Treatment -76.19 -49.77 
Female 9 Treatment 108.57 54.08 
Female Adult Treatment 111.11 24.81 
Female Adult Treatment 226.32 108.84 
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You are asked to analyse the data to determine whether there were 
differences in mass change (g/day) or fat change (g/day) for bears 
from the control and treatment areas.  

(a)  Analyse the data using appropriate two-sample tests to determine if 
there are significant differences in mass gain/loss and fat gain/loss 
between the control and treatment two feeding regimes. Show the 
relevant sections of the output of your analyses here. Pay attention to 
the assumptions of your tests. 

(b)  What do you conclude from the comparisons? Provide a concise 
summary of the results, such as might appear in the results section of a 
manuscript or report.  Remember to distinguish between the magnitude 
of the result and its statistical significance. 

(c)  What do you conclude from the analysis. Is it worthwhile proceeding to 
gather data on impact on the conifer forest directly? Do you have any 
reservations about combining the data across sex or size classes in this 
analysis? 

Exercise 3-6: Should whale surveys be stratified by habitat 
type? 

Sperm whales (Physeter macrocephalus) and beaked whales 
(Mesoplodon spp. and Ziphius cavirostris) are deep-diving cetaceans 
that frequent shelf-edge and Gulf Stream waters of the northeast 
coast of the United States of America.  Observers with binoculars can 
scan the surrounding waters to sight whales as their ship passes 
along a prescribed course at a set speed.    

Gordon Waring from New Mexico State University and his colleagues 
summarised the number of whale sightings per km of survey during 
seven summer shipboard surveys (1990, 1991, 1993, and 1995-1998). 
They then used GIS to determine habitat use based on bathymetric 
and oceanographic features.   

The beaked whales were concentrated at the colder shelf edge, 
whereas sperm whales were associated with warmer off-shelf water.  
Sperm whales and beaked whales do not associate closely (insofar as 
they are not found in mixed social groups), so the data can be 
analysed separately for each type of whale. 

Gordon hypothesised that features of underwater bathymetry, such 
as the presence of underwater canyons, might influence relative 
sighting rates.   

The data are found in the file WHALE.DAT and comprise variables 
giving the trip identity, the month of observation, the number of 
beaked whales sighed per km in canyon habitat and in non-canyon 
habitat, followed by similar data for sperm whales. 
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(a)  Construct histograms and probability plots for the sighting data near 
canyon and non-canyon habitat for sperm whales and for beaked 
whales. What would you anticipate as an outcome of a comparison of 
canyon and non-canyon counts for each species?  

(b)  Analyse the data using appropriate two-sample test to determine if 
there are significant differences between the two habitat types (for each 
type of whale). Treat the tests for each whale species group as separate 
and independent. Show the relevant sections of the output of your 
analyses here. 

(c)  What do you conclude from the comparisons? Provide a concise 
summary of the results, such as might appear in the results section of a 
manuscript or report.  Remember to distinguish between the magnitude 
of the result and its statistical significance. 

(d)  Discuss what the outcome of the analysis means for future surveys of 
whales.  
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Exercise 3-7: PCBs and Kestrel Reproductive Behaviour 

Polychlorinated biphenyls (PCBs) bio-accumulate and biomagnify in 
the higher trophic levels of the food chain.  Carnivores such as birds 
of prey (raptors) are thus potentially susceptible to PCB residues. As 
reproductive behaviours are under hormonal control, and PCBs are 
potential endocrine disruptors, the alteration of breeding behaviour 
or timing may be one mechanism responsible for reproductive failure 
by raptors.  Documented examples of such aberrant behavior 
includes egg-destroying behavior, decreases in nest defense and nest 
attentiveness, and modifications of courtship behavior.  

Sheri Fisher and her colleagues from the Avian Science and 
Conservation Centre at McGill University studied courtship 
behaviour of male and female American kestrels (Falco sparverius) 
after clinical exposure to PCBs.  Captive male and female kestrels 
were randomly assigned to a PCB-exposed group (25 birds of each 
sex) or control group (25 birds of each sex). Care was taken to ensure 
that the diets of the contol and treatment birds followed a common 
standard protocol, apart from the addition of PCBs to the diets of the 
treatment birds. The treatement birds were fed dead day-old 
cockerels that had previously been injected with an aliquot of 100 l 
of PCB mixture dissolved in safflower oil (4.85 mg PCB/g of oil). 
Control birds were fed cockerels that had been injected with safflower 
oil only. After a month on their prescribed diets, the kestrels were 
paired.  All birds were experienced breeders, and none were related. 

Birds were introduced and allowed to settle in for two days before 
formal observation.  Pairs of birds were chosen randomly and 
observed in random order. Observation were repeated on a two day 
cycle.  Each observation period was for 10 minutes and the number of 
behaviours performed by each kestrel per period was recorded.  

The data reside in the file KESTREL.DAT and comprise of a 
breakdown variable with the values PCB and CONTROL, the pen in 
which the animals were kept, the repeat in the cycle of observation, 
and three response variables. The first response variable is the 
number of sexual displays, the second response variable is the 
number of flight behaviours and the third response variable is the 
number of  inactive behaviours (sleeping, resting). The response 
variables are expressed in number of behaviours per minute. 

(a)  Construct histograms and probability plots for each of the behavioural 
variables. If they are not normally distributed, try a range of 
transformations. Give a summary of the outcome of this analysis below, 
and if transformation is not successful on one or more of them, explain 
why.  

(b) Analyse the data using appropriate two-sample tests to determine if 
there are significant differences between the treatment and control 
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groups as per the objectives outlined above. Treat the tests as 
independent of each other. Show the relevant sections of the output of 
your analyses here. 

(c) What do you conclude from the comparisons? Provide a concise 
summary of the results, such as might appear in the results section of a 
manuscript or report.  Remember to distinguish between the magnitude 
of the result and its statistical significance. 

(d) What do you see as the major outcomes of this study? 
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Exercise 3-8: Effect of coal ash on oral deformities of 
tadpoles 

Many studies in toxicology focus on identifying lethal limits of a 
particular compound or group of compounds in severely stressed 
habitats.  There is no doubt that mortality of organisms can indicate 
that a habitat is severely polluted.  However one cannot assume that 
a moderately polluted habitat that still hosts an apparently viable 
populations is necessarily benign.   Organisms may be impacted in a 
sublethal manner if pollutants result in changes to physiology, 
morphology, or behavior.  If such alterations impact an organism’s 
growth or reproduction, then non-lethal levels of pollution might 
have long-term effects at a population level, by way of effects on the 
energetics of individuals. 

Amphibians are increasingly viewed as bioindicators of 
environmental stress, since there is widespread concern about 
population declines of frogs at a global scale.  A significant concern in 
all regards is the widespread source of pollutants.  We will consider 
an example involving the combustion of coal for generation of 
electricity, which produces fly ash and bottom ash, enriched in trace 
elements.  Ash is disposed of by burial in landfills or more commonly 
by pumping the slurried waste into open-water settling basins.  Frogs 
from a surrounding wetland often colonise a settling basin, despite 
the presence of potentially toxic compounds.   

The presence and abundance of tadpoles or recently metamorphosed 
juveniles indicates that conditions within settling basins are not 
severe enough to result in widespread  mortality for developing 
larvae.  However, it is unknown if tadpoles in a basin or wetland 
experience sublethal effects that could ultimately influence growth, 
metamorphosis and subsequently reproduction.  Rowe et al. (1996) 
investigated the oral deformities that occurred in bullfrog tadpoles 
(Rana catesbeiana) in ash basins.  A working hypothesis was that 
oral deformities could feasibly inhibit the ability of tadpoles to feed 
upon periphyton (algal scum) and thereby impact their growth. 

Tadpoles have multiple rows of teeth (which appear as comblike 
structures) and feed by scraping off and ingesting algae.  Rowe et al. 
(1996) used a dissecting microscope to count the number of teeth on 
the two rows nearest the mouth (anterior row and posterior row) of 
100 tadpoles.  Fifty tadpoles were collected from an Ash Basin (ASH) 
and fifty were from a control pond Off-Site (OS).    

The data reside in the file tadpole.dat, and comprise four columns. 
The first two columns are counts of teeth in the anterior and 
posterior tooth rows, respectively, for Ash Basin. The third and 
fourth columns are counts of teeth in the anterior and posterior tooth 
rows, respectively, for the control pond. 
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Analyse data for the anterior and posterior rows separately. Based on 
the number of teeth in the anterior row or the posterior row, are 
tadpoles different at the two sites?   

(a)  Read the dataset (tadpole.dat) into a R data.frame  in a form suitable for 
analysis.  Calculate summary statistics for each variable broken down 
on location of collection. What is the likely outcome of the analysis, 
based on your perusal of means and standard errors? 

(b) Analyse the data using appropriate two-sample tests to determine if 
there are significant differences in mass gain/loss and fat gain/loss 
between the control and treatment two feeding regimes. Show the 
relevant sections of the output of your analyses here. Pay attention to 
the assumptions of your tests. 

(c) What do you conclude from the comparison? Provide a concise summary 
of the results, such as might appear in the results section of a 
manuscript or report.  Remember to distinguish between the magnitude 
of the result and its statistical significance. 

(d) What are the management implications of these results? 
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