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Lesson 1: Key Concepts in ANOVA 

Overview 

Analysis of variance, or ANOVA for short, is fundamental for much of 
the application of statistics in biology. In its simplest form, it 
provides an extension of the t-test, enabling the simultaneous 
comparison of two or more means. In more complex designs it 
enables us to consider the effects of two or more factors 
simultaneously without disregarding the possible interaction between 
them. 

Analysis of variance is more than just a technique. It provides insight 
into the nature of variation of natural events. It represents a major 
conceptual advance which, once understood, will guide you in the 
way you plan and execute much of your research. Analysis of variance 
is an indispensable conceptual and practical tool for the modern 
biologist. 

In its simplest form, the analysis is used to understand the effects of a 
single-factor, acting alone. We might, for example, wish to discover if 
‘Method of Determination’ has an effect on the concentration of 
copper detected in fish tissue. The methods available to us include 
flame atomic absorption spectroscopy, graphite furnace atomic 
absorption spectroscopy, anodic stripping voltametry and inductive 
coupled plasma mass spectroscopy (Table 4–1). 

Table 4–1. 
Comparison of 

four methods for 
measuring levels 
of copper in fish 

tissue. 

Flame AAS Graphite 
furnace AAS 

Anodic stripping 
voltametry 

Inductive coupled 
plasma mass spec 

25 23 25 18 

24 18 25 26 

25 22 20 22 

26 28 18 28 

 17 23 17 

 25 19 16 

 19 26  

 16   

Analysis of variance provides a basis for deciding between whether 
there is good evidence of a true difference between methods, or 
whether the differences we observe between methods arose by chance 
alone. This is a basic similarity shared with all hypothesis tests. 

In the context of ANOVA, ‘Method of Determination’ is the Factor, 
with four discrete factor classes, and copper concentration is the 
response variable. 
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Single-factor analysis of variance, or one-way ANOVA as it is 
sometimes called, can be considered in a practical sense to be an 
extension of the t-test. Had there been only two methods involved in 
the above comparison, a t-test would have been appropriate. Indeed, 
such an analysis was undertaken in Module 3. The t-test is used to 
test hypotheses regarding the equality of two population means, 
whereas the single-factor ANOVA tests hypotheses regarding two or 
more population means. 

Two models of single-factor ANOVA are recognised—the fixed 
model and the random model. In the fixed model, the objective of 
the analysis is not only to determine whether the factor under 
consideration has an overall effect, but which factor classes differ 
significantly from which others. The factor classes are chosen 
specifically and are therefore under the full control of the 
experimenter. In the case above, we might be interested both in 
whether the method of determination has an overall effect on the 
levels of copper detected and may wish to know which method gave 
the highest determination. The methods are fixed in the sense that if 
the study were to be repeated, exactly the same methods would be 
chosen again. Because we are interested in the performance of the 
four specifically chosen methods of analysis in the example above, 
the model is fixed. 

A significant result in the fixed model single-factor ANOVA indicates 
significant variation among the means over and above that expected 
to occur by chance alone, but it does not provide information on 
which factor classes differ from which others. A significant result in 
the ANOVA must be followed by a set of comparisons to determine 
where the differences lie. The appropriate procedures to follow-up a 
significant result in a fixed model include testing the significance of 
differences between pairs of means using one of several multiple 
comparison procedures. R provides a wide range of options for 
undertaking multiple comparisons following a significant result in a 
fixed ANOVA. 

In the random model, the factor classes are selected at random from 
a substantial population of possible choices. Variation among the 
observed means is due both to sampling error in the selection of 
factor classes and to variation among measurements within factor 
classes. The factor is not considered fixed because if the experiment 
or study were to be repeated, there would be no reason to expect that 
the same specific factor classes would be chosen again. In a random 
model, one is not interested in comparing specific means, only in 
whether the factor under consideration has had a differential effect. 
The appropriate follow-up procedure in the random model is to 
estimate the added variance component due to the effect of the 
factor. The example given above would be a random model if we had 
chosen the four methods listed in Table 4–1 at random from a large 
pool of possible choices. Had this been the case, we would not have 
been interested in specific comparisons among methods, only in 
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whether choice of method added significantly to variation in the 
determinations of copper concentration. 

Examples of fixed and random designs in single-factor ANOVA are 
given as worked examples later. 

Rationale 

Analysis of variance arose from the study of replicated samples, that 
is, from the study of samples drawn from the same or identical 
populations. Consider by way of example, a case where an 
experiment is designed to investigate the effect of cropping by macro-
invertebrates on algal standing crop. Seven transects were 
established parallel to the banks of a small stream, in what appeared 
to be homogeneous riffle environment. Five paving bricks were 
placed along each transect and left for two months to accumulate a 
cover of algal growth. At the end of two months, they were removed 
from the stream and the accumulated algae was scraped from them, 
dried and weighed (Table 4–2). 

This design has the factor TRANSECT with seven factor classes 
corresponding to the seven transects. Each transect comprises a 
sample of five replicated paving bricks and corresponding biomass 
measurements (the response variable). The transects themselves are 
laid in a homogeneous environment. The samples each of five pavers 
can therefore be considered to represent identical populations, and 
we should not expect significant differences among transects. Bear 
this in mind for the discussion that follows. 
 

Table 4–2. 
Algal biomass 
(mg/m2) from 
paving bricks 

laid along 
transects in 

shallow stream 
riffle. 

Transect 
1 2 3 4 5 6 7 

22.4 10.3 21.9 36.4 19.6 15.7 20.2 

18.7 9.5 16.8 21.9 19.5 24.0 18.5 

29.2 25.6 16.0 24.7 21.4 23.2 33.0 

23.2 24.0 18.8 21.2 28.8 16.8 19.9 

22.9 21.0 27.9 23.9 28.3 17.7 21.6 

 

Statistics from these data reveal an ambiguous pattern (Table 4–3, 
Figure 4–1). Clearly the means vary from transect to transect, but 
then replicated means taken from the same population would be 
expected to vary by chance alone, through sampling error. 

 

 



Biometry  

 

 8 University of Canberra 

 

Table 4–3. 
Mean and 

variance in algal 
biomass (mg/m2) 

collected from 
paving bricks.  

 Transect 
 1 2 3 4 5 6 7 

Mean  23.3 18.1 20.3 25.7 23.5 19.5 22.6 

Variance  

 

14.24 

 

58.57 

 

23.34 

 

38.35 

 

21.69 

 

14.73 

 

34.75 

 

 

 

Figure 4–1. 
Variation in algal 
biomass (mg/m2) 

collected from 
paving bricks 

laid along 
transects in 

shallow stream 
riffle. Means are 
shown as larger 

dots. 

 

The central problem addressed by ANOVA is: 

Do the observed differences among sample means provide evidence 
of true differences among the populations from which the samples 
were drawn, or did the observed differences arise by chance alone? 

The basis for a decision on this comes from examination of variances: 

 the variances among measurements within samples (ie the 
transects) and 

 the variance of the sample means. 

It is one of the ironies of the analysis that much time is spent 
considering variances in order to test a hypothesis on means. 

If each sample of five pavers can be considered to have been drawn 
from the same or identical populations, they must have the same 
parametric mean and variance. Consider now how we might estimate 
the common population variance in biomass within transects, that is 

2 . 

The obvious approach is to calculate the variance separately for each 
transect, 
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2

2

1








n

YY

YVAR

n

 

for n = 5 pavers. 

These are shown in Table 4–3. However, no single such estimate will 
give us the best estimate of the common population variance, 2 , 
because each is based on only five values. Instead, a better estimate 
of the common population variance is obtained by averaging the a = 7 
sample variances. 

 
 

 








a

n

n

YY

a
YVAR

1

1

2

 

   
 

)1(

2








na

YY
a n

 

   
238.29   

This estimate of the common population variance, calculated as the 
average within sample variance, is called mean square within. It is 
an estimate of the common population variance that is calculated 
solely from variation among measurements within samples  
(ie YY  ), in this case, within transects. 

A second method for estimating the common population variance 
involves using information on variation among the seven replicated 
sample means. Statisticians have established a relationship between 
the variation exhibited by replicated sample means and the variation 
exhibited by measurements within samples. We have: 

 
nY

2
2    

This equation is most familiar when expressed in terms of standard 
deviations rather than variances. It is simply a restatement of the 
equation that equates the standard error as the standard deviation 
over the square root of the sample size n. 

This equation makes intuitive sense. The variance of the means will 
depend inversely on the sample size: 

 2

Y
  is inversely proportional to n 
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because the larger the samples, the closer will each of the sample 
means be to the true parametric mean and the lower will be the 
variance among the sample means. 

Also, the variance of the means will be directly proportional to the 
within sample variance: 

 2

Y
 is directly proportional to 2  

because the more variable the measurements themselves, the less 
representative each sample mean will be of the true parametric mean, 
for a given sample size. 

So according to the equation 

 
nY

2
2    

the greater the variance within samples, the greater will be the 
variance among the means and the greater the sample size, the 
smaller will be the variance among the means. 

This equation can be rearranged to yield 

 22.  
Y

n  

which provides us with a second method of estimating the common 
population variance, this time based on observed variation among 
replicated population means. 

   2. YVARn  

Taking the variance of the means of Table 4–3 yields 6.99 and 
multiplying by the sample size (x 5) yields an estimate of the common 
population variance of 34.97. This estimate, because it is calculated 
from variation among the sample means, is called mean square 
among. 

Substituting the formula for  YVAR  to provide a formula in the same 
form as that for MSwithin yields: 

 

 
1

.

2







a

YY

nMS

a

among
 

which can be rewritten 
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2

2

1








a

YY

MS

a n

among  

since the sum of the squared deviations of class means from the 
grand mean is constant for all n. 

So now we have two independent estimates of the common 
population variance. One, called MSwithin, is calculated as the average 
within sample variance and is independent of information on 
variation among sample means. The other, called MSamong, is 
calculated from the observed variation among sample means, and is 
independent of information on the variability of measurements 
within samples. Both estimate the parameter 2 . 

  YVARnMSamong .  

  

 
2

2

1








a

YY
a n

 

  YVARMSwithin   

  

 
2

2

)1(








na

YY
a n

 

We could test to see if these two estimates of the common population 
variance differ significantly by performing an F-test: 

 19.1
38.29

97.34


within
MS

among
MS

F  

MSamong is a variance estimate based on a=7 values (the seven sample 
means) and so has a-1=6 degrees of freedom. MSwithin is the average 
of a=7 variances, each with degrees of freedom, and so has a(n-1)=28 
degrees of freedom. For reasons that will become apparent later, the 
F-test in ANOVA is a one-tailed test. 

From tables: 

 F0.05(1)[6,28] = 2.45 

and the two estimates of the common population variance are not 
significantly different. This should come as no surprise because, for 
replicated transects, MSamong and MSwithin independently estimate the 
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same parameter, the common population variance 2 . If you are 
unable to follow the argument at this point, refer back to hypothesis 
testing and the F-test in Module 3. 

Consider now what happens when we apply a differential treatment 
to the transects. While MSamong and MSwithin are independent 
estimates of the common population variance, they differ in one 
important property. If we introduce a factor that alters the mean algal 
biomass of some of the transects but not others, while maintaining 
the spread of biomass measures about the mean for each transect, 
then MSamong will be inflated by the differential treatment while 
MSwithin will remain unbiased. This can be best visualised by 
considering Figure 4–2. 

Table 4–4. 
Mean and 

variance in algal 
biomass (mg/m2) 

collected from 
paving bricks 

laid along 
transects in 

shallow stream 
riffle. Means for 
transects 1, 2 & 
3 are inflated by 
application of an 
insecticide (+ 15 

mg/m2). 

 Transect 
 1 2 3 4 5 6 7 

Mean  38.3 32.1 35.3 25.7 23.5 19.5 22.6 

Variance  14.24 58.57 23.34 38.35 21.69 14.73 34.75 

        

 

Figure 4–2. 
Variation in algal 
biomass (mg/m2) 

collected from 
paving bricks 

laid along 
transects in 

shallow stream 
riffle. Means are 
shown as dots. 

Means for 
transects 1, 2 & 
3 are inflated by 
application of an 

insecticide. 

 

Table 4–4 and Figure 4–2 show the situation where a differential 
factor is applied to the transects. Algae reproduce and grow on each 
paver only to be consumed by a variety of invertebrate grazers. The 
biomass present at any one time reflects a balance between these two 
processes. Paving tiles in transects 1, 2 and 3 had the residual 
insecticide Pyrethrum applied to reduce grazing pressure upon them. 
The obvious effect of this was to increase the standing crop of algal 
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biomass on the treated tiles compared with the untreated tiles, by 15 
mg/m2 in each case. In terms of the calculations presented above, the 
effect of the differential application of insecticide was to increase the 
variability among the sample means. Provided this effect was 
additive, the relative position of the transect means would be altered, 
but the spread of biomass measurements about those means would 
remain the same. 

Hence MSamong becomes an inflated, biased estimate of the common 
population variance, because of the differential effect of the 
insecticide, and MSwithin remains an unbiased estimate of the 
common population variance. This bias can be tested using the F-
test. 

Because the variance among the means is inflated by the differential 
effect of the factor applied, we have: 

   22
AY

YVAR    

 
where 2

Y
  is the variance among means expected by chance alone and 

2
A  is the added variance component due to the effect of the factor 

applied differentially to the various transects. For MSamong we have: 

 
  22 ... AYamong nnYVARnMS  

 

  
22 . An   

As MSwithin continues to estimate 2  without bias 

 
2

22 ,


 A

within

among n

MS

MS
F


  

 

The null hypothesis is  

 222
0 .:   AnH  

or in other words 

 0: 2
0 AH   

The alternative hypothesis is 

 222
1 .:   AnH  

or in other words 
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 0: 2
1 AH   

since a variance component cannot be negative. Hence, the F-test of 
ANOVA is a one-tailed test. 

Under the null hypothesis, 02 A  and so MSamong and MSwithin both 

estimate the common population variance 2 . The F ratio would be 
around 1, subject only to sampling error. If the added variance 
component 2

A  is non-zero, then the F ratio will, on average, be 
greater than 1 by more than would be expected by chance alone, and 
the result will, on average, be significant. 

If the factor has no effect then, barring a Type I error, the results of 
the ANOVA will support the null hypothesis. If the factor has an 
effect then, barring a Type II error, the result of the ANOVA will be 
significant. 

For the data at hand (Table 4–4), we have: 

   19.250.  YVARnMSamong  

  38.29 YVARMSwithin  as before. 

82.8
38.29

19.259


within

among

MS

MS
F

 

When compared to the tabulated F of 2.45 (see page 4-11), the result 
is highly significant. In fact, the probability of getting an F ratio of 
16.96, or one more extreme by chance alone, is less than 0.0001. We 
conclude that there is an effect of the differential application of 
pyrethrum on algal biomass. 

Hence, by comparing two estimates of the common population 
variance, one biased by the effect of the factor under consideration 
and the other remaining unbiased whether or not the factor has an 
effect, we are able to decide whether or not the differential treatment 
had an effect of the means. We come to a decision on the equality of 
the sample means based on a comparison of variances. 

An intuitive view 

The above interpretation of F in ANOVA as the ratio of two 
independent estimates of the common population variance may be 
satisfying for those of us with a sound education in statistical theory, 
but for the rest of us, it is a difficult concept to retain in plain 
language thinking. 

Recall that the observed variance of the sample means is given by 
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1

2







a

YY

YVAR

a

 

which can readily be calculated from the set of a sample means. This 
is how variable the means actually are. 

But given the average variation within samples, MSwithin, we would 
expect the means to vary by 

 
n

MSwithin  

If we compare the observed with the expected in the form of an F 
ratio 

 
   

within

among

withinwithin MS

MS

MS

YVARn

nMS

YVAR
F 

.
 

which is the same F ratio that we use in the ANOVA. 

Hence, the F in ANOVA can be viewed as follows. 

F in single-factor ANOVA provides a comparison of how variable the 
sample means are with how variable they are expected to be, given 
observed variability within samples. 

If the sample means are significantly more variable than expected by 
chance alone, we say that there is a significant difference among the 
means, or that the factor under consideration has a significant 
influence on the means. 

Some Common Terms 

At this point, it is worth reviewing the terms used so far and 
introducing some new terms. 

In single-factor analysis of variance, two measurements are 
abstracted from each entity under consideration, whether the entities 
be points in a stream, rats in an experiment, paving bricks in a 
stream or water alloquots. One measurement is of a discrete variable 
or factor and the other is a continuous variate called the response 
variable. The factor takes on a set of discrete values called factor 
classes. The initial objective of ANOVA is to decide whether the 
factor has an effect on the response variable. Examples of factors, 
factor classes and response variables are given in Table 4–5. 
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Table 4–5. 
Examples of the 

sort of data 
required for 

single-factor 
ANOVA. The 

factor is the 
variable whose 
effect is under 

scrutiny, the 
factor classes 

are the discrete 
values taken on 

by that factor, 
the entities are 

the objects 
measured, both 
with respect to 
the factor and 
the response 

variable, and the 
response 

variable is the 
variable that is 
affected by the 

level of the 
factor. 

Factor Factor classes Entities Response variable 

Waterbody Grayson Pond, 
Beaver Lake, Rock 
River 

Water samples Strontium  lg  

Sex Male, Female Feral Pigs Grain intake (kg) 

Site A-E Water Samples Macro-invertebrate 
counts 

Laboratory LAB01-25 Biological 
samples 

Chlorophyll a 

Species E. aurifrons, E. 
albifrons, E. tricolor 

Birds Duration of territorial 
chase 

Method Interpolated mapping, 
minimum convex 
polygon, Dirichlet 
tessellation 

Badgers Home range size 

Topographic 
Position 

Hilltop, Valley, Sth 
Slope, Nth Slope 

Soil sample Phosphorus 

 

The ANOVA Table 

It is customary to present the results of an ANOVA in the form of an 
ANOVA Table (Table 4–6). Only four items in this table should be 
familiar at this point — MSamong, MSwithin, F and the probability under 
Ho. 

Table 4–6. 
Summary of the 

analysis of 
variance used to 

compare algal 
biomass (mg/m2) 

collected from 
paving bricks 

laid along 
transects in a 

shallow stream 
riffle. Means for 
three transects 
are inflated by 

application of an 
insecticide. 

Source Degrees of 
freedom

Sums of 
squares

Mean 
square

F value Prob  
under H0

Among 
transects 

6 1555.11 259.19 8.82 P<0.0001 

Within  
transects 

28 822.58 29.38   

Total 34 2377.69    

 

The sums of squares and degrees of freedom are components of the 
mean squares. If we consider the general form of a variance: 
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2

2







n

YY

SYVAR

n
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It can be seen to comprise two components. The numerator is the 
sum of the squared deviations of the Y values from their mean, that is 
the sum of squares. The denominator is called the number of 
degrees of freedom, representing the number of independent 
deviations upon which the sums of squares is based.  

There are several ways of gaining an appreciation of why it is n-1 
degrees of freedom and not n degrees of freedom, a difficult concept 
to grasp without a full appreciation of the mathematical basis of 
statistics. Essentially, ten independent values comprise ten 
independent pieces of information, because knowledge of one value 
provides no information per se on any other value. Knowledge of the 
sample mean uses up one piece of information, because if you know 
the mean and nine of the sample values, then the tenth sample value 
is uniquely determined (you have 10 equations in ten unknowns). 
Similarly, once you specify nine deviations from the sample mean, 
the tenth is uniquely determined, since the sum of deviations about 
the mean must be zero. Only nine of the ten deviations are free to 
vary — there are nine degrees of freedom. 

Now consider the equations for MSamong and MSwithin 
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From these we can define: 

   
a n

among YYSS
2

 

with (a - 1) degrees of freedom, and 

   
a n

within YYSS
2

 

with a(n - 1) degrees of freedom. 

The associated degrees of freedom make intuitive sense because 
MSamong is a variance based on a means, hence (a-1) degrees of 
freedom, whereas MSwithin is a variance calculated as an average of a 
sample variances each with (n - 1) degrees of freedom. 
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Partitioning the sums of squares 

The statistical model developed above considers the values taken by 
individual measurements of the response variable to be the sum of 
various effects: 

 ijiij eY    

where Yij is the jth value in the ith sample, i  is the grand mean for the 

combined data, i is a deviation of class mean  from the grand mean 

and ije  represents the deviations of each measurement from its class 

mean. This equation is referred to as the ANOVA model. In plain 
English, it states that the value taken by each measurement of the 
response variable is composed of the grand mean of the population 
(centred), a deviation of its class mean from the grand mean, and its 
own deviation from its class mean. 

We can rearrange this equation to yield: 

    iijiijiij YeY    

which states that the deviations of the individual measurements from 
the overall mean comprise the sum of their deviations from their 
class mean and the deviations of the class mean from the overall 
mean. When we represent the parameters of this equation by their 
sample estimates, we have algebraic identity: 

      YYYYYY ijij   

 
It is simple to prove, though it is not done here, that the same is true 
of the sums of squares. 

 
       

a n a na n

YYYYYY
222

 

 withinamongtotal SSSSSS   

and for the corresponding degrees of freedom 

 )1(11  naaan  

Note that the SStotal is calculated by pooling the data from all samples 
and calculating the squared deviations of the individual sample 
values from the overall grand mean. There are a times n values in all, 
and therefore (an - 1) degrees of freedom. 
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The above equality is what is referred to as a partition of the sums 
of squares. 

When dealing with the sums of squares, it is sensible to talk of 
partitioning the total sums of squares into two components, one 
representing variation of the individual Y values about their own 
mean, and one representing variation of the sample means about the 
grand mean. This is shown diagrammatically in Figure 4–3. 

 

Figure 4–3. A 
diagrammatic 

representation 
of the partition 

of sums of 
squares in 

single-factor 
ANOVA. 
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Partitioning the mean squares is not possible, since  
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 withinamongtotal MSMSMS   

The variance obtained by pooling all the data cannot be decomposed 
neatly into MSamong and MSwithin. It is not sensible to talk of 
partitioning the mean squares.  

Because of their special additive properties, the sums of squares are 
included in the ANOVA table with the mean squares. It is also 
traditional to include the degrees of freedom for each (Table 4-6). 

Where have we come? 

In this lesson, we have covered the basics of single factor ANOVA. It 
is a very important lesson, because the understanding it conveys is 
essential for you to apply ANOVA with the flexibility you need to 
address the very great range of applications of the technique.  
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You should appreciate 

 That the single factor ANOVA is an extension of the T-test, in that 
it enables the simultaneous comparison of two or more means. 

That there is a simple relationship between the variation within 
samples and the expected variation among sample means, in the 
absence of any treatment effect, namely 

 
nY

2
2    

 and that this relationship forms the basis of the analysis. 

 That ANOVA can be understood from the point of view of two 
estimates of the population variance common to all samples 
(under the null hypothesis), one biased by any effect of the 
treatment and one unbiased. 

 That alternatively, ANOVA can be understood from the point of 
view of comparing observed variation among the means with that 
expected, given the observed level of within sample variation. 

 The terminology commonly used in ANOVA, and in particular, the 
factor, with several discrete factor levels, that influence the 
response variable. 

 That the Mean Square is just another name for variance. 

 That a Mean Square can be decomposed into two elements, the 
numerator Sums of Squares and the denominator degrees of 
freedom.  

 That unlike the mean squares, the sums of square and the degrees 
of freedom are additive, so it makes sense to talk of carving up the 
cake (partitioning the sums of squares) into components 
attributable to within and among sample variation. 

 That there is a formal basis for reporting the results of an ANOVA, 
called an ANOVA Table. 

If little of this makes sense, you will need to review the above theory, 
or seek alternative explanations in a text of your choice. It is essential 
that you understand the above concepts before moving on. 



Biometry  

 

University of Canberra   21 

 

Lesson 2: Multiple Comparison Tests 

Where to from here? 

In the study of algal growth on submerged pavers subjected to 
differential application of insecticide, the analysis of variance, 
summarised succinctly in the ANOVA table (Table 4–6), 
demonstrates a significant difference among the means (F = 16.96; df 
= 6,28; p < 0.0005).  

What the ANOVA results do not tell us is which of the means differ 
from which others. This is critical information, because a range of 
possibilities exists. All means may differ significantly from all others, 
only one mean may stand out significantly from all the rest, or one of 
a range of possibilities in between may apply. Clearly, we must carry 
the analysis further. 

A first guess at how to tackle this problem would be to apply a series 
of Student's t-tests to the set of means taken two at a time. This is 
inappropriate for several reasons. First, each t-test would use only a 
fraction of the available data, being based on only two variances at a 
time. The power of such an approach would be greatly reduced.  

Second, applying a series of t-tests in a single connected analysis 
results in compounding of errors. Whenever a test is applied at the  = 
0.05 level of significance, there is a 5% probability that a significant 
result will emerge when in fact there is no real difference between 
means (ie a Type I error). If there are seven means to compare, then 
21 comparisons will be required. The probability of at least one of 
these comparisons being significant when there is no real difference 
among the means is not 0.05 but closer to: 

 1 – (1 – 0.05)21 = 0.66 

The majority of statistical practitioners find this unacceptable, and 
prefer procedures whereby the probability of obtaining any Type I 
error among the totality of pairwise comparisons is 0.05. 

What we need is a test that: 

 uses all the data as a basis for comparisons, and 

 adjusts the critical value for significance such that there is a 
probability of 0.05 of obtaining any Type I error at all among the 
pool of related pairwise comparisons. 

The probability of obtaining any Type I error at all in a related set of 
comparisons is called the experimentwise error rate, horrid 
jargon, but difficult to avoid. A wide range of possible tests that meet 
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these requirements have been developed, and are classed under the 
broad heading of multiple comparison tests. 

Multiple comparison tests 

One of the simplest multiple comparison tests to understand is 
Tukey's Honestly Significant Difference for equal sample sizes, 
generalised to the Tukey-Kramer Method for unequal sample 
sizes. It begins by taking the formula for t of the student's t-test 
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and replacing 2
1S  and 2

2S  with MSwithin. After all, MSwithin is the best 
available estimate of the population variance common to all samples. 
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Instead of having 2(n - 1) degrees of freedom, this t test based on 
MSwithin has a(n - 1) degrees of freedom, and in that sense is more 
powerful (since the critical value of t declines toward 1.96 as the 
number of degrees of freedom increases). 

The next step is to replace the standard critical values of t with more 
appropriate values, to compensate for the compounding of errors 
that occurs when multiple related comparisons are performed. The 
Tukey-Kramer procedure assumes that the investigator intends to 
perform exhaustive pairwise comparisons between all means used in 
the ANOVA. Tables with appropriate adjustment of the critical values 
are available in the form of the Studentised Range, written  )1(, naaQ  

(see Table 18 of Sokal and Rohlf, 1994). These tables give the critical 
values for the difference between two of a means. The tables are 
based on a rearrangement of the above formula, noting that n and 
MSwithin are constant for all comparisons. The test will be significant 
if: 
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that is, if 
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 MSR  

MSR is the minimum significant range between two means. Thus, a 
table of differences between means is constructed and the differences 
are compared with the MSR. The MSR is calculated from MSwithin, the 
sample size n, and the tabulated value of the studentised range 

 )1(, naaQ . 

The adjustment of the critical value for significance in multiple 
comparison tests has important implications. In order to achieve an 
experimentwise error rate of 0.05, the level of significance of each 
individual comparison is necessarily much lower than 0.05. If there 
are many means in the ANOVA, the actual error for individual 
comparisons between means may be a tenth, a hundredth or even a 
thousandth of the experimentwise error. Multiple comparison 
procedures are typically conservative, compared with the 
conventional pairwise t-tests. 

There is a plethora of multiple comparison procedures available, 
differing from the Tukey-Kramer Method, and from each other, in: 

 the level of adjustment necessary to compensate for the number of 
comparisons possible under the experimental design, and 

 the approach taken to make those adjustments. 

Some options are described below. For a more detailed treatment of 
the subject of multiple comparison tests, refer to Keppel (1973) and 
Day and Quinn (1989). 

Unplanned comparisons 

Unplanned comparisons are a subset of possible comparisons chosen 
on the basis of information obtained from examination of the results 
of the ANOVA. In many cases, unplanned comparisons are 
exhaustive, comprising comparisons of all possible combinations of 
the available means. In this sense, unplanned comparisons are 
exploratory, looking for the most plausible explanation for the overall 
significant result obtained in the ANOVA. Of the techniques available 
for unplanned multiple comparisons, the Tukey-Kramer Method is 
recommended. 
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Tukey-Kramer Method 

The Tukey-Kramer Method is suitable for exhaustive comparisons 
among means where it is assumed that the pool of possible 
comparisons includes only those between the means taken a pair at a 
time. This technique has fared extremely well in Monte Carlo 
simulations (Dunnett 1980a,b; Day and Quinn, 1989), and has been 
shown to control the experiment-wide error rate to the desired level 
(Hayter, 1984). The rationale for the test has been described above. 

Bonferroni and Sidak Methods 

The Bonferroni method depends upon the observation that if we set 
the significance level for each of k comparisons at 

 
kk

05.0



 

then the probability of obtaining one or more Type I errors across all 
k comparisons (the experimentwise error rate) will be less than 0.05. 
Hence, by setting the level of significance of tests between a means 
taken a pair at a time at 

   21

05.0




aak


 

we can be sure that the experimentwise error rate is less than 0.05. 

The Sidak method depends upon the observation that if we set the 
significance level for each of k comparisons at 

     kk 11 05.01111    
 
then the probability of obtaining one or more Type I errors across all 
k comparisons (the experimentwise error) will be less than 0.05. 
Hence, by setting the level of significance of tests between a means 
taken a pair at a time at 

     )1(2)1(2 05.01111   aaaa  

we can be sure that the experimentwise error rate is less than 0.05. 

Of the two procedures, Sidak's is less conservative than Bonferroni's 
and is therefore preferred. 

The advantage of these procedures is that they can provide 
simultaneous tests of more than one related hypothesis in a wide 
range of contexts. All that is required is knowledge of the number of 
comparisons in the total pool of comparisons possible (ie k) and the 
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level of significance required for the experimentwise error rate (i.e. 
05.0 ). The pool of possible comparisons can vary; depending 

upon the experimental design, from exhaustive comparisons of all 
means against all other means taken singly or in combination, to 
exhaustive comparisons between pairs of means, to a restricted set of 
comparisons (see planned comparisons below). The disadvantage of 
the two techniques is that because they rely on inequalities, which 
merely set upper bounds to the experimentwise error rate, they are 
typically more conservative than other available procedures such as 
the Tukey-Kramer procedure. 

Planned comparisons 

Planned comparisons are a subset of possible comparisons, chosen 
before the experiment is done so that they are not suggested by the 
results. Planned comparisons are typically decided as part of the 
overall experimental design. The pool of possible comparisons is 
typically severely restricted by the experimental design. 

Comparing all treatments to a control 

A special case of multiple comparisons is where the only comparisons 
contemplated at the time of designing the experiment are between a 
single control and a set of treatments. In this case, improved power 
can be legitimately achieved by adjusting the level of significance on 
individual tests only for this restricted class of comparisons. Dunnett 
(1956) proposed a test to cater for this situation, and it is now widely 
used. Dunnett's test holds the experimentwise error to a level not 
exceeding the stated level of significance, usually 0.05. 

The alternative of using Bonferroni's or Sidak's method is considered 
unnecessarily conservative in comparison with Dunnett's test, but 
may be the best option when faced with more complex designs 
involving several control and treatment samples. 

A priori unrelated comparisons 

There are rare instances where relatively few, completely 
independent comparisons are contemplated using the results of an 
ANOVA based on a more extensive data set than required to address 
the hypotheses of interest. Providing the investigator is willing to 
accept an error rate of 0.05 on each comparison, then it may be 
legitimate to apply t-tests independently to each hypothesis. It is still 
sensible to use the best available estimate of the common population 
variance, MSwithin, in place of the individual sample variances, and a 
suitable test in this case is the Least Significant Difference Test. The 
occasions for its use are rare indeed, and it should definitely not be 
used for unplanned comparisons or for comparisons with a control. 
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Deciding a personal policy 

Appropriate choice of multiple comparison test remains a 
controversial subject and you may wish to address the issues yourself. 
You need to: 

 Consider whether you accept at all, the need to adjust the level of 
significance on each test to compensate for the number of 
comparisons in an experiment. 

Not all researchers accept this need, though nowadays, they would 
have difficulty publishing. 

 Decide the total pool of comparisons contemplated as part of the 
study design, in advance of collecting the data. 

For five means, there is a pool of 5(5-1)/2 = 10 exhaustive pairwise 
comparisons possible, but only four comparisons are of interest if the 
object is to compare four treatment means against a control. This is 
the most important criterion in choosing a multiple comparison 
procedure. 

 Choose a multiple comparison procedure that adjusts the per-
comparison error rate appropriately for the pool of comparisons 
identified above. It should be the most powerful of appropriate 
alternatives available. 

 Decide the level of significance required for the experimentwise 
error rate. 

There is general agreement on the acceptable per-comparison error 
rate, usually 0.05, but certainly in the range 0.10 to 0.01—not so 
large as to allow a large number of false conclusions regarding the 
presence of differences between means, but not so small as to greatly 
reduce our chances of detecting differences when they are present. 
There is no general agreement on an acceptable experimentwise error 
rate for decision making—is it 0.05, 0.10 or 0.20 (Keppel 1973)? For 
the purposes of this Module, I have chosen 0.05, but this is subject to 
debate. 

There are a few misconceptions associated with multiple comparison 
procedures. A common error is to argue for a reduced pool of 
comparisons after the data have been examined. Following an 
analysis of variance, you may choose only to compare the largest and 
smallest of the means. You have chosen to do a single comparison 
only, but this does not justify ignoring the need to adjust the per-
comparison error rate for the overall pool of such comparisons from 
which you selected one. 

A second error is commonly made when the response to the 
confusing array of options available is to choose the option that gives 
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the most satisfactory results. The folly of this approach should be 
obvious. You may be confronted with a confusing and 
uninterpretable array of overlapping non-significant subsets of 
sample means, using, say, the Tukey-Kramer procedure. You need to 
appreciate that failure to reject the null hypothesis that two 
population means are equal, should not lead you to conclude that 
they are in fact equal. It implies only that the difference between 
population means, if any, is not large enough to be detected with the 
given sample sizes. Your approach should be to gather more data, or 
to redesign and repeat the experiment giving more thought to 
planned comparisons. It even may be appropriate to increase the 
experimentwise error rate to 0.10 or 0.20, provided this is openly 
stated. It is not appropriate to cast your eye around for a more 
powerful but inapplicable multiple comparison test such as the LSD 
test. 

Confusion may arise from the non-transitive nature of non-
significance. The mean of sample A may be significantly different 
from the mean of sample B, but neither may be significantly different 
from a mean lying in between. When the sample sizes are unequal, 
the results may be even more counter-intuitive. If we have four cells 
with means ranked A>B>C>D, the difference between B and C, each 
based on 1,000 values, may be significant while the difference 
between A and D, each based on 5 values, might not. 

Where have we come? 

The full analysis is now available to you. As a researcher, when you 
are faced with the problem of comparing the means of several 
samples, classified according to a single factor, the approach is as 
follows: 

 perform a single-factor ANOVA to determine whether the means 
are more variable than can be considered by chance alone; 

 if the ANOVA yields a significant result, perform an appropriate 
multiple comparison test to determine where the differences lie. 

Views on the application of multiple comparison tests are varied, and 
the subject remains controversial. You need to come to a reasoned 
position yourself. The recommendations I make are : 

 If unplanned comparisons are required as part of the experimental 
design, apply the Tukey-Kramer procedure.  

 If planned comparisons involving a single control are required, 
apply Dunnett's test.  

 If the design is more complex, but where the pool of comparisons 
possible under the design is restricted, then the Sidak procedure is 
recommended.  
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 In rare cases, where a few unrelated comparisons are decided 
independent of the data at hand, and independent of each other, 
the LSD procedure may be applied. 

What you do not yet know is that there are different models in 
ANOVA, and that the choice of model affects the direction your 
analysis takes. That is the subject of the next module. 
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Lesson 3: Models in ANOVA 

Fixed and Random Models 

One more class of analysis is yet to be introduced. Two models are 
recognised in single-factor ANOVA—fixed models and random 
models. The two differ little in the computation leading to the final F 
statistic. Where they differ is in the direction taken during follow-up 
analysis. 

Fixed model ANOVA 

In the fixed model ANOVA, the criterion upon which the factor levels 
are chosen are fixed and repeatable. For example, each sample 
corresponding to a factor level may be drawn from individuals of 
specified ages, or subject to different specified treatments, or belong 
to specified genetic strains. A case might involve a pastoralist who 
wishes to compare the ability of breeds of cattle to produce butterfat 
in the milk. Here, the factor is breed and the response variable is 
butterfat concentration. If the objective of the study is to select the 
best breed for butter production, then the approach would be to take 
five specific breeds (the factor levels) known to be candidates for the 
new herd, probably including the breed that makes up the existing 
herd. 

This is a fixed design because: 

 the breeds chosen for investigation are fixed in the sense that if the 
experiment were to be repeated, the same breeds would be chosen 
again, 

 the investigation is designed to detect significant differences 
among specific breeds, in this case, to find the breed with the 
highest butterfat content in the milk, 

 it would be sensible to follow up the analysis with multiple 
comparison tests to determine where the differences among the 
means, if any, lie. 

Random model ANOVA 

In the random model ANOVA, the criteria upon which the factor 
levels are chosen are random—that is, the factor levels are chosen at 
random from a substantial pool of possible choices. NSW Agriculture 
may wish to address a similar problem to that of the pastoralist, but 
without a specific interest in any one breed. Instead, they may be 
interested in the more general problem of whether the factor breed 
has any effect on butterfat production. From their perspective, there 
may be 50 breeds available for experimentation, but financial and 
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logistic constraints preclude using all of them. They choose five 
breeds at random. 

The questions that would be asked of such a design are quite different 
from those asked of a fixed design. NSW Agriculture are not at all 
interested in whether there are significant differences between 
specific breeds, because they were selected at random. All they are 
interested in is whether or not there are differences among breeds 
overall, that contribute to variation in butterfat production. In 
statistical jargon, they are interested in whether there is an added 
variance component due to variations among breeds in butterfat 
production. If there is, they might proceed to measure the relative 
strength of the added variance component. 

In the random design: 

 the factor levels (breeds) are randomly selected from a large pool 
of possible choices. If the experiment were to be repeated, there is 
no reason to expect that the same factor levels (breeds) would be 
chosen second time around; 

 the investigation is not designed to detect significant differences 
among specific breeds, but rather to detect an overall effect of the 
factor—breed—on the response variable, butterfat concentration; 

 it is not sensible to follow up the analysis with multiple 
comparison tests to determine where the differences among the 
means, if any, lie. Rather, the added variance component due to 
the overall effect of the factor — breed — is estimated. 

Estimating the added variance component 

Recall from the discussion of rationale of ANOVA that the mean 
squares are estimates of the common population variance, but that 
one, MSamong, is biased by the effect of the factor. 

 22 . Aamong nMS    

 2withinMS  

 
To estimate the added variance component, we need an estimate of 

2
A . Such an estimate is provided by: 
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There are two intuitive interpretations of 2
AS . First, it provides an 

estimate of how much of the variability among means cannot be 
explained by observed variability within samples. It is a measure of 
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the strength of the real effect of the factor, which can be 
expressed as a percentage: 
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Second, it provides a measure of how reproducible measurements are 
across samples relative to the repeatability of measurements within 
samples. Later in this Module, an example is presented where the 
National Association of Testing Agencies (NATA) was interested to 
know to what degree chlorophyl-a determinations were repeatable 
within labs and to what degree results were reproducible across labs. 
A random sample of 25 laboratories Australia-wide were asked to 
extract and determine the concentration of chlorophyl-a in three 
samples labelled A, B and C. The laboratories involved were not told 
that the three samples were simply replicates of the same batch. 

We need to ask, how much more variable would be a set of 25 
determinations, one from each laboratory, than a set of 25 
determinations from a single laboratory? 

Variation in single determinations across laboratories is given by: 

   222
2

22
AAAY n

YVAR    

since, for single determinations, n = 1. Variation in single 
determinations within a laboratory is given by: 

   2YVAR  

Hence, of the total variation among single determinations taken one 
from each laboratory, an amount of: 

 %100.
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is additional to what would be expected of values taken from a single 
laboratory, namely: 

 %100.
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Thus 
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is an estimate of the variation in single determinations from 
laboratories over and above what would be expected if the 
laboratories had common methods and equipment and could 
perfectly reproduce each others’ results. 

It is the percentage contribution to variation in single determinations 
among laboratories that can be attributed to differences in their 
equipment and procedures. 

On this basis, we can define an index of reproducibility, the ability 
to reproduce results across laboratories, as: 

 Reproducibility %100.1
2

2












Awithin

A

SMS

S
 

Reproducibility ranges from zero to 100%, the latter being desirable 
in interlaboratory comparisons.  

An estimate of the expected variation in single determinations across 
laboratories derived from variation in determinations within 
laboratories is: 

 %100.
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It is the percentage contribution to variation in single determinations 
among laboratories that can be attributed to the inability of 
laboratories to repeat their own determinations. It is the variation 
among laboratories that would exist even if all laboratories had 
identical equipment and procedures. 

Thus, repeatability can be defined as the ability to repeat results in 
a single laboratory, relative to the ability to reproduce results across 
laboratories. 

 Repeatability %100.1
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If there is no added variance component due to differences among 
labs ( 022  AAS  ), then the results will be perfectly reproducible. If 
you had 10 replicate bottles of water to evaluate, it would not matter 
whether you sent them to 10 different laboratories or all 10 bottles to 
the one laboratory. This is an unachievable ideal for NATA, though 
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progress toward the ideal can be achieved by setting standards for 
equipment and procedures to be adhered to by member laboratories. 

If the results from laboratories were perfectly repeatable 
 02 withinMS , then it would not make sense to send more than 

one replicate bottle to each laboratory. Rather, you would spread the 
bottles across laboratories to obtain the best average determination. 

Of course, there are many possibilities in between. 

Where have we come? 

In this lesson, the two different models of ANOVA were introduced. 
These are important in single factor ANOVA because they determine 
the direction the analysis takes following a significant result in the 
ANOVA. They are even more important in more complex ANOVA 
designs because they influence the calculations in the ANOVA itself. 

You should now appreciate 

 The distinction between fixed and random models in ANOVA. 

 The procedure used to follow up a significant result in a random 
model ANOVA. 

 The distinction between repeatability and reproducibility, and how 
to construct meaningful measures of them from the ANOVA table. 

We now move on to an important topic, that of power and how to 
interpret a non-significant result in ANOVA. 
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Lesson 4: Power analysis 

Planning of experiments 

The effectiveness of ANOVA is greatly influenced by sample size. 
Sample sizes need to be adequate to be reasonably certain of 
detecting an important effect when it exists. At the same time, sample 
sizes should not be so large that the cost of the study becomes 
excessive, nor is there much value in having weak, unimportant 
effects becoming highly significant. Planning the intensity of 
sampling using a prospective power analysis can be important in 
the design of experimental and observational studies that use 
ANOVA as the means of analysis. 

As with the t-test, optimal sample size for an ANOVA will be affected 
by: 

 The size of the smallest effect or difference that it is 
important to detect. The smaller the effect, the larger will be the 
sample size required to detect it, all other things being constant. 

 The variability of the data. The more variable the data within 
samples, the more difficult it will be to demonstrate a given effect 
or difference among sample means against the backdrop of that 
variability. 

 The acceptable probability of detection. The more certain 
you want to be of detecting a difference of a given size, the larger 
will be the samples required to give you that greater certainty. 

 The level of significance of the test. It will take larger 
samples to be reasonably sure of detecting a given difference at the 
1% level of significance than at the 5% level of significance. 

There are obvious parallels with the procedure for determining 
appropriate sample sizes for the t-test. ANOVA has the added 
complication of needing a decision on exactly what effect it is that is 
of interest to us. A number of possibilities exist. The smallest effect of 
interest might be defined in terms of: 

 the smallest average effect across samples that is regarded to 
be of importance; 

 the smallest single difference between one sample mean from 
the overall average that is regarded to be of importance; 

 a minimal scenario or set of minimal scenarios involving 
several sample means that is regarded to be of importance. 

Estimating sample size under all of these scenarios is complex and 
not well covered by statistical packages. Only one approach is covered 
in this Module, for the fixed-factor ANOVA. The approach recognises 
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that on achieving significance in the ANOVA, you will follow with 
multiple comparisons among the sample means. The objective of the 
power analysis is to set a sample size to be 80% sure, say, of detecting 
a true difference of given minimal magnitude   at the level of 
significance after Bonferroni correction ' . 

To be 80% sure ( 8.01  P ) of detecting a given difference 
between any two of ten means ( ) at the 5% level of significance 
( 05.0 ), you will require a sample size of: 

      212'

2

2 


Pttn 





  

where n is the required size of each sample,  is  the true common 
parametric standard deviation,   is the degrees of freedom for ,   't  

is the value from a two-tailed t-table with  degrees of freedom and 
level of significance '  and   )1(2 t  is the value from a two-tailed t-

table with  degrees of freedom and level of significance  12 . In 
this case, where we have 10 means, and therefore 45 potential 
pairwise comparisons, 

 001.0
45

05.0

45
' 

  

The inequality above must be solved iteratively, as n is on both sides 
of the inequality,  being a function of n.  

To undertake such a prospective power analysis, you need also to 
make some hard decisions. First, you need to decide on what is the 
smallest difference between any two of your samples ( ) upon which 
you will place some importance. You must decide that differences 
smaller than that value are of little or no consequence.  

Second, you need to estimate the common parametric standard 
deviation,  , and this must often be estimated before you collect the 
data. You can use a ball-park figure based on experience, or you can 
undertake a pilot study to estimate   using the root mean square 
error 

 withinMS  

and then the desired sample size before expending resources on the 
major optimised study. You may find the ratio of   to   easier to 
estimate.  
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Third, you need to decide on the risk you are willing to take 
( 1P ) in not finding an important difference when it actually 
exists. There is no general agreement on the value of P . The value of 
0.80 seems to have currency in the same way as 0.05 has currency 
for  . Some would argue for higher values of 0.90 and 0.95, but 
ultimately it comes down to how important to you it is to detect a true 
difference of  if it exists. What risk are you willing to take of missing 
it?  

Finally, you need a clear idea of the experimental design and in 
particular, what comparisons will be made in following up a 
significant result. This is very important, as it will determine the level 
of Bonferonni correction that will be applied, and this in turn will 
affect the optimal sample sizes and expenditure on the project.  

Regardless of the problems of its computation, the cost savings of this 
approach can be considerable, either through minimising the risk of 
undertaking the study only to find that no difference can be 
demonstrated (when it exists) or by avoiding the expense of 
collecting more data than is required for success. 

Interpretation of non-significant results 

Retrospective power analysis is used to decide if it is reasonable to 
accept the null hypothesis, that is, for dealing with the ambiguity of a 
non-significant result. There may well be no difference between 
samples, or the sample sizes may not be large enough to detect a 
difference that is there (you make a Type II error). The risk of such a 
false negative result cannot usually be quantified, unless the 
alternative hypothesis H1 is known. A non-significant result, 
therefore, is difficult to interpret. 

Strictly speaking, you would interpret a non-significant result 
equivocally, as having failed to demonstrate a difference. If however 
you do wish to draw a firm inference from a non-significant result, 
then a retrospective power analysis is mandatory.  

In a retrospective power analysis, you ask, given your sample sizes, 
what might be the smallest difference  ( ) you could be reasonably 
confident of detecting ( 80.01  P ). Using the withinMS  as an 

estimate of 2 , the formula for the smallest difference likely to be 
detected by an ANOVA, followed with Bonferoni comparisons, with 
sample sizes each of n, is: 

      
n

MS
tt within

P

2ˆ
12'    
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where n is the size of each sample, withinMS  is  our best estimate of the 
true common parametric variance,   is the degrees of freedom 
for withinMS , P is the intended power of the test,   't  is the value from 

a two-tailed t-table with  degrees of freedom and level of significance 
'  and   )1(2 t  is the value from a two-tailed t-table with  degrees of 

freedom and level of significance  12 . In this case, where we have 
10 means, and therefore 45 potential pairwise comparisons, again 

 001.0
45

05.0

45
' 

  

If ̂  is so small as to be of no consequence, then your interpretation 
of the negative result is acceptable. If, on the other hand, even a large 
difference would often go undetected with your sample sizes, you 
have nothing to report.   

Retrospective power analysis is a controversial area, and the analyses 
for ANOVA have not adequately been incorporated into statistical 
packages. Many power analysis algorithms give you the optimal 
sample size to be reasonably sure of detecting the difference you 
observed in your analysis, which is not useful. Others differ on how to 
define the minimum effect size, with the decision having a strong 
effect on the outcome of the power analysis. The advice above is only 
one option available to you, and is over-engineered in the sense that 
the Bonferoni correction is one of the most conservative of multiple 
comparison procedures.  

As with power analysis and the t-test, choice of the value for the 
probability of detecting the difference if it exists is controversial. It 
has been argued that just as a small   (Type I error) is required to 
declare a difference to be nonzero, so too a small  (Type II error) 
should be required to declare a difference to be zero. We have chosen 

80.01  P  above, which is developing similar currency as 
05.0 as the defacto standard for the Type I error. Cogent 

arguments can be made for P = 0.84, 0.90 and 0.95. 

Where have we come? 

In this lesson, you learned about the concept of power, how to use it 
to plan experiments and how to use it to place interpretation on a 
non-significant result. 

In particular, you should appreciate: 

 The considerations necessary to determine the level of sampling 
intensity required to be reasonably sure of detecting a difference of 
a given magnitude when it exists. 
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 That non-significant results are ambiguous. It could be that there 
is no difference of any importance there to find, or it could be that 
there is an important difference to find, but that your sample sizes 
are too small to demonstrate it. Power analysis allows you to make 
a judgement and so report a non-significant result with some level 
of confidence. 

We have now covered the theory of single factor ANOVA. There are a 
number of matters to consider in applying this theory to real world 
problems, not least of which are the assumptions of the technique. 
The next lessons deal with nuances in the application of ANOVA. 
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Lesson 5: Application 

Assumptions of ANOVA 

Up to this point, ANOVA has been presented without much attention 
paid to the assumptions of the technique. This is the approach 
adopted by Sokal and Rohlf (1994), in the belief that non-
mathematical audiences learn better if they come to understand the 
structure and purpose of the analysis, without being distracted from 
the central theme by whether or not the data are strictly amenable to 
such an analysis. However, it is essential for the practitioner to verify 
that the assumptions are reasonable. If they are not, steps should be 
taken to ensure that the assumptions are met. 

In this section, I describe the assumptions of ANOVA, how to check if 
they are reasonable, and how to proceed in the face of perceived 
violations. Alternatives to parametric ANOVA are briefly described, 
but their practical application is beyond the scope of this Module. 

Single-factor ANOVA has four assumptions, namely, randomness 
and independence in sampling, equality of variances across samples, 
and normality. Each of these will be dealt with in turn. 

Randomness in sampling 

Randomness in the selection of entities for measurement  

In inferential statistics, we study samples intensively in order to infer 
attributes of the populations from which those samples are drawn. It 
is critical to any experiment to ensure that the measurements taken 
are representative of the system under study, if our inferences are to 
have any validity. The entities selected for measurement must be 
representative (unbiased) of the population from which the entities 
are drawn.  

Take for example a study of stream invertebrates at each of several 
sites. We may choose to take 10 replicate collections of invertebrates 
from each site, in order to characterise invertebrate abundance at the 
sites and as a basis for comparisons among sites. The mean 
invertebrate abundance must be representative of the true 
parametric mean for the each site, and their variances must be 
representative of the true parametric variances for each site. If they 
are not, we may as well close up shop. Randomness in the selection of 
the entities for measurement is by far the safest way of achieving this 
unbiased representation. 

Non-randomness may manifest itself as lack of independence of the 
entities, or in unequal variances or in non-normality. Violation of the 



Biometry  

 

 40 University of Canberra 

 

assumption of randomness in sampling cannot be overcome easily, 
and typically the data must be discarded, the sampling protocols 
redesigned and the data recollected. Adequate attention must be paid 
at the time of designing an experiment, or when sampling from 
natural populations, to ensure adequate randomness in the selection 
of entities. 

Randomness in the allocation of entities across factor classes 

Where the allocation of entities to factor classes is within the control 
of the investigator, ANOVA expects that the items, individuals or 
entities are allocated to each of the factor classes at random. In a field 
trial, plots should be allocated at random to the treatments they are 
to receive. If we fail to do so, we run the risk of introducing a 
systematic bias that will confound our interpretation of a significant 
result. For example, if we consciously or unconsciously allocate the 
better looking plots first and so preferentially to a control factor class, 
and the poorer looking plots last and so preferentially to our 
manipulated factor classes, what are we to make of a significant 
result? We will not know if the significance is a result of our 
manipulations in comparison to the control, or a result of differences 
between better-looking plots and poorer-looking plots. Our 
experiment will have been confounded. 

Often it is not possible to randomly allocate entities across factor 
classes. Having selected sites in a river for investigation, it is not 
possible to then randomly allocate invertebrate collections to them – 
the invertebrate collections are constrained to be those that are 
collected from the individual sites. But here the entities (invertebrate 
collections) are integrally connected with the characteristics of the 
site — confounding of the sort outlined above is not an issue. 
Provided we ensure that the entities within sites are selected at 
random, the ANOVA can proceed. 

Independence 

Independence requires that knowledge of the value of one 
measurement provides no information on the value of one of the 
other measurements, relative to its expected value. Note that we 
demand that the residual values under the working model 
are independent, not the measurements themselves. Human 
heights are not absolutely independent, for none of us are the size of 
gnats. However, randomly selected humans may have heights that 
are independent, in the sense that knowledge of the above average 
height of one individual provides no information on the height of the 
next, relative to the average height. Heights of twins are not 
independent, because if one twin is known to be of above average 
height, then the other is odds on to be of above average height. 
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Because independence is an attribute of the residuals (or if our focus 
is on the parent populations, the errors i ) independence is a relative 

concept. Dependence considered in one context (say ANOVA) may 
become independence in another (say regression). 

Independence within factor classes 

Measurements within factor classes must be independent. In other 
words, if you were to arrange the measurements in one factor class in 
some logical order independent of their magnitude (say in the order 
of collection), then their deviations from the average value, the 
residuals, should follow a random sequence. A run of large values 
followed by a run of small values would be cause for suspicion (see 
the runs test, Sokal and Rohlf, 1994). Adjacent plots on the ground in 
an experiment using plots spread out across a field, adjacent trees in 
a forest, identical twins among unrelated individuals, eggs from a 
single clutch in an experiment where eggs are taken from many 
clutches, successive hourly measurements of algal abundance over a 
four day period, are unlikely to be independent in their response to 
any experimental treatment applied to them. 

The consequences of dependence within factor classes can be 
devastating. If replicates are more alike than randomly selected 
entities in the population (that is, pseudoreplicated), as a 
consequence of their interdependence, then withinMS  will be deflated. 

Significant results will emerge from the analysis without basis. If 
replicates are less alike than randomly selected entities in the parent 
population, as a consequence of their interdependence, then withinMS   

will be inflated. Power of the test will be compromised. 

Independence across factor classes 

Measurements within factor classes must also be independent. If the 
value of a measurement in one factor class is more like the value in 
another factor class, by virtue of interdependence between the two 
measurements, then the effect will be to draw their respective means 
together, with consequential loss in power to detect a true difference 
between the factor classes. If the reverse is true, and the 
measurements have a negative dependence, then the effect will be to 
draw their respective means apart artificially, and a significant result 
may emerge without basis. Either way, the validity of the ANOVA is 
compromised. 

A special case of repeated measures 

A common scenario where measurements are dependent across 
factor classes is in repeated measures designs. The following data 
comprise the number of eggs in a clutch (clutch size) for successive 
clutches for a species of marine turtle. A numbered titanium tag 
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attached to the front flipper established the female's identity. The 
measurements (clutch size) are repeated for each female as she 
returns to the nesting beach repeatedly in a single season. 

While an inexperienced analyst might be tempted to undertake a 
single-factor ANOVA on these data, treating the females as replicates, 
this is not valid. Knowledge that the size of the first clutch of female 
X16017 is above average for first clutches provides information on the 
likelihood that her second, third and fourth clutches are likely to be 
above average. This invalidates the analysis, its power potentially 
dramatically reduced. The correct approach is to undertake a two-
factor ANOVA (possible even in the absence of replication) with 
Clutch Number as one factor and Female as the second factor (see 
Module 5). 

 FEMALE CLUTCH NUMBER 
Tag 1st 2nd 3rd 4th

X16005 136 . 133 129 

X16013 111 105 107 113 

X16017 192 191 164 188 

X16024 111 121 111 122 

X16029 138 . 123 135 

Independence in random models 

In random model ANOVA, the factor levels are selected at random 
from a large or infinite pool of possibilities. The object of such an 
analysis is to estimate the added variance component resulting from 
the influence of the factor. If there is dependence among the factor 
levels because of deficiencies in our experimental design (say 
pseudoreplication of factor classes), our estimate of the added 
variance component will be compromised. 

Clearly the impact of dependence among factor classes in the random 
model, or among entities across or within factor classes in the fixed 
model, is profound.  

Essentially, as with randomness in sampling, violations of the 
assumption of independence of errors cannot be overcome easily, and 
typically the data must be discarded, the sampling protocols 
redesigned and the data recollected. Adequate attention must be paid 
at the time of designing an experiment, or when sampling from 
natural populations, to ensure independence. Independence is 
achieved through appropriate experimental design. 
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Equality of variances 

In developing the rationale of ANOVA, it was argued that the effect of 
the factor across samples should act differentially to increase or 
decrease the sample means, but not to differentially alter the sample 
variances. An assumption of the analysis is that the individual sample 
variances estimate a common population variance, that is, that the 
population variances are equal. 

There are two approaches to deciding whether the assumption of 
equality of variances is tenable and taking remedial action if 
necessary. The first approach is quantitative, relying upon formal 
tests of equality of variances followed by transformation of the data, 
if necessary, and retesting. A test for the equality of two variances 
was introduced in Module 3, based on the two-tailed F-test. A variety 
of tests for equality of variances also are available where the number 
of means exceeds two, including Bartlett's, the Fmax and the Scheffe-
Box tests discussed by Sokal and Rohlf (1994). The difficulty with 
these tests, to varying degrees, is that they have assumptions of their 
own, and may well be more sensitive to violations of those 
assumptions than is the ANOVA itself. For example, Bartlett's test is 
particularly sensitive to departures from the assumption of 
normality, and a significant result may indicate non-normality rather 
than unequal variances. 

The second approach, and the one adopted in this series, is more 
qualitative. It is based on visually examining the scatter of sample 
values about their predicted values, the factor class means. Ideally, 
this scatter should be random across the classes. There should be no 
systematic trend or difference in the scatter of values about their 
respective means.  

The visual examination is achieved by constructing a plot of 
residuals, that is, by plotting the observed deviation of each sample 
value from its factor class mean against the predicted value for that 
class, namely the class mean. Often, the residuals are scaled by 
dividing by their standard errors, and referred to as studentised 
residuals. The method of plotting residuals is demonstrated in the 
worked examples that follow later in this Module. 

If substantial heterogeneity of variances is revealed in the residual 
plot, then a transformation may be applied to bring the variance of 
the residuals closer to equality, or the original data may be 
scrutinised for a single suspect outlier in case an error has been 
made. Common transformations are described in a section below. 



Biometry  

 

 44 University of Canberra 

 

Normality 

A single-factor ANOVA assumes that the individual measurements in 
each sample are drawn from a normally distributed population.  

This assumption cannot be verified simply by pooling the data and 
applying a visual or statistical test for departures from normality, 
because the data for each sample may well be centered on quite 
different means. For example, two samples drawn from populations 
with perfectly normal distributions but with quite different means 
will, when the data are pooled, yield a bi-modal distribution with 
serious departures from normality. What we must do first is centre 
the data on the factor class means (that is, consider the residuals), 
examine the distribution of the residuals, and apply tests of 
normality. 

This approach is conditional on the assumption of equality of 
variances. By a similar argument to the above, two samples drawn 
from populations with perfectly normal distributions but with quite 
different variances will, when the data are pooled, yield a distribution 
with serious departures from normality. It will be leptokurtic.  

Pooling the residuals for a test of normality is only valid provided 
there is no evidence of a departure from the assumption of equality of 
variances. 

Analysis of residuals 

As outlined above, residual analysis is the recommended approach 
for assessing the validity of the assumptions of homogeneity of 
variances and normality. It is a graphical approach, and less sensitive 
than the range of statistical tests for homogeneity of variances and 
normality, but this is its strength. The ANOVA is a robust procedure, 
especially if the design is balanced, and violations of its assumptions 
of a magnitude likely to affect the outcome of the ANOVA will be 
evident in the graphical residual analysis. Less serious violations, 
likely to be detected by hypothesis testing (Bartlett's Test, Shapiro-
Wilks Test), are unlikely to impact on the outcome of the ANOVA.  

Analysis of residuals involves the following steps (Figure 4-4): 

 Apply the working model (in our case, a single-factor ANOVA), 
and save the raw or studentised residuals; 

 Plot the residuals against the predicted values of the working 
model (in our case, against the means for each sample); 

 Transform if necessary to address any heterogeneity in the sample 
variances; 
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 Re-run the analysis, re-examine the residuals and apply another 
transformation if necessary; 

 Once homogeneity of variances is achieved, construct a histogram 
of the residuals for an assessment of the assumption of normality. 

When limited data are at hand, such as is available for two-sample 
comparisons (Module 3), it is seldom possible to undertake a 
satisfactory examination of the validity of the assumptions. There are 
simply too few data to support a residual analysis. For this reason, 
you are advised to draw upon experience with the type of data at 
hand or on more extensive studies reported in the literature to decide 
an appropriate transformation. It is traditional to transform counts, 
for example, with either a square root (counts of independent 
entities) or log transformation (counts of aggregated entities). 

With ANOVA, the sum total of data available is typically greater than 
for two-sample comparisons. It is reasonable therefore to conduct an 
ANOVA, examine the residuals, apply a transformation if deemed 
necessary, repeat the ANOVA and re-examine the residuals, and 
apply alternative transformations if the results of the first 
transformation are unsatisfactory.  

Remember, though, the objective of transformation is to render 
normal, or of equal variance, the populations from which the samples 
were drawn, not the samples themselves. When it comes to the 
samples themselves, some deviation from normality and inequality of 
variances is acceptable. When small samples are involved, quite large 
apparent deviations from normality or homogeneity of variances can 
occur even when these assumptions are met for the parent 
populations. 

Finally, it is important to appreciate that residual analysis allows an 
assessment of the validity of homogeneity of variances and normality. 
It does not necessarily address the assumptions of randomness or 
independence, or the adequacy of the ANOVA model to the data at 
hand. For example, pseudoreplication may result in deflation of the 
within-sample variance across the experiment. The variances may 
well remain homogeneous, and so the violation would not be 
detected. A residual analysis is not an unqualified ticket to proceed 
with the ANOVA. 
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Figure 4–4. 
A Decision Tree 

for Residual 
Analysis. 

 

Summary of the assumptions of ANOVA 

The assumptions of randomness and independence in sampling must 
be ensured by paying adequate attention to the random selection and 
allocation of items to the experimental classes or, if the design is 
constrained by the logistics of working with natural populations, by 
paying adequate attention to the random selection of items from 
within the experimental classes. If the assumptions of randomness or 
independence are violated, the results of the analysis can be 
profoundly affected, and the only recourse is to discard the data, 
redesign and repeat the experiment. 

Departures from the assumption of equality of variances can be 
detected in a qualitative way by examining a plot of residuals, and a 
suitable transformation might be suggested by the pattern of scatter 
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of those residuals. The effectiveness of the transformation may be 
evaluated by examination of the residuals following the 
transformation. 

Having convinced yourself that the assumption of equality of 
variances is tenable, the assumption of normality may be tested by 
examining a histogram of the pooled residuals or a probability plot, 
depending upon your preference. Applying one or more of the tests 
introduced in Module 2 (Shapiro-Wilks test, probability plots etc) to 
the pooled residuals is likely to detect departures from normality that 
are of no practical consequence to ANOVA, especially where the 
design is balanced. 

The residuals cannot be pooled for an assessment of the assumption 
of normality until homogeneity of variances across the factor classes 
has been achieved.  A residual analysis will not necessarily detect 
violations of the assumptions of randomness and independence. 

Transformations 

Transformations are applied to either render the populations from 
which the samples are drawn normal, or to break a relationship 
between the mean and variance in order to comply with the 
assumption of homogeneity of variances. Very often both of these 
departures from the assumptions are simultaneously cured by the 
same transformation. The most commonly used transformations 
were first introduced in Module 3. 

The following transformations are routinely used in the biological 
sciences. 

The log transformation 

  1log' 10  YY  

is applied in cases where the standard deviation is proportional to the 
mean, or when the distribution of the parent population is skewed to 
the right. 

The square root transformation 

 5.0 YY  

is applied when the data are counts for which a Poisson distribution 
is a satisfactory model, say for counts of organisms that are randomly 
distributed in the environment. It is usually unnecessary for such 
counts unless the mean count is less than 10. 
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The arcsine transformation 

 pSINY 1  

where p is a proportion. This transformation is appropriate for 
percentages and proportions. Data of this form are seldom 
satisfactorily modeled by a normal distribution if values occur 
outside the range 0.3 to 0.7 (30% to 70%). There is no need to apply 
the transformation if all values fall within this range. 

There are other transformations, but they are beyond the scope of 
this Module. Refer to Sokal and Rohlf (1994, Chapter 13, section 6) or 
Zar (1984, Chapter 14) for further information. You can of course 
invent your own. 

Robustness of ANOVA 

The approach to checking assumptions recommended in this Module, 
that is, through qualitative examination of residuals, is not 
particularly rigorous. It relies in part on a general belief that analysis 
of variance is robust to moderate violations of the assumptions of 
normality and equality of variances. All but moderate violations 
would be evident on examination of the residuals in the manner 
described. 

The foundation for this belief lies in Monte Carlo simulations 
undertaken in the middle of the twentieth century and reported by 
Lindquist (1953:78) and Keppel (1973). These studies show that 
moderate violations of normality do not constitute a serious problem 
and that, provided the samples sizes are equal or nearly so, nor do 
moderate departures from the assumption of equality of variances. If 
you are to rely heavily upon the robustness of ANOVA to violations of 
the assumption of equality of variances, in designing experiments, it 
is important to balance the design, that is, to ensure that the size of 
samples in each factor class are the same. 

Non-parametric alternatives to ANOVA 

If the assumptions of ANOVA are not met by the data, and no 
suitable transformation can be found to rectify the problem, or if the 
data are not measured at the interval or ratio level of measurement 
but rather the ordinal level, then we may decide to resort to a non-
parametric alternative to ANOVA. One widely used non-parametric 
test is the Kruskal-Wallis one-way ANOVA by Ranks followed by 
multiple comparisons using a modified version of the Wilcoxon sum-
rank test (Siegel and Castellan 1988; Sokal and Rohlf, 1994: Chapter 
13).  The functions kruskal.test() and wilcox.test() are 
available for non-parametric ANOVA, but the subject will not be 
covered further in this Module. One word of caution though. The 
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Kruskal-Wallis and Wilcoxon rank-sum tests may be non-parametric, 
but when used to address hypotheses specifically directed at means 
or medians, they are not assumption free. In addition to the universal 
assumptions of randomness in sampling and independence, these 
tests assume that the populations under consideration differ only in 
location, that is, that they have equal variances and that the shape of 
the distributions is the same. 

ANOVA procedure in a nutshell 

You should now have a grasp of one of the most important statistical 
concepts of use to biologists—the analysis of variance. Its 
fundamental objective is to determine whether the observed variation 
among a set of means is greater than would be expected by chance 
alone. It does this by comparing the observed variation among means 
with that expected on the basis of observed variation within samples. 

The general procedure for undertaking a study involving single-factor 
ANOVA is summarised as follows: 

 Decide the research question you wish to address. 

 Carefully select your factor and factor classes so that differences 
among the factor classes will unambiguously address the research 
question. This would normally mean holding all other potentially 
influential factors constant. 

 Design your experiment and sampling protocols to ensure that the 
entities to be measured are either randomly allocated to factor 
classes. If class membership is beyond your control, ensure that 
the entities are selected at random from the populations 
represented by each class. Ensure independence of the entities 
selected within and across factor classes. 

 If the model is fixed, plan your comparisons in advance of 
beginning the experiment if at all possible. This will greatly 
increase power. 

 Collect the data. 

 Undertake an exploratory analysis, based on graphical techniques, 
preliminary runs of the ANOVA and examination of residuals to 
verify that the assumptions of ANOVA are tenable. Transform the 
data where necessary. 

 Perform the final ANOVA, and follow by multiple comparison tests 
if the model is fixed or by estimating the added variance 
components if the model is random — see the Decision Tree of 
Figure 4-4. 

 Interpret results statistically. If the ANOVA is not significant, and 
you wish to conclude that there is no effect, undertake a 
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 the difference between fixed and random models in ANOVA, and 
the practical consequences of these differences; 

 the issues central to choosing an appropriate multiple comparison 
procedure, and a sensible position on a workable set of procedures 
to cover the common circumstances; 

 the meaning and practical value of estimating the added variance 
component in the random model ANOVA; 

 the assumptions of ANOVA, how to detect violations and how to 
overcome them, with emphasis on displaying and interpreting 
residuals. 

 power analysis, and how to use it to interpret a non-significant 
result. 

It is now appropriate to put this knowledge to use in worked 
examples and exercises. The practical application of the technique is 
much more straight-forward than you might think. 
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Lesson 6: Step-through Examples 

Example 4-1: Macro-invertebrates of Crackenback River 

This is an example of a one-way ANOVA where the factor is fixed, 
followed by unplanned (a posteriori) comparisons using the Tukey-
Kramer Procedure. 

The problem 

David Tiller of the University of Canberra undertook a study of the 
effects of human disturbance on the benthic macro-invertebrate 
fauna of the Crackenback River in Kosciusko National Park. The river 
passes by the Thredbo Village, which discharges its sewage effluent, 
after treatment, 1.5 kilometres downstream. To assess the effects of 
this potential source of pollution on the fauna, Tiller chose the 
following sampling stations or sites: 

 Site 1: 1 kilometre upstream of the village; 

 Site 2: 1 kilometre below the village; 

 Site 3: 1.5 kilometres below the village, ie immediately above the  
  sewage effluent outflow; 

 Site 4: 0.2 kilometres below the sewage effluent outflow; 

 Site 5: 1 kilometre below the sewage effluent outflow; 

 Site 6: 3 kilometres below the sewage effluent outflow; 

 Site 7: 4.5 kilometres below the sewage effluent outflow; 

 Site 8: 8 kilometres below the sewage effluent outflow. 

Ten replicate collections of benthic invertebrates were made at each 
site using a Surber Sampler. A Surber Sampler is a square frame, 30 
cm on a side, attached to a net. The sampler was placed on the 
bottom and all rocks to a depth of 10 cm lying within the square 
frame were washed and removed. Invertebrates dislodged by this 
process are carried by the flowing water into the collecting net. The 
collections were fixed in 4% formalin and returned to the laboratory 
for sorting, identification and counting. The data are raw counts 
pooled across species (Table 4–7). 

David was interested to know if there were significant differences 
among the sites with respect to invertebrate abundance, and if so, 
where those differences lay.  
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Table 4–7. 
 Raw counts of 

benthic 
invertebrates 

from the 
Crackenback 

River, upstream 
and downstream 

of Thredbo 
Village, 

Kosciusko 
National Park. 

The counts are 
pooled over 

species. 

SITE 
1 2 3 4 5 6 7 8 
 

286 
669 
142 
65 

304 
185 
210 
119 
254 
255 

 
325 
703 
332 
265 
351 
516 
350 
496 
600 
850 

 
496 
798 
989 
640 
931 
495 
469 
1160 
1139 
1072 

 
1065 
1539 
1174 
880 

2113 
1172 
1291 
1054 
1423 
1030 

 
411 
1116 
681 
1281 
1102 
578 
361 
309 
701 
1242 

 
207 
104 
153 
283 
156 
386 
120 
262 
141 
294 

 
121 
197 
292 
208 
243 
260 
408 
168 
190 
110 

 
207 
246 
468 
435 
291 
246 
225 
200 
291 
174 

The analysis 

Data entry and exploratory examination 

To analyse these data using R, they need to be set up in the form of 
two columns, one containing the measurements (in this case counts 
of benthic invertebrates) and the other containing a character string 
or number indicating from which site the measurement was taken. 
The data file THREDBO.DAT has been provided in your data file 
folder. Make sure you are using the latest version of the data files and 
check the moodle site for the latest version. 

  Double click on the Tinn-R icon and launch R from within 
Tinn-R (Click in the Menu on R->Initiate/Close Rgui->Initiate 
preferred Rgui). Check if Tinn-R is installed properly. 

We must first read the data and assign them to an object threadbo.  

> setwd("d:\\bernd\\biometryworkbook\\data") 
> threadbo <- read.table("thredbo.dat", header=TRUE) 

We check the data using some of the following functions: names(), 
str(), dim(), head(), tail(), summary(). How are they 
organized, how many cases are there (80). Was that to be expected? 
E.g.  

> dim(threadbo) 

[1] 80  2 

The head()function shows by default the first six lines of a 
data.frame. 
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> head(threadbo) 

  site count 
1    1   286 
2    1   669 
3    1   142 
4    1    65 
5    1   304 
6    1   185 

 

 

 

Extra task 

Try to find out, how you can display the first 10 lines of the data.frame by using 
the head()function. Hint: You may want to look at the help page ?head 

> names(threadbo) 

[1] "site"  "count" 

> str(threadbo) 

'data.frame':   80 obs. of  2 variables: 
 $ site : int  1 1 1 1 1 1 1 1 1 1 ... 
 $ count: int  286 669 142 65 304 185 210 119 254 255 ... 

The summary function gives some summary statistics for each 
variable in the data.frame.  

> summary(threadbo) 

      site          count        
 Min.   :1.00   Min.   :  65.0   
 1st Qu.:2.75   1st Qu.: 221.2   
 Median :4.50   Median : 350.5   
 Mean   :4.50   Mean   : 538.4   
 3rd Qu.:6.25   3rd Qu.: 811.0   
 Max.   :8.00   Max.   :2113.0   
 

After you checked the data you should know that there are two 
variables “site” and “counts” within the data.frame threadbo. 
The summary command shows that site is not recognized as a 
factor. This is because site is coded by numerical values from 1-8 and 
R had no idea when you used the read.table() function  that 
these are not numbers, but rather a coded factor. Therefore we need 
to convert site into a factor using the as.factor function. 

> threadbo$site <- as.factor(threadbo$site) 

We now should check if this has changed site into a factor. There 
are various ways to do this. One way is to type summary() again. If 
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site is a factor then the summay statistics such as mean, medina er 
not calculated, but a frequency table for the first six levels of teh 
factor is shown.  

> summary(threadbo) 

      site        count        
 1      :10   Min.   :  65.0   
 2      :10   1st Qu.: 221.2   
 3      :10   Median : 350.5   
 4      :10   Mean   : 538.4   
 5      :10   3rd Qu.: 811.0   
 6      :10   Max.   :2113.0   
 (Other):20        

Another way is to use the is.factor() function. 

> is.factor(threadbo$site) 

[1] TRUE 

To get a feel for the data, and the possible effects of the various 
potential impacts on the stream, a good idea is to plot the counts 
against sites in the stream.  

 
> boxplot(count~site, data=threadbo, col="honeydew") 

Here we used the formula version of the boxplot() function. That 
is we asked to plot count against site using the “~”. In addition we 
specified which data the function should use by specifying 
data=threadbo. The formula interface comes in handy if the data 
are organised in the form as in the example above, i.e. one column 
codes for the factor (site)and the other the response variable (count).  

To make the plot a bit more informative we want to label the axes. 
This is done by using the xlab and ylab arguments of the function.  

> boxplot(count~site, data=threadbo, col="honeydew",  
  xlab="sites", ylab="counts of invertebrates") 

The resulting graph is shown in Figure 4–6. The text and arrows will 
be added later on ( see next page) 

 

 

Extra task 

To check more options how to change the plot, e.g. change the width of the 
boxes, see ?boxplot. 

A much more tedious way would have been to specify each box 
seperatelty. If you are eager you can type in: 
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> boxplot(threadbo$count[1:10],threadbo$count[11:20] , 
threadbo$count[21:30], threadbo$count[31:40], 
threadbo$count[41:50], threadbo$count[51:60], 
threadbo$count[61:70], threadbo$count[71:80],  
col="honeydew", xlab="sites", ylab="counts of 
invertebrates") 

This results in the same graph, but there are no number below the x-
axis, so there is really no point doing it the hard way. 

Submit the above commands for execution. 

  

Figure 4–6.  
A graph 
showing 

counts of 
benthic 

invertebrates, 
for ten 

samples from 
each of eight 

sites in the 
Crackenback 

River. 
Vertical bars 
are ranges, 

boxes are 
interquartile 

distances on 
either side of 
the median. 
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At this point, you should mark on the plot, the locations of the 
various potential impacts. Remember the village is between site 1 and 
2 and the seweage plant is directly at site 3.  

R has great graphic capabilities and we want to use some of them to 
make the plot a bit more informative. First we want to indicate where 
the village is situated. We know it is between site 2 and 3, therefore 
we want to plot an arrow and a label between the boxes of these sites. 
This is done by the arrows() and text() functions. Both of them 
require coordinates to draw the items. The arrows() function requires 
to x-y coordinates, the beginning and the end of the arrow and the 
text function requires one x-y coordinate for the center of the text 
box. 
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The coordinates need to be guessed a bit. We may start with the 
arrow at x0=1.5 (between 1 and 2) and y0=200, a bit below the box of 
site two. The 

> arrows(x0=1.5, y0=200, x1=1.5, y1=0, length=0.1, 
col=”red”)  
> text(x=1.5,y=230,labels="village") 

And now we add the arrow and text for the seweage plant. 

> arrows(x0=3, y0=300, x1=3, y1=0, length=0.1, col="green") 
> text(x=3,y=330,labels="seweage plant") 
 

 

 

Extra task 

To see how the arrows() function works check ?arrows and then try to add the 
two labels “downstream” and “upstream” to the plot (see figure 4.6). How to you 
get a two-sided arrow? The label for the village is not really nicely placed (it 
touches the handles of the boxes, can you more it to somewhere else? What is 
the length argument for? 

It would appear that the village itself has had an impact on the 
stream, perhaps aggravated by the sewage treatment plant, but at this 
point in the analysis, any interpretation would be pure supposition. 
The variation observed among the sites could well have happened by 
chance alone, and may not reflect a true difference in invertebrate 
abundance at the different sites. Tiller chose to perform an analysis of 
variance to determine if the observed differences among sites were 
significant, that is, if they reflected true differences at the sites from 
which they were drawn. 

The within-sample variances differ considerably from site to site, and 
in fact appear to be correlated with the mean (higher abundances 
associated with higher variances). This is of some concern, as the 
analysis of variance assumes homogeneity of variances, but we will 
deal with this later.  

Analysis of variance 

To perform the ANOVA, we use the aov() function in R. There is 
another function called lm(), which does the same and is more 
general, hence can be applied to a wider array of data (e.g. 
unbalanced designs with unequal sample sizes). First we store our 
analysis in a new object called anova.threadbo. We do this 
because we can then reuse it for different version of outputs. 

> anova.threadbo <- aov(count~site, data=threadbo) 
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After you have type in this command, you may expect an output such 
as an anova table, but disappointingly there is nothing. So let us try 
by typing the name of the anova.threadbo into the R-console. 

> anova.threadbo 

Call: 
   aov(formula = count ~ site, data = threadbo) 
 
Terms: 
                    site Residuals 
Sum of Squares  10414757   3893704 
Deg. of Freedom        7        72 
 
Residual standard error: 232.5494  
Estimated effects may be unbalanced 

This is a good start, but actually we would like to have a complete 
anova table including an F and p value. To achieve this type: 

> summary(anova.threadbo) 

Submit the above commands for execution. 

The outpu should be as in Box 4–1. 

Box 4-1. output 
of 

summary(anov
a.threadbo) 

used to analyse 
macro-

invertebrate 
abundances in 

Crackenback 
River. 

 
             
Df   Sum Sq Mean Sq F value    Pr(>F)     
site         7 10414757 1487822  27.512 < 2.2e-16 *** 
Residuals   72  3893704   54079                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Before launching into an interpretation of the ANOVA table, it would 
be wise to apply some diagnostic tests to determine if the ANOVA 
model is appropriate to the data at hand. We do this through an 
examination of residuals, that is, residual variation in the data after 
we have set the means for each sample to zero. A good way to look at 
them is to plot the distribution of residuals using the hist() 
function. 

> hist(resid(anova.threadbo)) 

Another way to test the normality of the residuals and hence the 
appropriateness of the ANOVA approach is to use the inbuilt plots in 
R. If you type plot(anova.threadbo) you get four different plots, 
whereas the first one is the one we are looking here at this stage. You 
need to click on the plot area to see the plots actually, as the R 
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console is waiting until you click with the mouse on the graphics 
window. 

> plot(anova.threadbo) 

Submit the above commands for execution. 
 

The resulting plots are shown in Figure 4–7. 

 

Figure 4–7. 
A) Histrogramm 
plot of residuals 

for counts of 
benthic 

invertebrates 
from eight sites 

in the 
Crackenback 

River.  

B) Plot of 
residuals versus 

predicted values. 
A correlation 
between the 
variance and 

mean is clearly 
indicated. 
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If the data conformed to the assumptions of homogeneity of 
variances and normality, we would expect the scatter of points to vary 
at random about the reference line (B). Instead, the scatter of points 
increases with increasing magnitude of the predicted value (mean). 
This correlation between the variance and mean is quite usual for 
counts of benthic invertebrates, and was not totally unexpected by 
Tiller. Tiller thought it prudent, on examination of the residual plot, 
to transform the counts before analysis. Two transformations would 
be appropriate to rectify the tendency for the variance to increase 
with the mean: 

 5.0'  YY  
 
or the stronger 

 )1(log' 10  YY  

 
Let us try the square root transformation, and re-examine if the 
residuals are normally distributed and show now increase in variance 
with increasing mean. 



Biometry  

 

 60 University of Canberra 

 

> threadbo$sqrt.count <- sqrt(threadbo$count) 
> head(threadbo) 

  site count sqrt.count 
1    1   286  16.911535 
2    1   669  25.865034 
3    1   142  11.916375 
4    1    65   8.062258 
5    1   304  17.435596 
6    1   185  13.601471 

We added sqrt.count to the data.frame and redo now the whole 
excerise.  

> anova.sqrt.threadbo <- aov(sqrt.count~site, 
data=threadbo) 
> summary(anova.sqrt.threadbo) 

            Df Sum Sq Mean Sq F value    Pr(>F)     
site         7 4377.7  625.38  31.072 < 2.2e-16 *** 
Residuals   72 1449.1   20.13                       

> hist(resid(anova.sqrt.threadbo), col="palegreen") 
> plot(anova.sqrt.threadbo) 

Submit the above commands for execution. 

The resulting residual plots are shown in Figure 4–8 and 4–9 . By 
inspection, it can be concluded that the residuals are not particularly 
skewed (Figure 4–8). The distribution of the residuals about the 
reference line is vastly improved. There is no longer an obvious trend 
in the residual variances (Figure 4–9). 

 



Biometry  

 

University of Canberra   61 

 

 

Figure 4–8.  
The distribution of 

residuals for counts 
of benthic 

invertebrates 
following 

transformation by 
square root. 
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Box 4–2. 
 Output of 

summary(anova.sqrt. 
threadbo) used to 

analyse macro-
invertebrate 

abundances in 
Crackenback River, 

following a square 
root transformation. 

 
 
            Df Sum Sq Mean Sq F value    Pr(>F)     
site         7 4377.7  625.38  31.072 < 2.2e-16 *** 
Residuals   72 1449.1   20.13                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Figure 4–9. 
Residuals for counts 

of benthic 
invertebrates from 

eight sites in the 
Crackenback River. 

The counts were 
transformed by 

square root before 
analysis. 
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We can now interpret the analysis of variance table based on the 
square rooted counts with confidence (Box 4–2). 

The implications of the ANOVA of Box 4–2 are clear. The F value of 
31.07 had a probability of occurring through chance alone of only 
<0.0001. As this is much less than the conventional cut-off value of 
0.05, we conclude that the observed variation among sites is 
significant.  

But where do the differences lie? To answer this question, Tiller 
chose to perform Tukey-Kramer multiple comparisons. To do so type 
simply: 

> TukeyHSD(anova.sqrt.threadbo) 

  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = sqrt.count ~ site, data = threadbo) 
 
$site 
           diff         lwr         upr     p adj 
2-1   6.4022766   0.1388780  12.6656752 0.0415675 
3-1  13.1134643   6.8500657  19.3768629 0.0000002 
4-1  20.3108457  14.0474471  26.5742443 0.0000000 
5-1  12.0003141   5.7369155  18.2637127 0.0000021 
6-1  -0.9022485  -7.1656471   5.3611500 0.9998165 
7-1  -0.5406971  -6.8040957   5.7227015 0.9999944 
8-1   1.3598262  -4.9035724   7.6232248 0.9973440 
3-2   6.7111877   0.4477891  12.9745862 0.0271508 
4-2  13.9085691   7.6451705  20.1719677 0.0000000 
5-2   5.5980375  -0.6653611  11.8614361 0.1137063 
6-2  -7.3045251 -13.5679237  -1.0411266 0.0113516 
7-2  -6.9429737 -13.2063723  -0.6795752 0.0194695 
8-2  -5.0424504 -11.3058490   1.2209482 0.2066807 
4-3   7.1973814   0.9339828  13.4607800 0.0133535 
5-3  -1.1131502  -7.3765488   5.1502484 0.9992646 
6-3 -14.0157128 -20.2791114  -7.7523142 0.0000000 
7-3 -13.6541614 -19.9175600  -7.3907628 0.0000001 
8-3 -11.7536381 -18.0170366  -5.4902395 0.0000035 
5-4  -8.3105316 -14.5739302  -2.0471330 0.0022483 
6-4 -21.2130942 -27.4764928 -14.9496957 0.0000000 
7-4 -20.8515428 -27.1149414 -14.5881442 0.0000000 
8-4 -18.9510195 -25.2144181 -12.6876209 0.0000000 
6-5 -12.9025626 -19.1659612  -6.6391641 0.0000003 
7-5 -12.5410112 -18.8044098  -6.2776126 0.0000007 
8-5 -10.6404879 -16.9038865  -4.3770893 0.0000319 
7-6   0.3615514  -5.9018472   6.6249500 0.9999997 
8-6   2.2620747  -4.0013238   8.5254733 0.9485753 
8-7   1.9005233  -4.3628753   8.1639219 0.9800864 

This looks quite confusing, but it is a table of all combinations of 
levels. Significant differences are these where the p value is below 
0.05. A bit better is to have a plot on this.  

> plot(TukeyHSD(anova.sqrt.threadbo), las=1) 
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 Type in and submit the above statements. 

There are two points to note at this stage of the analysis. First, Tukey-
Kramer multiple comparisons are only appropriate following a 
significant result in the ANOVA (it is a so-called protected test). Had 
the result not been significant, then the analysis would have been 
complete with the production of the analysis of variance table. Hence, 
it is important not to routinely run the Tukey comparisons with the 
ANOVA—the Tukey analysis is conducted only after a significant 
result is demonstrated by the ANOVA. 

The output is shown in Box 4-3. 

Box 4–3. 
 Output from a 
Tukey Multiple 

Comparisons 
Test to 

determine which 
sites differed 

significantly from 
which others, 

following a 
significant result 

in the analysis of 
variance. The 

data are square 
rooted 

abundances of 
macro-

invertebrates 
from 

Crackenback 
River. 
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95% family-wise confidence level

Differences in mean levels of site
 

The Tukey tests lists all differences in the means between all 
combination of levels. We have 8 levels in the factor site, hence there 
are 8 * (8-1)/2=28 comparisons.If the confidence interval in a 
comparison of two levels includes zero, then the difference between 
two levels is not significant. For example, Sites 1, 6, 7 and 8 are not 
significantly different from each other but are significantly different 
from Sites 3, 4 and 5. Site 4 stands out alone as significantly different 
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from all other sites. It is below suspected sources of pollution, and 
shows a significant increase in invertebrate abundance compared 
with that of neighbouring sites upstream of the sources. This makes 
sense if you compare these results with the boxplot of figure 4–6. It 
appears that both the village and the sewage outlet have an impact on 
the stream, but the good news is that the effect has dissipated 3 
kilometres downstream. Overlapping non-significant subsets are 
common in analyses of this sort, and are often difficult to interpret. 
They can only be resolved by increasing the sample sizes so that true 
differences, if any, become more apparent. 

Results summary 

The results of the analysis could be reported in the Results section of 
a report or paper along the following lines. 

The differences among the eight sites in the abundance of benthic 
invertebrates (Figure 4–10) was significant, as demonstrated by a 
single-factor ANOVA applied to the square-root transformed counts 
(F = 31.07; df = 7,72; p < 0.0005) (Table 4–8). 

 

Figure 4–10. A 
graph showing 

counts of benthic 
invertebrates, for 

ten samples 
from each of 

eight sites in the 
Crackenback 

River. Vertical 
bars are ranges, 

boxes are 
interquartile 

distances on 
either side of the 

median.. 
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Multiple comparisons based on the Tukey-Kramer procedure 
( 05.0 ) revealed that macro-invertebrate abundance was greatest 
at site 4, immediately downstream of the sewage outflow. Site 3, 
immediately above the outflow, and Site 5, 1 kilometre below the 
outflow were similar in terms of macro-invertebrate abundance, 
second only to Site 4. The upstream Site 1 and the downstream sites 
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6, 7 and 8 were not significantly different, suggesting that any impact 
the village and its sewage discharges may have had on the stream had 
dissipated by the time the stream water had flowed 3 kilometres 
beyond the impacts. 

 
 

Table 4–8. 
 Summary of the 

analysis of 
variance used to 
compare macro-

invertebrate 
abundance at 

eight sites on the 
Crackenback 

River near 
Thredbo Village. 

Source Degrees of 
freedom

Sums of 
squares

Mean 
square

F value Prob 
under H0

Among sites 7 4377.7 625.38 31.07 P<0.0001 

Within sites 72 1449.1 20.13   

Total 79 5826.8    

      

Discussion 

The analysis can now be discussed in the context of the reasons for 
conducting the study. What advice can you give to the managers of 
the village or to the authorities responsible for the health of the 
Crackenback River and Lake Jindabyne downstream? How do the 
results of this study compare with those elsewhere, and what can be 
concluded about the effectiveness of the treatment system at 
Thredbo? These are the sorts of points that would be covered in a 
discussion of the results. 

Adequacy of the design 

At this point, it is constructive to consider the adequacy of the 
experimental design. First, the conclusions drawn from this 
experiment strictly relate only to the time of year that the experiment 
was undertaken, for there is no evidence that the pattern of 
differences observed in this study is repeated in all months of the 
year. Nor with a single experiment such as this are we able to gain 
insight into variation among years, and the pattern of differences 
among sites may vary from year to year. With an experiment such as 
the one described here, we are very limited in the degree to which we 
can draw inferences on the impact of human disturbance in the river 
beyond the period in which we conducted the study. David Tiller 
addressed these concerns in his broader study, with data collected 
every month for each of three years. Having replicated his treatments 
across years, Tiller was able to assess the level of variability between 
years and the interaction between the effect of location in the stream 
and the year or month chosen for study. However his broader 
analysis is beyond the scope of single-factor ANOVA. 
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The second point relates to the adequacy of the upstream site as a 
control. It may well have been that Site 1 was different from Sites 2, 
3, 4 and 5 quite irrespective of the human impact, and this may have 
been so even before Thredbo Village had been built. Our 
interpretation that the development has had an impact on the 
stream, is predicated on the assumption that Site 1 resembles what 
Sites 2, 3, 4 and 5 would have been like had the development of the 
village not gone ahead. Quite an assumption, and the only support for 
it in this case is indirect, provided by the observation that Site 1 is not 
significantly different from sites below Site 5. 

A third point on design is that the upstream site was not replicated. 
Tiller had only one site upstream of the suspected impacts. Without 
some measure of the variation among replicated sites upstream, we 
cannot tell if Site 1 was typical of sites upstream of the village. The 
whole analysis is vulnerable to the chance influences that might make 
Site 1 untypical of upstream sites. 

A final point relates to Tiller's choice of follow-up analysis. The power 
of the analysis could have been substantially increased if Tiller had 
planned follow-up comparisons as part of the overall design before 
undertaking the study. By restricting the pool of possible 
comparisons under the study design, and using Sidak's tests in place 
of the exhaustive comparisons of Tukey-Kramer procedure, less 
adjustment of the experimentwise error would have been necessary. 
The resulting comparisons would have been less conservative, that is, 
more sensitive, with a corresponding increase in resolution of 
differences among sites. Planned comparisons are preferable to ad 
hoc unplanned comparisons in this regard. 

All of these considerations must come into play, preferably when 
designing the study, and certainly when interpreting the results in 
preparation for publication. 
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Example 4-2: Rock lobster in aquaculture 

This is a one-way ANOVA with a fixed factor and a single control 
treatment. 

The Problem 

The western rock lobster is recognized as a valued fishery estimated 
at 300 million dollars a year.  To protect this valuable commodity 
and increase the production, the idea of culturing the lobster has 
become increasingly attractive.  The aquaculture of these lobsters is 
still in its infancy.  To achieve progress in this area, the development 
of an artificial diet and culturing environment is required as well as 
methods to allow the assessment of condition of cultured animals. 

Tsvetnenko et al. (1999) developed a set of body condition factors to 
evaluate condition of cultured rock lobsters in conjunction with a 
nutritional study of the western rock lobster juvenile phase (post-
pueruli or after settlement).  A large sample of juvenile lobsters were 
collected at various locations and held in a tank at the Fisheries 
Marine Research Lab for two months as an acclimation period.  
During the acclimatisation period the lobsters were fed a diet of 
mussels and prawn pellets. 

Table 4-1. 
Proximate 

composition of the 
experimental diets 

fed to rock 
lobster. 

 

     
Parameter D2* D3* D4** D5** 
Dry matter (%) 60.0 60.0 90.0 90.0 
Dig. energy (MJ/kg)  9.0 10.0 13.6 15.1 
Crude protein (%) 30.1 33.8 45.3 50.6 
Crude fat (%)  4.8  7.4  7.2 11.1 

* Semi moist; ** Dry

Subsequently, juvenile lobsters were fed for nine weeks on either 
fresh mussel diet (D1) or one of four artificial diets, two in semi-moist 
form (D2 and D3) and two in dry pelleted form (D4 and D5) (Table 4-
1).  The central hypothesis to be addressed was whether the lobsters 
performed as well on the artificial diets (D2-D5) as they did on the 
natural diet (D1). In this context, the natural diet of mussel was 
regarded as the control treatment, and the artificial diets were 
regarded as the experimental treatments. 

A number of indices of condition were measured for comparison 
across treatments. One was the weight of wet tail muscle expressed as 
a percentage of the weight of the whole animal, wet. At the 
conclusion of the experiment, 10 animals were sampled at random 
from each diet treatment and their MSI condition measured.  
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Table 4-2. Muscle 
somatic index 

(MSI) of lobster 
maintained on five 

dietary 
treatments. 

 

D1 
(Control)

D2 D3 D4 D5 

18.825 15.289 15.949 16.079 18.787 

17.086 15.348 14.569 16.411 14.583 

18.321 15.709 19.855 14.873 15.319 

13.783 14.568 17.304 14.090 18.821 

22.698 15.067 15.179 17.377 21.979 

19.974 13.719 14.936 12.592 20.188 

23.706 14.706 16.749 14.133 17.080 

15.839 14.692 13.772 15.958 15.539 

18.584 13.233 16.021 14.479 16.002 

15.850 18.983 14.920 15.932 12.210 

Data entry and exploratory examination 

As always we have to read in the data. The name of the data file is 
lobdiet.dat and you can find it in your data folder. 

> setwd("to\\your\\data\\folder") 
> lobster <- read.table("lobdiet.dat", header=TRUE) 
> lobster 

       D1     D2     D3     D4     D5 
1  18.825 15.289 15.949 16.079 18.787 
2  17.086 15.348 14.569 16.411 14.583 
3  18.321 15.709 19.855 14.873 15.319 
4  13.783 14.568 17.304 14.090 18.821 
5  22.698 15.067 15.179 17.377 21.979 
6  19.974 13.719 14.936 12.592 20.188 
7  23.706 14.706 16.749 14.133 17.080 
8  15.839 14.692 13.772 15.958 15.539 
9  18.584 13.233 16.021 14.479 16.002 
10 15.850 18.983 14.920 15.932 12.210 

So let us check whether the data were read in correctly and are in the 
right format 

> dim(lobster) 

[1] 10  5 

> str(lobster)  

'data.frame':   10 obs. of  5 variables: 
 $ D1: num  18.8 17.1 18.3 13.8 22.7 ... 
 $ D2: num  15.3 15.3 15.7 14.6 15.1 ... 
 $ D3: num  15.9 14.6 19.9 17.3 15.2 ... 
 $ D4: num  16.1 16.4 14.9 14.1 17.4 ... 
 $ D5: num  18.8 14.6 15.3 18.8 22 ... 
 

So we have five columns (i.e. the five treatments) and for each 
treatment 10 meassurements (i.e. MSI which is the ratio of the weight 
of the tail mussle for each lobster to the whole lobster). 
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Submit the above commands for execution. 

At this point, we might like to define some value labels to the diets, as 
D1-D5 is not very informative and may lead to confusion later. We do 
this by assigning a new vector of names to the names of the 
data.frame lobster. 

> names(lobster) <- c("control","wet1","wet2","dry1",  
  "dry2")  
>lobster 

   control   wet1   wet2   dry1   dry2 
1   18.825 15.289 15.949 16.079 18.787 
2   17.086 15.348 14.569 16.411 14.583 
3   18.321 15.709 19.855 14.873 15.319 
4   13.783 14.568 17.304 14.090 18.821 
5   22.698 15.067 15.179 17.377 21.979 
6   19.974 13.719 14.936 12.592 20.188 
7   23.706 14.706 16.749 14.133 17.080 
8   15.839 14.692 13.772 15.958 15.539 
9   18.584 13.233 16.021 14.479 16.002 
10  15.850 18.983 14.920 15.932 12.210 

That looks good, but before we can do the ANOVA we have to 
rearrange our data, as R is expecting the data in the format of only 
two columns. The first is the treatment, hence the various levels of 
the factor diet (e.g. control, wet1, wet2, etc...), and the second column 
should be the MSI. The easier task is to convert the five columns into 
a single by simply putting each column at the end of the previous one. 

So we need to somehow access the column of the lobster data.frame 
separately. This is done by indexing, e.g.: 

> lobster[,1] 

 [1] 18.825 17.086 18.321 13.783 22.698 19.974 23.706 
15.839 18.584 15.850 

> lobster[,2] 

 [1] 15.289 15.348 15.709 14.568 15.067 13.719 14.706 
14.692 13.233 18.983 

To combine each column into a single one we use the c() function 
and assign the new column to a new object called MSI. 

> MSI <- c(lobster[,1], lobster[,2], lobster[,3], 
lobster[,4], lobster[,5])  

> MSI 

 [1] 18.825 17.086 18.321 13.783 22.698 19.974 23.706 15.839 18.584 
[10] 15.850 15.289 15.348 15.709 14.568 15.067 13.719 14.706 14.692 
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[19] 13.233 18.983 15.949 14.569 19.855 17.304 15.179 14.936 16.749 
[28] 13.772 16.021 14.920 16.079 16.411 14.873 14.090 17.377 12.592 
[37] 14.133 15.958 14.479 15.932 18.787 14.583 15.319 18.821 21.979 
[46] 20.188 17.080 15.539 16.002 12.210 

> length(MSI) 

[1] 50 

So MSI is a new vector consisting of 50 values. If you compare the 
values to the lobster data.frame you will see that the first ten 
values are the ones from the control column, then another ten values 
for wet1, then 10 for wet2, 10 for dry1 and finally 10 for dry2. 

Now we need to create a factor with the following content: 10 times 
"control", 10 times "wet1" etc until all 50 values have a treatment next 
to them. This factor then should be combined with the MSI vector 
into a new data.frame. 

As always there are several ways to achieve this. We will use the 
rep() function, which is a helper function that creates based on 
repeated values (you should type ?rep to see how this function 
works. We start with the following idea. We have the names of the 
diet treatment already stored somewhere, namely in the heading of 
lobster. 

> names(lobster) 

[1] "control" "wet1"    "wet2"    "dry1"    "dry2"   

The general idea is to tell R: "please repeat these names 10 times". So 
let us try: 

> rep(names(lobster), times=10) 

 [1] "control" "wet1"    "wet2"    "dry1"    "dry2"    "control" 
 [7] "wet1"    "wet2"    "dry1"    "dry2"    "control" "wet1"    
[13] "wet2"    "dry1"    "dry2"    "control" "wet1"    "wet2"    
[19] "dry1"    "dry2"    "control" "wet1"    "wet2"    "dry1"    
[25] "dry2"    "control" "wet1"    "wet2"    "dry1"    "dry2"    
[31] "control" "wet1"    "wet2"    "dry1"    "dry2"    "control" 
[37] "wet1"    "wet2"    "dry1"    "dry2"    "control" "wet1"    
[43] "wet2"    "dry1"    "dry2"    "control" "wet1"    "wet2"    
[49] "dry1"    "dry2"    

This is kind of good but not exactly, what we wanted. If you have read 
the help file of ?rep() then you would have come across the 
argument each, so let us try this. 

> rep(names(lobster), each=10) 

 [1] "control" "control" "control" "control" "control" "control" 
 [7] "control" "control" "control" "control" "wet1"    "wet1"    
[13] "wet1"    "wet1"    "wet1"    "wet1"    "wet1"    "wet1"    
[19] "wet1"    "wet1"    "wet2"    "wet2"    "wet2"    "wet2"    
[25] "wet2"    "wet2"    "wet2"    "wet2"    "wet2"    "wet2"    
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[31] "dry1"    "dry1"    "dry1"    "dry1"    "dry1"    "dry1"    
[37] "dry1"    "dry1"    "dry1"    "dry1"    "dry2"    "dry2"    
[43] "dry2"    "dry2"    "dry2"    "dry2"    "dry2"    "dry2"    
[49] "dry2"    "dry2"    
 

Much better, each causes R to repeat each element in the vector 
separately in turn. The final step is now to convert this into a factor 
and then put both new columns together. 

> diet <- as.factor(rep(names(lobster), each=10)) 
> diet 

 [1] control control control control control control control 
 [8] control control control wet1    wet1    wet1    wet1    
[15] wet1    wet1    wet1    wet1    wet1    wet1    wet2    
[22] wet2    wet2    wet2    wet2    wet2    wet2    wet2    
[29] wet2    wet2    dry1    dry1    dry1    dry1    dry1    
[36] dry1    dry1    dry1    dry1    dry1    dry2    dry2    
[43] dry2    dry2    dry2    dry2    dry2    dry2    dry2    
[50] dry2    
Levels: control dry1 dry2 wet1 wet2 

 Finally we create a new data.frame, using the data.frame() 
function, and call it lob2, with diet and  MSI as the only columns. 

> lob2 <- data.frame(diet, MSI) 
> head(lob2) 

     diet    MSI 
1 control 18.825 
2 control 17.086 
3 control 18.321 
4 control 13.783 
5 control 22.698 
6 control 19.974 

> str(lob2) 

'data.frame':   50 obs. of  2 variables: 
 $ diet: Factor w/ 5 levels "control","dry1",..: 1 1 1  ... 
 $ MSI : num  18.8 17.1 18.3 13.8 22.7 ... 

Submit the above commands for execution. 

  

 

 

Extra task (a hard one) 

There is another way to create the factor diet. Look at the function 
?expand.grid() and try to figure out how this can be achieved. A good start 
is to try:  
> expand.grid(names(lobster)) 
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A plot of the data reveals a clear trend (Figure 4-19), at least in the 
sample data. The boxes are only one standard error on either side of 
the mean, so the likely significance of the trend is in doubt. We will 
have to wait and see what the ANOVA tells us.  

 

> boxplot(MSI ~ diet, data=lob2, col="paleturquoise2") 

 

Figure 4–19.  
A box plot 

showing 
variation in 

lobster MSI for 
different diets. 

Note, the 
boxes show 

two standard 
errors on either 

side of the 
mean. The 

vertical bars 
are ranges. 
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 Generate the plot by entering the above command. 
 

Preliminary examination of the plot indicates some promising 
variation among the treatments. The ANOVA will determine which 
differences we can regard as significant. To perform an ANOVA is 
quite simple once the data are in the right format. We use the 
formula notation with the "~" again. MSI is our response variable and 
diet our predictor (in this case it is a factor with five levels). The 
ANOVA will tell us if the factor diet can explain the significantly the 
variation in the data.  

> anova.lobster <- aov(MSI ~ diet, data=lob2) 
> summary(anova.lobster) 

            Df  Sum Sq Mean Sq F value  Pr(>F)    
diet         4  79.764 19.9409  3.9349 0.00801 ** 
Residuals   45 228.047  5.0677                    



Biometry  

 

University of Canberra   73 

 

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

So in overall we see that the factor diet seems to be significantly 
explaining the variation in the data (p<0.01). Before we get too 
excited we need to test the assumption of the ANOVA by looking at 
the residuals.  As you will recall an ANOVA is only valid if the 
resulting residuals are normally distributed.  

> plot(anova.lobster) 

 

Figure 4–2.  
A residual plot for 

lobster MSI across 
different diets.  
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The residuals look quite respectable, with only a slight trend in 
variance with increasing magnitude of the response variable. We 
could try to rectify this with a transformation, but in this case we will 
follow the authors lead and run with the raw data.  

> hist(resid(anova.lobster), col="palegreen") 
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Figure 4–3.  
A histogram 

of the 
residuals 
from and 

ANOVA on 
lobster MSI 

across 
different 

diets.  
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There is no indication of substantial deviation from normality by the 
residuals in the histogram (Figure 4-3), the probability plot or in 
terms of significance of the Shapiro-Wilkes test (Box 4-1). We can 
now proceed to interpret the ANOVA printout. 

> qqnorm(resid(anova.lobster)) 
> qqline(resid(anova.lobster)) 
> shapiro.test(resid(anova.lobster)) 

 

Box 4–1.  
Tests of Normality 

of the residuals 
from and ANOVA 

on lobster MSI 
across different 

diets.  
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        Shapiro-Wilk normality test 
 
data:  resid(anova.lobster)  
W = 0.9638, p-value = 0.1286 
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Box 4–2.  
Results of an 

ANOVA 
comparing  

lobster MSI 
values for 

different diets.  

 

 
 
            Df  Sum Sq Mean Sq F value  Pr(>F)    
diet         4  79.764 19.9409  3.9349 0.00801 ** 
Residuals   45 228.047  5.0677                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Lobsters raised on different diets differed significantly in condition as 
indicated by the muscle-somatic index (MSI). The question that now 
must be addressed is whether the artificial diets promote or retard 
body condition compared with the more natural diet (control).  

This question can be addressed using Dunnett's Test, which is 
designed to adjust the level of significance to compensate for multiple 
comparisons where experimental treatments are each compared 
against a single control. Tukey's multiple comparison procedure 
would be far too conservative, as it tests for differences in all 
combinations of levels, provided we are not interested in comparing 
among the artificial diets. 

Admittedly doing the Dunetts Test is a bit of a pain in R. We need to 
load a new package called multcomp (for multiple comparisons) and 
then use the function glht in this package to specify the comparisons 
we want. 

> install.packages("multcomp",  lib="H:\\biometry") 
> libary(multcomp) 
> dunnett.comp <- glht(anova.lobster, linfct = mcp(diet = 
"Dunnett")) 
> summary(dunnett.comp) 
 

The output is shown in Box 4-3. 

All artificial diets yielded lower wet muscle-somatic index than 
lobsters fed control diet (control), however this result was significant 
only for lobsters fed diets that included formula  dry1 and wet1. (Box 
4-3).  

 
 

Box 4–3.  
Results of a 

Dunnett's 
multiple 

comparison 
procedure to 

 
         Simultaneous Tests for General Linear Hypotheses 
 
Multiple Comparisons of Means: Dunnett Contrasts 
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follow a 
significant result 

in an ANOVA 
comparing 

lobster MSI 
values for 

different diets.  

 

Fit: aov(formula = MSI ~ diet, data = lob2) 
 
Linear Hypotheses: 
                    Estimate Std. Error t value Pr(>|t|)    
dry1 - control == 0   -3.274      1.007  -3.252   0.0078 ** 
dry2 - control == 0   -1.416      1.007  -1.406   0.4360    
wet1 - control == 0   -3.335      1.007  -3.313   0.0067 ** 
wet2 - control == 0   -2.541      1.007  -2.524   0.0507 .  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1  
(Adjusted p values reported -- single-step method) 
 

 

 

 

Extra task  

The Dunnett test does a comparison between control and each level only, hence 
is doing only four tests in this example. A Tukey test compares the combination 
of all levels (5*(5-1)/2 = 10), hence a Tukey test does 10 tests and therefore we 
the significance levels are adjusted differently. Do a Tukey test and compare the 
significane levels with the Dunnett test above. Which p values are lower (more 
significant)? 

Results Summary 

A fixed-effects, single factor ANOVA found a significant difference in 
wet muscle somatic index among diets fed to Rock Lobsters (F=3.93; 
df=4,45; p <0.01).  Lobsters fed diets based on formula 1, whether 
semi-moist or in dry pellet form had significantly lower wet muscle 
somatic index, 3.3 g lower in each case, than lobsters fed a more 
natural Mussel control diet (Dunnett's multiple comparison test,  = 
0.05).  No difference could be demonstrated between the muscle 
somatic index of lobsters fed on formula 2 and those fed on the more 
natural mussel diet. 

Discussion 

Lobsters fed the natural mussel diet grew significantly faster than 
those fed the artificial diets, but this difference was statistically 
significant only in the case of formula 1 diets, whether wet or dry.  If 
muscle somatic index were the only consideration, then the artificial 
diet based on Formula 2 would be the preferred choice among the 
two artificial diets. 

Western rock lobsters naturally eat molluscs in the wild and 
supplement this feed with coralline algae.  It should be noted that 
when all analyses were considered, the results agreed with previous 
research in that natural diets produce significantly better growth 
rates in lobsters than artificial feeds.  Tsvetneko et al. (1999) later 
determined that the artificial feeds may have had too much lipid for 
good dietary performance, which seems to be born out in the partial 
results given here for MSI. 
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Source 

The data that form the basis of this example were kindly provided by 
Dr. Elena Tsvetnenko, Muresk Institute of Agriculture, Curtin 
Univeristy of Technology, Suite 3, Enterprise Unit 1, 11 Brodie Hall 
Drive, Technology Park, Bentley WA 6102.  

Tsvetneko, E., J. Brown, B. D. Glencross and L.H. Evans.  1999.  
Measures of condition in dietary studies on western rock lobster 
post-pueruli.  Pp. 100-109 in Proceedings, International Symposium 
on Lobster Health Management, Adelaide, September 1999. 
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Example 4-3: Atmospheric SO2 and Soybean Growth 

This is a one-way ANOVA with a fixed factor followed by a 
retrospective power analysis. 

The problem 

The economy of China has been developing rapidly, supported largely 
by coal-fired power stations. Many regions regularly experience high 
atmospheric concentrations of sulphur dioxide emitted by the power 
stations. In the highly industrial area of Shenyang in the Lioaning 
Province, the average atmospheric SO2 concentration during the 
summer is 38 ppb. 

China is the world’s third largest producer of soybeans. Soybean is an 
important cash crop, and vegetable oil produced from soybean is of 
high quality. Soybean (Glycine max) is sensitive to atmospheric SO2, 
decreasing in yield by up to 4% at SO2 concentrations as low as 0.05 
ppm.  

Open-top chambers (cylinders of 2.4 m high and 3 m in diameter) 
were used to fumigate soybean plants with high (488.6 ppb) and low 
(97.3 ppb) concentrations of SO2. A control chamber was also 
established with background levels of SO2 (1.2 ppb).  Seeds of 
soybean were planted in 2 L plastic pots filled with a 2L an artificial 
potting material and randomly allocated to fumigation chambers.  

The response variable was growth of soybean measured as total plant 
mass at the end of the experiment (g/pot). 
 

Table 4-9. Total mass 
(g) of soybean 

following treatment 
with atmospheric SO2 

at background levels 
(control), low 

concentrations (97.3 
ppb) and high 

concentrations  
(488.6 ppb). 

Replicate Control Low SO2 High SO2 
1 79.1 61.8 61.2 

2 64.7 58.9 65.2 

3 67.0 76.3 51.0 

    

The Analysis 

Data entry and exploratory examination 

We need to load our data. The name of the data file is "soybean.dat". 
Luckily this time the data are arranged as two columns, one 
containing the treatment and the other containing the measurement 
of soybean biomass.  

> setwd("c:\\bernd\\data\\") 
> soy <- read.table("soybean.dat", header=TRUE) 
> soy 
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  treatment mass 
1   control 79.1 
2   control 64.7 
3   control 67.0 
4      so2+ 61.8 
5      so2+ 58.9 
6      so2+ 76.3 
7     so2++ 61.2 
8     so2++ 65.2 
9     so2++ 51.0 
 

You should check the data using the usual functions such as (dim(), 
str() etc.)  

A plot of the data reveals a clear trend (Figure 4-11), at least in the 
sample data. The boxes are only one standard error on either side of 
the mean, so the likely significance of the trend is in doubt. We will 
have to wait and see what the ANOVA tells us.  

> boxplot(mass ~ treatment, data=soy, col=" deepskyblue2") 

 

 Enter and submit the above commands. 

 

 

 

Figure 4–11.  
A box plot 

showing the 
results of 

treatment of 
soybean with 

three 
concentrations of 

atmospheric 
SO2. Note, the 

boxes show only 
one standard 

error on either 
side of the 

mean, and so 
are not 95% 

confidence 
limits. 
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Although the sample sizes are exceptionally small (n=3), we should 
undertake a residual analysis before proceeding with the full ANOVA. 

> anova.soy <- aov(mass ~ treatment, data=soy) 
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> plot(anova.soy) 
> hist(resid(anova.soy), col="lightskyblue2") 

 Generate the residual plots by entering and submitting the 
above commands. 
 

 

 

 

Figure 4–12.  
A residual plot 

for an ANOVA of 
soybean growth 
against a treat-

ment of three 
concentrations of 

atmospheric 
SO2. 
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The spread of the residuals looks good, so we should now consider 
normality. 

 

Figure 4–13.  
A histogram of 
residuals from 
an ANOVA of 

soybean growth 
against a 

treatment of 
three 

concentrations of 
atmospheric 

SO2. 
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There is a indication of a problem with the distribution of the 
residuals, though with only nine values, there is not much to be 
gained by transformation. 

We can now proceed to interpret the ANOVA printout. 

> summary(anova.soy) 

 

 

Box 4–4.  
Output from 

summary(anova(()) 
used to undertake 

an ANOVA of 
soybean growth 
against a treat-

ment of three 
concentrations of 
atmospheric SO2. 

 

 
            Df Sum Sq Mean Sq F value Pr(>F) 
treatment    2 187.80  93.898  1.4059 0.3157 
Residuals    6 400.72  66.787   

 

The analysis of variance is not significant (F=1.41; df=2,6; p =0.3157) 
so the trend, which appeared so clear in the original box plot 
diagram, is not supported. The differences we observed in the sample 
data may well have occurred by chance. 

Had we got a significant difference, we would have proceeded to 
perform a Dunnett Test to compare each manipulated SO2 treatment 
against the control. 

We can report that we were unable to demonstrate an effect of SO2 on 
the growth of soybean, which may have resulted either because SO2 
does not influence soybean growth, or because our sample sizes were 
so small that any effect could not be detected by the ANOVA. Because 
of our small samples, we cannot say that SO2 does not affect soybean 
growth. 

To proceed further, we need to do a retrospective power 
analysis. Such an analysis will tell us one of two things. First, it 
might tell us that we have sufficient power to detect all but 
insubstantial differences between treatment and control. If so, then 
our non-significant result can be regarded as evidence that SO2 has 
no substantial effect on soybean growth. Alternatively it might tell us 
that our samples are far too small to be reasonably sure of detecting 
even a substantial effect of SO2 on soybean growth, in which case we 
will have to carry our studies further with larger sample sizes. 

Given our sample sizes (n=3), what is the smallest difference that we 
would be 80% sure of detecting at the 0.05 level of significance? We 
have: 
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 80.01  P ; 05.0 ; 79.66withinMS ; 3n ; 6  

We have decided a priori that we are only interested in comparing the 
two manipulated SO2 treatments with the control so applying the 
Bonferroni correction, we have: 

 025.0
2

05.0

2
' 

  

From tables, we have ]6[025.0t =2.9687 and ])[1(2 Pt  =0.9057. If you do 

not have tables, you can obtain these figures from R using the qt()  
function (equivalent to one-tailed tables): 

 
> qt(0.025/2,6, lower.tail=F) 

[1] 2.968687 

> qt(0.4/2,6, lower.tail=F) 

[1] 0.9057033 

The figure we require is given by 

      8532.25
3

79.662
)9057.0 2.9687(

2ˆ
12'  

x

n

MS
tt within

P   

 
So the smallest difference we could be reasonably sure of detecting 
with samples of size 3 is 26 g, or about a 37% reduction from the 
average for the growth of soybean in the experimental control (70 g). 
Clearly, our experiment is not nearly sensitive enough.  

So if we are to run the experiment again, what sample sizes should we 
use to be reasonably sure of detecting an effect? To answer this 
question, we need to do a prospective power analysis. 

Taking a 10% drop in yield as our smallest important difference, and 
striving for 80% chance of detecting such a difference, we have for 
our first iteration 

g0.770*10.0  ; 80.01  P ; 05.0 ; 025.0' ; 
79.66withinMS ; 3n ; 6  

      92.40)9057.09687.2(
0.7

79.66
22 2

2

2
12'

2







  


Pttn  

and for our second iteration 

40n ; 117  
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      45.26)8447.02706.2(
0.7

79.66
22 2

2

2
12'

2







  


Pttn  

and for our third iteration 

26n ; 75  

      77.26)8464.02873.2(
0.7

79.66
22 2

2

2
12'

2







  


Pttn  

Hence, the minimum sample size for us to be 80% sure of detecting a 
difference in yield as small as 10% at the 0.05 level of significance in 
an ANOVA with one control and two treatments is n=26. Our current 
sample size of n=3 is definitely inadequate, but served the purpose of 
allowing us to estimate how many measurements per factor level we 
need to take. 

If a sample size of 26 is impracticable, we have the choice of revising 
our decision on the minimum effect that is important to us, or to in 
some way reduce the variability in growth between plants within 
treatments. We might do this by taking germination as our starting 
point in the experiment rather than time of planting of the seed, or by 
reducing the genetic variability of the seeds we use, but with loss of 
generality. 

Results summary 

A fixed-effects, single-factor ANOVA failed to detect any significant 
differences in plant growth among fumigation treatments with SO2 
either at high (488.6 ppb) or low (97.3 ppb) concentrations (F=1.41; 
df=2,6; p>0.05) compared to the experimental controls (1.2 ppb).   

A retrospective power analysis indicated that a difference in soybean 
growth between the experimental control and one of the SO2 
treatments would have to be 15 g (a 20% reduction) or more to have a 
reasonable chance (80%) of being detected at the 5% level of 
significance.  Clearly sample sizes of n=3 are not sufficient to detect 
all differences of importance, so we cannot conclude that SO2 has no 
impact on soybean growth.  

Sample sizes of 62 or more would be needed to have an 80% 
probability of detecting a difference between control and treatment of 
4%.  

Discussion 

The exposure of soybean to high and low concentrations of SO2 
(488.6 and 97.3 ppb respectively) was expected to reduce the 
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production of soybean as measured by the total biomass at the end of 
the experiment (g/pot). That we failed to demonstrate such an effect 
leaves us with an inconclusive result. Either SO2 has no effect on 
soybean growth under the conditions we applied, or the effect is less 
than likely to be detected with three replicates per treatment. 

The recommendation is that the work be expanded, and that the 
researchers consider alternative designs for increasing the power of 
the analysis. Such options include: 

 re-evaluating the size of the smallest difference to be considered 
important, perhaps defining the smallest important difference as 
the difference that will trigger management intervention; 

 considering whether it can be argued that SO2 will either have no 
effect or will impede growth, allowing for a series of one-tailed 
tests following a significant result in the ANOVA; 

 increasing the number of SO2 treatments to enable analysis by 
regression rather than ANOVA;  

 increasing the sample size substantially. 

Source 

The data that form the basis of this example were kindly provided by 
Frank Stagnitti and Xianzhe Xiong of Deakin University. They are 
preliminary data from a pilot study of the effects of metals and 
sulphur dioxide on the production of primary crops. 
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Lesson 7: Some Challenging Exercises 

Assignment 1: Turbidity in Lake Burley Griffin 

Turbidity in lakes and storages is of interest to water scientists 
because it has a profound affect on aquatic biota, and it is especially 
implicated with the switch from systems where rooted aquatic plants 
dominate (e.g. Vallisneria) to systems where planktonic algae 
dominate (e.g. Microcystis).   

Turbidity is relatively easy to measure, and may be used as a 
surrogate for phosphorus in programmes monitoring water quality.   

In a pilot study, Kurt Hammerschmidt collected ten replicate samples 
of water from each of ten sites in Lake Burley Griffin.  The sites were 
specifically chosen at set intervals along the main channel leading 
from the inflow to the Scrivener Dam wall so that they could be 
revisited if necessary.  Turbidity (in ntu) was measured for each 
replicate sample taken at each site, and the data are shown in the 
table below. The data file "turbid.dat" can be found in your data file 
folder. 

Figure 4-15. A 
map of Lake Burley 
Griffin showing the 

location of 
sampling sites. 

 

Table 4-11. 
Turbidity 

measurements 
taken from each 

of ten sites along 
the channel in 

Lake Burley 
Griffin. 

SITE 
A B C D E F G H 1 J 
43 25 23 32 17 23 14 13 15 13 
28 28 24 32 21 21 18 26 15 15 
43 28 30 32 18 17 14 18 14 14 
28 25 32 33 17 18 16 15 12 13 
42 25 25 32 25 19 14 15 17 16 
43 25 28 29 17 24 9 14 19 19 
40 26 23 26 18 14 14 17 15 16 
35 25 25 38 14 17 26 15 14 15 
42 23 26 27 15 17 10 11 16 11 
43 25 27 29 15 18 15 14 14 15 
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Kurt was interested to know whether there were significant 
differences among the sites in mean turbidity, and if so, where those 
differences lay.  The study was conducted to determine whether it is 
sensible to take measurements of turbidity in urban lakes and 
storages at only a few sites, as is current practice. 

Describe as completely as possible an appropriate analysis and give 
reasons for your choice.  Be sure to specify the nature of the Factor 
(s) involved, and to state clearly the null hypotheses to be addressed. 

Enter the data in a form suitable for the nominated analysis, and 
conduct an exploratory analysis based on graphical presentations 
with box diagrams.  Include the box diagrams below. What would you 
anticipate the results of an appropriate ANOVA to be? 

Perform the Analysis of Variance and summarise the results in the 
form of an ANOVA table. 

Before interpreting the ANOVA table, examine a plot of the residuals 
to determine whether the assumptions of the analysis are tenable.  If 
not, try some potential remedies, and repeat the ANOVA. Please 
include any graphs from your residual analysis below. 

If the above analyses demonstrate a significant difference among the 
mean turbidity values, perform an appropriate follow-up analysis to 
determine where the differences lie. Present your results below. 

Write a summary of the results of the entire analysis, as might be 
included in the results section of a report or manuscript.  Refer in 
your summary to an ANOVA table and a figure showing the variation 
among sites (box diagrams).  Include in your results, a statement of 
any clear and statistically significant trends in turbidity, but do not at 
this stage attempt to explain them. 

Discuss the analysis in the context of the reasons for conducting the 
study.  What might be the causes of the observed variation in mean 
turbidity among sites? What advice can you give to the water 
scientists charged with the responsibility of monitoring turbidity in 
Lake Burley Griffin? 
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Exercise 4-2: Point Impact Assessment 

Phosphorus is an important nutrient in aquatic ecosystems, which 
can be changed dramatically through artificial discharges into 
streams and lakes.  Phosphorous loads can be increased by 
agricultural activities of adjacent catchment areas, from discharge of 
household effluents, especially detergents, and from discharge of 
industrial wastes. 

The following data are for concentrations of phosphorus (g/l) in 
samples of water taken at various distances up and downstream of an 
industrial wastewater outlet.  The figures in the body of the table are 
replicates taken from their respective locations at the one time. 

 

Table 4-12. 
Phosphorus 

concentration with 
distance 

downstream. 

Distance Downstream (km) 
- 0.5 0.0 1.0 2.0 3.0
4.86 6.16 6.82 5.86 5.31 
4.86 5.83 6.67 5.73 4.98
5.19 6.93 6.34 5.62 4.98 
4.31 6.16 6.08 4.83 5.46
4.99 6.93 5.73 5.49 4.66

 

The water scientist wishes to know whether the mean phosphorous 
levels differed among the sites and if so, were they significantly lower 
or higher downstream from the effluent discharge compared to the 
upstream "control" site.  He or she also needed to assess if the 
impact, if any, could be considered local or if it persisted well 
downstream. 

Describe as completely as possible an appropriate analysis and give 
reasons for your choice.  Be sure to specify the nature of the Factor 
(s) involved, and to state clearly the null hypotheses to be addressed. 

Enter the data in a form suitable for the nominated analysis, and 
conduct an exploratory analysis based on graphical presentations 
with box diagrams.  Include the box diagrams below. What would you 
anticipate the results of an appropriate ANOVA to be? 

Perform the Analysis of Variance. Before interpreting the ANOVA 
table, examine a plot of the residuals to determine whether the 
assumptions of the analysis are tenable.  If not, try some potential 
remedies, and repeat the ANOVA. Please include any graphs from 
your residual analysis below. 

Once you have the residuals in an acceptable form, repeat if 
necessary the Analysis of Variance and summarise the results in the 
form of an ANOVA table. 



Biometry  

 

 88 University of Canberra 

 

If the above analyses demonstrate a significant difference among the 
mean phosphorus values, perform an appropriate follow-up analysis 
to determine where the differences lie. Present your results below. 

Write a summary of the results of the entire analysis, as might be 
included in the results section of a report or manuscript.  Refer in 
your summary to an ANOVA table and a figure showing the variation 
among sites (box diagrams).  Include in your results, a statement of 
any clear and statistically significant trends in turbidity, but do not at 
this stage attempt to explain them. 

Discuss the analysis in the context of the reasons for conducting the 
study. What impact did the industrial effluent have on stream 
phosphorus levels, and how persistent was that impact.  If the impact 
is moderated by distance downstream, what biological processes 
might you suggest to explain this?  What advice would you give to the 
Environmental Protection Authorities charged with responsibility for 
monitoring and maintaining water quality in our streams? 

Discuss the adequacy of the experimental design, especially with 
regard to the use of an upstream site as a control. 
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Exercise 4-3: Duration of chase in Australian Chats 

Three species of Australian Chat (Epthianura) can be found in micro-
sympatry in mesic coastal, semi-arid and xeric arid regions of 
Western Australia.  Epthianura aurifrons is the most physiologically 
competent to handle aridity, Epthianura albifrons is the least 
physiologically competent and Epthianura tricolor is intermediate in 
competence. 

Territorial behaviour is expensive in terms of maintaining water 
balance, so data was collected for each species in the arid zone to see 
if physiological competence has a bearing on the duration of the 
territorial chase. A bird is said to engage in a territorial chase when it 
sees another bird off its territory. The data comprise a variable giving 
the species and a variable giving the duration of chase (in seconds). 
 

Table 4-13. 
Duration of chase 

in three species of 
Australian chat. 

SPECIES DURATION OF CHASE 
Albifrons 48 24 32 39
Tricolor 66 66 54 51
Aurifrons 72 74 76 70 

 
Analyse the data using an appropriate ANOVA model to address 
hypotheses on differences in duration of chase. 

Describe as completely as possible an appropriate analysis and give 
reasons for your choice.  Be sure to specify the nature of the Factor 
(s) involved, and to state clearly the null hypotheses to be addressed. 

Enter the data in a form suitable for the nominated analysis, and 
conduct an exploratory analysis based on graphical presentations 
with box diagrams.  Include the box diagrams below. What would you 
anticipate the results of an appropriate ANOVA to be? 

Before preparing an ANOVA table, examine a plot of the residuals to 
determine whether the assumptions of the analysis are tenable.  If 
not, try some potential remedies, and repeat the ANOVA. Please 
include any graphs from your residual analysis below. 

Perform the Analysis of Variance and summarise the results in the 
form of an ANOVA table. 

If the above analyses demonstrate a significant difference among the 
mean chase durations, perform an appropriate follow-up analysis to 
determine where the differences lie. Present your results below. 

Write a summary of the results of the entire analysis, as might be 
included in the results section of a report or manuscript.  Refer in 
your summary to an ANOVA table and a figure showing the variation 
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among species (box diagrams).  Include in your results, a statement 
of any clear and statistically significant trends in chase duration, but 
do not at this stage attempt to explain them. 

Discuss the analysis in the context of the reasons for conducting the 
study.  What might be the causes of the observed variation in chase 
duration among species taking into account differences in their 
physiological tolerance to aridity?  
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Exercise 4-4: Home range Estimation in Badgers 

Badgers are widespread in Britain.  In 1988, there were estimated to 
be around 42,000 social groups of badgers, and just under 200,000 
adult badgers. By 1997 this had risen to just over 50,000 social 
groups and 310,000 adult badgers. The population is now probably 
stable. However, badgers are a high profile species, and their biology 
and conservation is of great interest. 

Badgers live in social groups of four to 12 adults. They are a focus 
system for development of behavioral models in social grouping 
behavior that are uniquely relevant to carnivores. One of the 
prevailing models is known as the Resource Dispersion Hypothesis 
(RDH).  The RDH hypothesis suggests that the dispersion and 
richness of resources in the environment provide a passive 
mechanism for the formation of groups, even without the direct 
benefits of group living.  However, few studies have empirically 
tested the RDH in the field. 

Dominic Johnson and his colleagues tested several hypotheses about 
RDH with their data on badgers in Wytham Woods, near Oxford, UK.  
In order for them to make this a meaningful test though,  they had to 
standardise on an accepted method of describing home range.  A 
preferred method of calculating home range is a contentious issue 
ebated among wildlife biologists, so Dominic wished to compare the 
estimates of home range area by three calculation methods: the 
interpolated mapping method (INT), the minimum convex polygon 
method (MCP), and the Dirichlet tessellation method (TES). 

The data reside in the file badger.dat and comprise a class variable 
containing the method of home range area estimation and the home 
range areas (km2) as data pairs. 

Describe as completely as possible an appropriate analysis and give 
reasons for your choice.  Be sure to specify the nature of the Factor 
(s) involved, and to state clearly the null hypotheses to be addressed. 

Conduct an exploratory analysis based on graphical presentations 
with box diagrams.  Include the box diagrams below. What would you 
anticipate the results of an appropriate ANOVA to be? Do you think it 
likely that the assumptions of the analysis will be upheld. If not, why 
not? 

Perform the Analysis of Variance. Before interpreting the ANOVA, 
examine a plot of the residuals to determine whether the 
assumptions of the analysis are tenable.  If not, try some potential 
remedies, and repeat the ANOVA. You may need to hit the data with 
a sledge hammer to meet the assumption of normality – Y' = 
LOG10(LOG10(Y+1). If there is a conflict in meeting the two 
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assumptions of normality and homogeneity of variances, which takes 
precedence in this case? Why? Please include any graphs from your 
residual analysis below. 

After selecting your final transformation, repeat the ANOVA. If the 
above analyses demonstrate a significant difference among the home 
range areas, perform an appropriate follow-up analysis to determine 
where the differences lie. Present your results below. 

Write a summary of the results of the entire analysis, as might be 
included in the results section of a report or manuscript.  Refer in 
your summary to an ANOVA table and a figure showing the variation 
among sites (box diagrams).  Include in your results, a statement of 
any clear and statistically significant differences or trends in home 
range area, but do not at this stage attempt to explain them. 

Discuss the analysis in the context of the reasons for conducting the 
study.  What are the management implications of these results? 
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Exercise 4-5: T-tests versus ANOVA 

You would appreciate by now that the single factor fixed design 
analysis of variance can be applied to compare several means, but 
you may not have realised that it can be used for the two sample case 
in place of the Student's t-test.  Under such circumstances, when two 
statistical procedures are equally appropriate, it is satisfying to learn 
that they are mathematically equivalent and so always yield the same 
result.  In fact, there is a simple relationship between F and t. 

  F0.05(1)[1,] = t2 0.05(2)[] 

so the F value for the one-tailed test of analysis of variance, with 1 
and  degrees of freedom, is equal to the square of the t value for the 
equivalent t-test, with  degrees of freedom. 

This exercise is designed to demonstrate the point empirically.  
Consider again the study of Antechinus conducted by Geoff Smith at 
Cooloola in 1977 and 1978.  Recall that he was interested to see if the 
weights of male marsupial mice Antechinus flavipes differed for the 
two years. 

 

Table 4-14. 
Weights of 
Antichinus 

flavipes in two 
consecutive 

years. 

YEAR
1977 1978 

66 66 52 52 
72 57 52 49 
53 53 54 54 
62 61 54 50 
59 59 45 61 
  58  

 

Analyse the data using a student's t-test to determine if the weights of 
Antechinus flavipes differ significantly between years.  Record the 
sample value of t, the degrees of freedom, and the level of significance 
(p value).  Refer to statistical tables to obtain the tabulated value of t 
at the 95% level of significance. 

Now analyse these data as a single factor fixed model analysis of 
variance to address the same hypothesis.  Complete the following 
table of results. 

Does the above relationship hold for the sample values of t and F? 

What do you conclude about the likely outcomes of the two 
approaches to the same problem? 
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Where have we come? 

Lesson 7 is where the real learning occurs. In earlier lessons, you 
have read and understood written material and been led through 
worked examples. In Lesson 7 you were required to recall and 
integrate the information to complete some challenging real-world 
exercises. Recall in the context of problem solving is one of the best 
ways of achieving lasting learning.  

In completing this module successfully, you will have achieved a 
number of core competencies, namely, 

 Knowledge of the options available to you for analysing a single 
sample in terms of reporting its mean and the level of precision 
associated with it – the confidence limits. 

 Knowledge of the options available to you for comparing two 
samples to see if the differences you observe are sufficient to 
conclude that the difference is real. 

 Practical skills in the operation of R to undertake the necessary 
analyses.  

 The ability and confidence to to interpret the results of the 
analyses in a biological context based on demonstrated 
understanding of the analyses. 

 The ability to present findings in a style appropriate to the 
scientific literature. 

 Appropriate attitudes and efficient strategies for extending your 
abilities to conduct analyses and solve problems beyond the scope 
of this module, by using resource materials such as statistical texts, 
software manuals, and your colleagues. 
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