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Lesson 1: Key Concepts in Factorial ANOVA 

Overview 

In single-factor analysis of variance, each value of the response 
variable was classified according to a single criterion, a single factor. 
The factor might have been SITE in a river or LABORATORY in 
Chlorophyll-a testing trials. But what do we do when there is more 
than one factor? Factorial analysis of variance is one class of analyses 
for dealing with the effects of two or more factors on a single 
response variable. 

Take for example a study of soil phosphorus undertaken by Anne-
Marie Clements in the Sydney region (Clements, 1983). Three factors 
were thought to influence soil phosphorus – proximity to suburban 
development, soil type, and topographic location. Each soil 
phosphorus measurement could be classified as to whether it was 
close or remote to suburban development, whether it was taken from 
shale-derived or sandstone-derived soils, and whether it was taken 
from a hilltop, a north facing slope, a south facing slope, or a valley. 

If we take three phosphorus measurements for each combination of 
the levels of each of the factors, then we have a fully-crossed, 
balanced design. It is called a factorial design (Figure 5-1). 

Figure 5-1. 
Diagrammatic 
representation 

of the data 
classified 

according to a 
three-way 

factorial design. 

There are three factors – topographic location has four levels (a = 4), 
soil type has two levels (b = 2) and proximity to suburban 
development has two levels (c = 2). The response variable is soil 
phosphorus. There are three values of the response variable in each 
cell (n = 3), that is, three values for each combination of the factor 
levels. 
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A number of research questions can be asked of these data. 

Are there significant differences in soil phosphorus between 
topographic locations? Are there significant differences in soil 
phosphorus between shale-derived and sandstone-derived soils? 
Does proximity to urban development influence soil phosphorus? 
These questions relate to the main effects of the three factors.  

There are also questions to do with how the factors interact. If there 
is a difference between soil types in phosphorus, does the magnitude 
of the difference depend on which topographic location the soil 
samples were taken? In other words, does soil type interact with 
topographic location? This is a question about a first-order 
interaction. Such an interaction would occur if the magnitude of 
the difference in soil phosphorus between shale-derived and 
sandstone-derived soils was greater in the valleys than on the 
hilltops. 

Similar questions could be asked about the possible interaction 
between proximity to urbanisation and topographic location, or 
between proximity to urbanisation and soil type. In a three-way 
factorial design, there are three first-order interactions. 

There is also a research question related to a second-order 
interaction. Say there was a first-order interaction between soil 
type and topographic location. If the magnitude of this interaction 
depended on whether the samples were taken close to or distant from 
urbanisation, then we would have a second-order interaction. 

So in this three-way factorial ANOVA, we can ask: 

 Does soil type have an impact on soil phosphorus? 

 Does topographic location have an impact on soil phosphorus? 

 Does proximity to urbanisation have an impact on soil 
phosphorus? 

 Does the magnitude of the effect of soil type depend on 
topographic location (or vice versa) – is there an interaction 
between soil type and topographic location? 

 Does the magnitude of the effect of soil type depend on proximity 
to urbanisation (or vice versa), ie – is there an interaction 
between soil type and proximity to urbanisation? 

 Does the magnitude of the effect of topographic location depend 
on proximity to urbanisation (or vice versa), ie – is there an 
interaction between topographic location and proximity to 
urbanisation? 

 Does the magnitude of the interaction between soil type and 
topographic location depend upon proximity to urbanisation, ie – 
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is there a three-way interaction between soil type, topographic 
location and proximity to urbanisation. 

This is a remarkable array of hypotheses and research questions that 
can be addressed by this analysis, compared with what was possible 
in the single-factor design.  

The concept of interaction is the special contribution factorial 
ANOVA makes to our understanding of variation in the natural 
world. 

Three models of factorial ANOVA are recognised. In the Fixed 
Model, all the factors are fixed. In the Random Model, all the 
factors are random. In the Mixed Model, some factors are fixed and 
some are random. In single-factor ANOVA, choice of model 
influenced the approach taken in following up a significant result, but 
did not influence the calculation of the F value in the test of 
significance. In factorial ANOVA, choice of the model will influence 
both the calculation of the F statistics and the approach taken to 
following up a significant result. In some cases, the analysis can 
proceed without replication, and therefore without a calculable 
MSwithin. 

A significant result for a fixed factor in the factorial design indicates 
significant variation among the means over and above that expected 
to occur by chance alone, but it does not provide information on 
which factor classes differ from which others. Such a significant 
result must be followed by a set of comparisons to determine where 
the differences lie. The appropriate procedures to follow-up a 
significant result in a fixed model include testing the significance of 
differences between pairs of means using one of several multiple 
comparison procedures. Most statistical packages provide a wide 
range of options for undertaking multiple comparisons following a 
significant result in a factorial ANOVA. 

The appropriate follow-up procedure for a significant random factor 
is to estimate the added variance component due to the effect of the 
factor. Most statistical packages provide a procedure for estimating 
the added variance component. 

Rationale 

Why do we need a new approach? 

The advance factorial ANOVA affords over single-factor ANOVA is 
best illustrated by an example. 

Feral pigs are not native to Australia and, when running wild, are 
significant vertebrate pests. Poisoning with sodium mono-
fluoroacetate (1080) is a common method of feral pig control. Field 
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observations suggest, however, that pigs become bait-shy to 1080. 
Hone and Kelba (1984) wished to investigate this possibility using 
penned feral pigs and a rigorous experimental design. 

On Day 1, pigs were offered wheat only and their intake was recorded. 
On Day 2, they were offered one of the following combinations: 

 Wheat only 

 Wheat and water 

 Wheat, water and dye 

 Wheat, water and 1080 

 Wheat, water, dye and 1080 

The dye is necessary for safety reasons. Water is necessary to add the 
dye and 1080. Intake of the bait was again recorded. Intake on Day 1 
was subtracted from intake on Day 2, and the response variable was 
change in intake in kg (Table 5-1).  

The problem Hone and Kleba wished to address was to determine if 
there was a significant difference in the response of pigs to the 
different bait mixtures. Let us consider some options for undertaking 
this experiment and analysing the data so obtained. 

Option 1: Random Allocation of Sexes 

One design appropriate to this problem is shown in Table 5-1. Here 
we have a single-factor design, with four pigs per pen, each pen 
subjected to a different bait treatment.  

A significant result for the ANOVA could be followed by suitable 
contrasts (see Module 4) between Wheat as the control for the Wheat 
& Water treatment, and between Wheat & Water as the control for 
the remaining treatments. 

Table 5-1. 
Change in bait 
intake by feral 

pigs in response 
to different bait 

constituents. 

Wheat 
Wheat & 

water 
Wheat, water & 

dye 
Wheat, water & 

1080 
Wheat, water, 

dye & 1080 

0.188 0.050 0.058 -0.172 -0.610 

-0.058 -0.138 -0.082 -1.280 -0.830 

-0.280 -0.540 -0.260 -0.894 -0.837 

-0.062 -0.336 -0.123 -0.672 -1.202 

The single-factor ANOVA approach assumes that all other potentially 
influential factors are held constant.  

What if a second potentially influential factor exists and is not held 
constant? What is the impact of the sex of the pig? What will happen 
to our analysis if the pigs chosen for experimentation were a mixture 
of males and females, and if males and females respond differently to 
the addition of water, dye and 1080 to their food? 
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The first issue that arises is artificial inflation of the error term 
of the F ratio in the ANOVA, leading to loss of power. If for example 
we include both male and female pigs in our analysis at random 
(Table 5.2) and the sexes differ in their responses, you can see that 
the within cell variation will contain a contribution from differing 
responses of males and females and so will be inflated by those sex 
differences. Recall from Module 4 that the F ratio in the single factor 
ANOVA is calculated as 

within

among

MS

MS
F   

If MSwithin is artificially inflated, then this F ratio will be artificially 
deflated. Power of the analysis will be compromised, and possibly 
severely so. Real differences in the response of the pigs to the 
different bait treatments will be potentially obscured by inflation of 
the error term MSwithin.If the difference between the sexes is large, we 
will lose any chance of detecting even a substantial treatment effect. 

Table 5-2. Change 
in bait intake by feral 

pigs in response to 
different bait 

constituents. Note 
the unbalanced 

distribution of male 
pigs (bold) and 

female pigs across 
the factor classes. 

Wheat 
Wheat & 

water 
Wheat, water & 

dye 
Wheat, water & 

1080 
Wheat, water, 

dye & 1080 

0.188 0.050 (0.058) -0.172 (-0.210) 

(-0.058) (-0.138) -0.082 (-1.280) -0.230 

-0.280 (-0.540) -0.260 (-0.894) -0.837 

(-0.062) -0.336 (-0.123) -0.672 (-1.202) 

     

A more serious issue is that of confounding. If we for some reason 
preferentially pick out the male pigs and allocate pigs to pens from 
left to right, then the problem for the analysis is fairly obvious (Table 
5-3). We will not be able to disentangle differences in response owing 
to bait additives from differences in response between males and 
females. Any differential response of the pigs to Wheat, Water, Dye & 
1080 that we detect could be because male pigs dominate that 
treatment. Our design will have been confounded.  

Table 5-3. Change 
in bait intake by feral 

pigs in response to 
different bait 

constituents. Note 
the unbalanced 

distribution of male 
pigs (bold) and 

female pigs across 
the factor classes. 

Wheat 
Wheat & 

water 
Wheat, water & 

dye 
Wheat, water & 

1080 
Wheat, water, 

dye & 1080 

0.188 0.050 (0.058) (-0.172) (-0.210) 

-0.058 (-0.138) -0.082 (-1.280) (-0.230) 

-0.280 -0.540 -0.260 (-0.894) (-0.837) 

-0.062 -0.336 (-0.123) -0.672 (-1.202) 

     

Confounding in a single factor ANOVA occurs when a second 
uncontrolled factor, correlated in some way with the first, has an 
influence on the response variable. In a confounded experiment, such 
as shown in Table 5-3, we would not be able to unequivocally assign a 
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significant result to the variable we have chosen to control — bait 
composition. The significant result may have arisen instead because 
of the confounding effect of the uncontrolled variable, sex. 

Option 2: Even Spread of Sexes across Treatments 

To overcome the confounding, we could systematically allocate male 
and female pigs across the pens (Table 5-4), so that each pen had two 
males and two females. Any difference between the sexes would then 
cancel out. 

Table 5-4. Change 
in bait intake by 

feral pigs in 
response to 
different bait 

constituents. Note 
the balanced 

distribution of male 
pigs (bold) and 

female pigs across 
the factor classes. 

Wheat 
Wheat & 

water 
Wheat, water & 

dye 
Wheat, water & 

1080 
Wheat, water, 

dye & 1080 

(0.188) (0.050) (0.058) (-0.172) (-0.210) 

(-0.058) (-0.138) (-0.082) (-1.280) (-0.230) 

-0.280 -0.540 -0.260 -0.894 -0.837 

-0.062 -0.336 -0.123 -0.672 -1.202 

     

The downside of this approach is that, if there is a difference between 
the sexes, we are still presented with the problem of artificial 
inflation of the within sample variance, with attendant loss of power, 
as outlined above.  

Option 3: Discard One Sex 

What if instead we select only pigs of one sex (Table 5-5)? This will 
solve the problems of confounding and of potential inflation of the 
error term, but at the expense of loss of generality. Our 
conclusions will only apply to male pigs. We could regain the 
generality by repeating the experiment for female pigs, but at double 
the cost. 

Table 5-5. 
Change in bait 
intake by male 

feral pigs in 
response to 
different bait 
constituents. 

Wheat 
Wheat & 

water 
Wheat, water & 

dye 
Wheat, water & 

1080 
Wheat, water, 

dye & 1080 

(0.188) (0.050) (0.058) (-0.172) (-0.210) 

(-0.058) (-0.138) (-0.082) (-1.280) (-0.230) 

(-0.280 (-0.540) (-0.260) (-0.894) (-0.837) 

(-0.062 (-0.336) (-0.123) (-0.672) (-1.202) 

     

Clearly, approaching this problem from the perspective of single-
factor ANOVA is fraught with difficulty.  

Option 4: Factorial ANOVA 

Factorial analysis of variance overcomes these difficulties. Hone and 
Kelba allocated their pigs to experimental treatments in a two-way 
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crossed design. There were ten pens in all, with two pigs per pen. Five 
pens contained only female pigs, and five only males  
(Table 5-6). 

Note that we have data for each combination of the factor levels, 
where there are five levels for the BAIT factor and two levels for the 
SEX factor. It is a crossed design. The equal sample sizes in each 
cell indicate that it is also a balanced design. 

Table 5-6. Change 
in bait intake by 

feral pigs in 
response to 
different bait 

constituents. Pigs 
are classified 

according to two 
criteria – bait 

treatment and sex. 

 Wheat 
Wheat & 

water 
Wheat, water 

& dye 
Wheat, water & 

1080 
Wheat, water, 

dye & 1080 

Male 0.188 
-0.058 

0.050 
-0.138 

0.058 
-0.082 

-0.712 
-1.280 

-0.610 
-0.830 

Female -0.280 
-0.062 

-0.540 
-0.336 

-0.260 
-0.123 

-0.894 
-0.672 

-0.837 
-1.202 

      

In this design, a two-way factorial design, we consider the variability 
among mean responses for the different bait types, after having 
averaged out the effect of sex. This averaging out is a simple process 
if the sample sizes are equal. We simply consider the column means 
of Table 5-6. 

We can test the variability among column means (ie bait types) 
against what we would expect given observed variation within 
columns, after taking out the effect of sex. We take out the effect of 
sex from the within column variation by averaging the within cell 
variance for each column. 

Similarly, we can test the variability among row means (ie sexes) 
against what we would expect given observed variation with rows, 
after taking out the effect of bait type.  

These are tests of the main effects.  

Finally, we can test to see if the two factors BAIT and SEX are acting 
in concert, one influencing the effect of the other, to influence change 
in bait intake of the pigs. This is a test of interaction. 

We have overcome the problem of possible confounding by 
controlling both influential factors in a fully crossed design. We 
overcome the potential inflation of the mean square error (in this 
case MSwithin) by taking out the effect of sex before we consider the 
significance of variation among the means for bait type, and vice 
versa. We maintain the generality of our conclusions by including 
both sexes in a combined analysis. This is what factorial ANOVA 
delivers. 

Let us look at this approach in more detail. 
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Examining the marginal means 

The experiment of Hone and Kleba has two factors. Factor A is bait 
type (BAIT) with 5a  levels, and Factor B is sex (SEX) with 2b  
levels.  There are two replicates in each cell of the 5 x 2 data matrix (n 
= 2). The response variable is change in grain intake (kg).  

A useful exploratory tool is to present the data together with the row 
and column marginal means, and the grand mean (Table 5-7). The 
column marginal means are for BAIT, and are based on 4bn  
measurements. The row marginal means are based on 10an  
measurements. 

Table 5-7 
 Cell and 

marginal means 
for a two-way 

classification of 
response of 

male and female 
pigs to different 

bait constituents. 

 Wheat 
Wheat & 

water 

Wheat, 
water & 

dye 

Wheat, 
water & 

1080 

Wheat, 
water, dye 

& 1080  

Male 0.07 -0.04 -0.01 -1.00 -0.72 -0.34 

Female -0.17 -0.44 -0.19 -0.78 -1.02 -0.52 

 -0.05 -0.24 -0.10 -0.89 -0.87 -0.43 

The terminology used to describe the cell means, marginal column 
and row means and the grand mean is shown in Table 5-8. 

Table 5-8 
Terminology for 

cell and marginal 
means in the 

two-way factorial 
ANOVA. Factor 

A (BAIT) has five 
factor levels 

(a=5). Factor B 
(SEX) has two 

factor levels 
(b=2). 

 Wheat 
Wheat & 

water 

Wheat, 
water & 

dye 

Wheat, 
water & 

1080 

Wheat, 
water, dye 

& 1080  

Male 
11Y  21Y  31Y 41Y  51Y

 1B  

Female 
12Y  22Y  32Y 42Y  52Y

 2B  

 
1A  2A  3A

 4A  5A
 Y  

There is a difference in the response variable, change in grain intake, 
between males (340 g reduction) and females (520 g reduction), but 
is this difference statistically significant? Similarly, grain intake 
changes by a greater amount in the treatments with dye and 1080 
added, but is this statistically significant? Are the trends across bait 
types the same for males and females, or does the differential 
response to bait additives vary between males and females? 

Single-factor ANOVA on cell means 

While a single factor ANOVA is not appropriate to compare between 
bait treatments, or between sexes, it is appropriate to look for 
significant differences among the 10 cells means of the two-way table 
of Table 5-7. This can be achieved with a simple single-factor ANOVA 
comparing the means of the a.b = 10 cells each with 2n  values.  
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Clearly from Table 5-9, there is a significant difference among cells 
(in this case, pig pens) (F = 8.98; df = 9,10; p < 0.001). 

Table 5-9. 
 Analysis of variance 

table for a comparison 
among pens in the 
mean response of 

male and female pigs 
to different bait 

constituents. 

Source DF SS MS F value Pr > F 
Among cells 9 3.1386 0.3487 8.98 0.0010 

Within 10 0.3885 0.03885   

Total 19 3.5271    

      

      

With only little adjustment of the formulae given in Module 4, the 
formulae for the mean squares are: 

 
 

2

22

~
1








nab

YY

ab

S

MS

a b na b

within  

 
22

2

1 effecttreatment

a b n

cellsamong n
ab

YY

MS  






 

A test for an overall effect of the treatments is given by 

2

22


 effecttreatment

within

cellsamong n

MS

MS
F


  

The partition of the sums of squares and partition of the degrees of 
freedom are  

withincellsamongtotal SSSSSS   

      
a b na b na b n

YYYYYY
222

 

        abn – 1          =       ab – 1             +       ab(n – 1) 

in agreement with the standard partition of the sums of squares for 
the single-factor ANOVA described in Module 4 (Figure 5-2). So far, 
nothing really new. 



Biometry  

 

 14 University of Canberra 

 

Figure 5-2. 
Diagrammatic 

representation of 
the partition of 

the sums of 
squares in 

single-factor 
ANOVA. In this 

case, we are 
applying the 
theory to the 

variation among 
and within cells 
of the two-way 

classification of 
Table 5-6. 

 

Partitioning the among-cell variation 

We might now ask, how much of the variation among cell means can 
be attributed to a differential response of the pigs to bait type, or to 
differences between the sexes? 

We can define a Mean Square representing the variation among 
means for the bait types (columns of Table 5-7) as 

 
22

2

1 A

a b n

Aamong bn
a

YA

MS  






 

and test for an added variance component due to differences among 
bait types in the mean change in bait intake using the cellswithinMS as the 

error term. That is, we can test for an effect of Factor A (bait type) 
using 

2

22


 A

within

Aamong bn

MS

MS
F


  

This is a test for the significance of differences in the response of the 
pigs to the differing bait constituents. 

Similarly, 

 
22

2

1 B

a b n

Bamong an
b

YB

MS  






 

2

22


 B

within

Bamong an

MS

MS
F


  
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This is a test for the significance of differences in the response of 
male and female pigs. 

A component of the sums of squares among cell means can be 
explained in part by a component attributable to variation among 
bait types (among marginal column means) and a component 
attributable to variation between the sexes (among the marginal row 
means). 

It turns out that if you subtract AamongSS  and BamongSS  from totalSS  there 

is something left over. This residual quantity is called the sums of 
squares interaction, for reasons that will become evident later. So we 
have 

AxBBAcellsamong SSSSSSSS   

     
  







a b n

a b na b na b n

YBYA

YBYAYY
222

 

      11111  babaab  

So now we have a complete partition of the total sums of squares 
(Figure 5-3). The total sums of squares can be split into a component 
attributable to variation among the cell means and a component 
attributable to variation within cells. The among cells sums of 
squares can be further partitioned into a component attributable to 
the effect of Factor A, a component attributable to the effect of Factor 
B, and an additional component attributable to the interaction 
between Factor A and Factor B. 

Figure 5-3. 
Diagrammatic 

representation of 
the partition of 

the sums of 
squares for the 

factorial ANOVA.  
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The interaction mean square is given by 

  
  

22

11 AxB

a b n

AxB n
ba

YBYA

MS  






 

This can be tested by placing the mean square interaction over the 
mean square within as the error term. 

2

22


 AxB

within

AxB n

MS

MS
F


  

The interpretation placed on a significant interaction will be 
discussed later. 

The ANOVA table 

The partition of the sums of squares shown in Figure 5-3 is translated 
into an ANOVA table (Table 5-10). 

Table 5-10. An 
ANOVA table for 

a two-way 
factorial design 
with a=5 levels 
of Factor A and 

b=2 levels of 
Factor B (both 

fixed). There are 
2 replicates in 

each cell. 

Source DF SS MS F Pr > F 
Among cells 9 3.1387 0.3487 8.98 0.0010 

       BAIT 4 2.7604 0.6901 17.77 0.0002 

       SEX 1 0.1606 0.1606 4.13 0.0694 

       SEX.BAIT 4 0.2177 0.05441 1.40 0.3023 

WITHIN 10 0.3885 0.03885   

TOTAL 19 3.5271    

      

Confirm for yourself that the degrees of freedom and the sums of 
squares for BAIT, SEX and SEX.BAIT add up to those of AMONG 
CELLS. Confirm also that the sums of squares and the degrees of 
freedom for AMONG CELLS and WITHIN add up to the TOTAL 
sums of squares and degrees of freedom.  

The tests of the overall effects of the treatments, the main effects of 
BAIT and SEX, and of the interaction SEX.BAIT, all have withinMS  as 

the mean square error. This is true only of the fixed design, where all 
factors are fixed. 

2

22


 effecttreatment

within

cellsamong
overall

n

MS

MS
F


  

1ab  

2

22


 A

within

Aamong
A

bn

MS

MS
F


  

1a  
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2

22


 B

within

Bamong
B

an

MS

MS
F


  

1b  

2

22


 AxB

within

AxB
AxB

n

MS

MS
F


  

  11  ba  

 2withinMS  )1( nab  

The following interpretation can be placed on the ANOVA table.  

There were significant differences among the cell means (F = 8.98; df 
= 9,10; p <0.001), of which 87.9% could be explained by an effect of 
differing bait constituents (F = 17.77; df = 4,10; p< 0.0002). No 
significant difference could be demonstrated between the sexes (F = 
4.13; df = 1,10; p=0.07) and there was no interaction between bait 
type and sex (F = 1.40; df = 4,10; p = 0.30). 

An intuitive view 

The foundation of ANOVA, as we saw in Module 4, is based on a 
relationship between the variance of sample means expected under 
the null hypothesis and the variance of measurements within 
samples. 

 
nY

2
2    and   

n

S
S

Y

2
2   

We can use this formula to calculate our expectation. 

In plain English, this says that, if the null hypothesis is true, the 
variation we observe among the means should roughly equal what we 
expect using the above relationship, that is, on consideration of the 
variation within samples.  

Our expectation for the variation among means generally, if the null 
hypothesis is true, is 

n

S
Expected

2

  

If the null hypothesis is not true, then we might expect the observed 
variation among the means to be significantly greater than 
expectation, and we can test this with an F test. 

We put observed variation among means over expected: 
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within

amongYY

MS

MS

S

nS

n
S

S

Expected

Observed
F 

2

2

2

2

 

The F ratio in ANOVA can be interpreted intuitively as a test of the 
observed variation among means over expected.  

Refer to Module 4 if you do not follow the argument, where it is 
presented in more detail.  

Consider again the table of marginal means for the feral pig study 
(Table 5-11). The marginal column means represent the mean 
response for each bait type, averaged across the two sexes. Note that 
the sexes contribute equally to each bait treatment. If sex and bait are 
additive in their effects, that is, if there are no complicating 
interactions between the two, the pattern we see across the marginal 
means for BAIT is attributable to the effect of the baits alone, 
independent of any effect of sex. 

In other words, by averaging across the sexes in a fully-crossed, 
balanced design, we have effectively cancelled out the effect of sex 
when computing the mean response for each bait type. The 
variation among the marginal means for BAIT represents 
among BAIT variation, after having corrected for or 
controlled the effect of SEX. 

Table 5-11 
 Cell and 

marginal means 
for a two-way 

classification of 
response of 

male and female 
pigs to different 

bait constituents. 

 Wheat 
Wheat & 
water 

Wheat, 
water & 
dye 

Wheat, 
water & 
1080 

Wheat, 
water, dye 
& 1080  

Male 0.188 
-0.058 

0.050 
-0.138 

0.058 
-0.082 

-0.172 
-1.280 

-0.610 
-0.830 

-0.34 

Female -0.280 
-0.062 

-0.540 
-0.336 

-0.260 
-0.123 

-0.894 
-0.672 

-0.837 
-1.202 

-0.52 

 -0.05 -0.24 -0.10 -0.89 -0.87 -0.43 

You can see by perusing the marginal means that there is 
considerable observed variation among the bait treatments (Table 5-
11). But is it statistically significant? 

What is a reasonable expectation for variation among bait treatments 
under the null hypothesis? 

We have seen that we cannot use the within column variation as a 
basis for calculating our expectation, because it includes a component 
attributable to differences between the sexes. To do so would inflate 
our expectation artificially, and our observed variation would appear 
less significant (falsely so). 

What we can do instead is take out the component of variation within 
columns attributable to sex by averaging the within cell variance for 
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each column. This gives us a good estimate of the within column 
variance that would occur if sex were not at all influential.  

We calculate 

b

S
b

 2

 

for each column in Table 5-7. We then average this across columns to 
get our estimate of the within-column variance 

within

a b

a

b

BA MS
ab

S

a

b

S

S 
























2

2

2
|  

We call this 2
|BAS  to indicate that it is the within-column variance after 

we have taken out the effect of sex (Factor B). By simple 
rearrangement, this is equivalent to the average within-cell 
variance, withinMS . 

Each column mean is based on bn values, so using this estimate of 
the within column variance (after taking out the sex component), we 
would expect the variance of the column marginal means to be 

bn

S BA
2

|  

We now have 

within

AAmong

BA

A

BA

A
BA MS

MS

S

bnS

bn
S

S

Expected

Observed
F 

2
|

2

2
|

2

|  

So this provides a basis for a more intuitive statement about what we 
are testing using the F ratios in factorial ANOVA.  

We are comparing how variable the marginal means are, say for 
factor BAIT, against how variable we would expect them to be under 
the null hypothesis.  

In doing so, we test the effect of the main effect of BAIT after we 
have taken out the effect of SEX. Similarly, the test of the main 
effect of SEX is undertaken after we have taken out the effect 
of BAIT. This is a critical point. 
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We could adjust the way in which we present sources of variation in 
the ANOVA table to reflect this new insight (Table 5-12), but it is not 
common practice. 

Table 5-12. An 
ANOVA table for 

a two-way 
factorial design 
with a=5 levels 
of Factor A and 

b=2 levels of 
Factor B (both 

fixed). There are 
2 replicates in 

each cell. 

Source DF SS MS F Pr > F 
Among cells 9 3.1387 0.3487 8.98 0.0010 

       BAIT|SEX, 4 2.7604 0.6901 17.77 0.0002 

       SEX|BAIT, 1 0.1606 0.1606 4.13 0.0694 

       SEX.BAIT| 4 0.2177 0.05441 1.40 0.3023 

WITHIN 10 0.3885 0.03885   

TOTAL 19 3.5271    

      

We can use this new insight to explain why the sums of squares for 
the main effects do not fully account for the sums of squares among 
cells. If SEX and BAIT have a component of influence on the 
response variable that is in common, then we have taken it out on 
both occasions when we test the main effects.  

This component in common is the interaction between the two 
factors. It occurs when the value taken by one Factor influences the 
effect of the other Factor.  

Where have we come? 

In this introduction to Factorial ANOVA, you should have come to 
appreciate that 

 Single Factor ANOVA is often a limited approach because 
typically the response variable is not solely influenced by a single 
influential factor. We acknowledge that many factors may 
influence our response variable, but through the process of 
randomisation, simply add to the background noise in the data 
(the error variance or MSwithin). 

 When the effect of secondary factors is substantial, we need to 
accommodate them in the analysis, and one way of doing this is 
to control them experimentally, by including them as additional 
factors in the analysis. An ANOVA with more than one factor, in 
a fully crossed design, is called Factorial ANOVA. 

 Factorial ANOVA allows us to investigate the simultaneous 
effects of more than one factor and the interactions among those 
factors in determining the value of the response variable. 

In addition, you should now understand the additional partitioning 
of the total sums of squares that underpins factorial ANOVA. In 
particular, you should appreciate that the factorial ANOVA begins 
with a single factor ANOVA on the cells in the crossed design, and 
that the among cells variation can be further partitioned into 
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components attributable to the main effects of the factors and 
interactions. This is typically reported in the form of a standard 
ANOVA Table. 

With this theory under your belt, it is now time to look more seriously 
at the concept of interaction. 



Biometry  

 

 22 University of Canberra 

 

Lesson 2: The concept of interaction 
Six simple scenarios 

 

Let us consider a series of simple hypothetical examples to tease out 
what is meant by the significance of the main effects and interaction.  

Reaction time in humans can be measured by placing the hands 10 
cm apart, holding a metre rule between them, dropping it and 
measuring how many cm pass through the hands before the ruler is 
caught. This is our response variable, in cm. 

We know that alcohol taken for recreational purposes will adversely 
influence our reaction time. We know also that some medicines have 
the same effect, such as antihistamines. Consider a design where we 
assign five subjects to each of four categories at random. They are 
subject differentially to the following four treatments 

 Orange juice and a placebo tablet 

 Orange juice and an antihistamine 

 Orange juice laced with vodka and a placebo tablet 

 Orange juice laced with vodka and an antihistamine 

So we have a fully crossed design, with some subjects receiving each 
combination of the levels of two factors, ALCOHOL and DRUG. The 
orange juice is provided only to disguise the presence of the alcohol. 
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Scenario 1: The null case 

Under Scenario 1 (Figure 5-4), the null case, there is no effect of 
either alcohol or antihistamine on reaction time. It stays steady at the 
average of 15 cm in all cells. The marginal means are constant at 15 
cm, and the plots of the cell means show two coincident horizontal 
lines. None of the effects in the ANOVA table are significant.  

Figure 5-4. 
Reaction time in 

20-year-old 
males under the 

influence of 
various 

combinations of 
alcohol and 

antihistamine.  

 

There is no 
effect of any 
treatment on 

reaction times. 

  ALCOHOL  

  NO YES  

 

Anti
H 

NO 15 15 15  

YES 15 15 15  

  15 15  

 

             

 
Source DF Significance 
Among cells 3 NO 

       A | B 1 NO 

       B | A 1 NO 

       AxB 1 NO 

WITHIN 16  

TOTAL 19  

A = ALCOHOL   B = ANTIHISTAMINE  
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Scenario 2: A main effect of Factor A, no interaction 

Under Scenario 2 (Figure 5-5), alcohol increases reaction time by 5 
units and antihistamine has no effect. The influence of alcohol is the 
same whether or not anti-histamine is present, so there is no 
interaction between the two factors.  

In the absence of an interaction, the true influence of the factors can 
be seen as differences among the marginal means and the 
significance of these differences is accurately reflected in the F tests 
of the ANOVA table. 

Factor A  Main Effect 
Factor B  No Main Effect 
No Interaction 

Figure 5-5. 
Reaction time in 

20-year-old males 
under the 

influence of 
various 

combinations of 
alcohol and 

antihistamine. The 
main effect of 

alcohol is 
significant, adding 
5 units to reaction 

time. 

  ALCOHOL  

  NO YES  

 

AntiH 
NO 15 20 17.5  

YES 15 20 17.5  

  15 20  

        

Source DF Significance 
Among cells 3 YES 

       A | B 1 YES 

       B | A 1 NO 

       AxB 1 NO 

WITHIN 16  

TOTAL 19  

A = ALCOHOL   B = ANTIHISTAMINE 

The graphs of the response variable against each of the factors 
provide a useful aid to interpretation. It is clear from both graphs 
that alcohol is adding 5 units to reaction time, and that antihistamine 
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is not having any influence. The fact that the lines are parallel 
(coincident in one case) indicates that there is no interaction. 

Scenario 3: Main effects of factor A and B, no interaction 

Under Scenario 3 (Figure 5-6), the main effect of alcohol adds 5 units 
to reaction time as before; antihistamine adds 10 units. When both 
alcohol and antihistamine are consumed, 15 units are added to 
reaction time, so the effect of the two factors is additive. There is no 
interaction. 

Factor A  Main Effect 
Factor B  Main Effect 
No Interaction 

Figure 5-6. 
Reaction time in 

20-year-old males 
under the 

influence of 
various 

combinations of 
alcohol and 

antihistamine. The 
main effect of 

alcohol adds 5 
units to reaction 
time as before; 

antihistamine adds 
10 units. When 

both alcohol and 
antihistamine are 

consumed, 15 
units are added to 

reaction time, so 
the effect of the 

two factors is 
additive. 

  ALCOHOL  

  NO YES  

 

AntiH 
NO 15 20 17.5  

YES 25 30 27.5  

  20 25  

     

Source DF Significance 
Among cells 3 YES 

       A | B 1 YES 

       B | A 1 YES 

       AxB 1 NO 

WITHIN 16  

TOTAL 19  

A = ALCOHOL   B = ANTIHISTAMINE 

Again, in the absence of an interaction, the true influence of the 
factors can be seen as differences among the marginal means and the 
significance of these differences is accurately reflected in the F tests 
of the ANOVA table. 

It is clear from both graphs (Figure 5-6) that alcohol is adding 5 units 
to reaction time in the absence of antihistamine, and that 
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antihistamine adding 10 units to reaction time in the absence of 
alcohol. The fact that the lines are parallel again indicates that there 
is no interaction, that the effects of the two factors are additive. 

Scenario 4: Main effect of factor A, with synergistic interaction 

In Scenario 4 (Figure 5-7), alcohol adds 5 units to reaction time as 
before. Antihistamine has no effect in the absence of alcohol, but 
magnifies the effect of alcohol when both are present. The effect of 
alcohol depends on whether or not antihistamine is consumed – the 
two factors are interacting. The nature of the interaction is 
synergistic, because the presence of antihistamine magnifies the 
effect of alcohol. 

Factor A  Main Effect 
Factor B  No Main Effect 
Synergistic Interaction  

Figure 5-7. Reaction 
time in 20-year-old 

males under the 
influence of various 

combinations of 
alcohol and 

antihistamine. The 
main effect of 

alcohol adds 5 units 
to reaction time in 

the absence of the 
drug as before; 

antihistamine has no 
effect in the 

absence of alcohol, 
but magnifies the 

effect of alcohol 
when both are 

present. 

 

  ALCOHOL  

  NO YES  

 

Anti
H 

NO 15 20 17.5  

YES 15 30 22.5  

  15 25  

      

Source DF Significance 
Among cells 3 YES 

       A | B 1 YES 

       B | A 1 YES 

       AxB 1 YES 

WITHIN 16  

TOTAL 19  

A = ALCOHOL   B = ANTIHISTAMINE 

So how is this scenario reflected in the outcomes of an analysis? First 
of all, the graphs show lines that are no longer parallel, indicating a 
potential interaction between the two factors. Close inspection 
reveals that the two factors are synergising not interfering. The 
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significance of this interaction is demonstrated by the appropriate 
entry in the ANOVA table. 

The main effect of alcohol is evident in the marginal means and in the 
ANOVA table, but curiously, so too is the main effect of 
antihistamine. The true situation is that antihistamine exerts its 
influence only through its interaction with alcohol, so why does the 
ANOVA table indicate that it is also exerting a main effect? 

It is because Factor B (Antihistamine) is exerting an influence on the 
means for each level of Factor A (alcohol), through their interaction. 
In the presence of an interaction, the variation among marginal 
means for each factor will be inflated (synergism) or deflated 
(interference), with obvious consequences for the F tests of 
significance of the main effects. 

The lesson is that, in the presence of an interaction, interpretation of 
the significance of the main effects is very difficult. In this case, it has 
led to a spurious significant result for the main effect of 
antihistamine, when in fact we know that it exerts its effect only 
through its influence on the action of alcohol. 

Scenario 5: Main effects of factors A and B, with interference 
interaction 

In Scenario 5 (Figure 5-8), alcohol adds 5 units to reaction time and 
antihistamine adds 10 units as before. However, when both are 
present, they interfere with each other so that reaction time is not the 
sum of the two effects (yielding 30 units), but something less 
(together adding only 3 units to yield 18 units) 

The magnitude of the effect of alcohol depends on whether or not 
antihistamine is consumed, and the magnitude of the effect of 
antihistamine depends on whether or not alcohol is consumed – the 
two factors are interacting. The nature of the interaction is 
interference, because the presence of antihistamine depresses the 
effect of alcohol and vice versa. 

Factor A  Main Effect 
Factor B  Main Effect 
Interference Interaction  

Figure 5-8. 
Reaction time in 

20-year-old males 
under the 

influence of 
various 

combinations of 
alcohol and 

antihistamine. The 

  ALCOHOL  

  NO YES  

 

Anti
H 

NO 15 20 17.5  

YES 25 18 21.5  
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main effect of 
alcohol adds 5 

units to reaction 
time in the 
absence of 

antihistamine as 
before; 

antihistamine adds 
10 units in the 

absence of 
alcohol. Together, 
though, they only 
add 3 units. The 
two compounds 

are interfering. 

  20 19  

 

Source DF Significance 
Among cells 3 YES 

       A | B 1 YES 

       B | A 1 YES 

       AxB 1 YES 

WITHIN 16  

TOTAL 19  

A = ALCOHOL   B = ANTIHISTAMINE 

Examination of the graphs reveals the nature of the interaction. The 
ANOVA table provides the test of its significance. The relationship of 
the marginal means to each other is affected by the interaction, and 
so the tests of the main effects in the ANOVA table cannot be easily 
interpreted. 
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Scenario 6: Nullifying interaction 

The final scenario (figure 5-9) shows a case where there is a clear 
influence of both alcohol and antihistamine, but because of a strong 
interaction, the evidence of their effects is obscured. 

Alcohol has a strong influence on reaction time. In the absence of 
antihistamine, it increases reaction time by 10 units. However, in the 
presence of antihistamine, consumption of alcohol decreases reaction 
time by 10 units. The two effects cancel out in determining the 
marginal means. This interpretation is clear from the graphs. 

Note that in the ANOVA table, tests of the significance of the main 
effects will fail to demonstrate a main effect of alcohol or of 
antihistamine. It would be wrong however to conclude that alcohol 
does not influence reaction time. Clearly it does, but the magnitude 
and direction of its effect is greatly influenced by the consumption of 
antihistamine. 

Factor A  Main Effect 
Factor B Main Effect 
Nullifying Interaction  

Figure 5-9. Reaction 
time in 20-year-old 

males under the 
influence of various 

combinations of 
alcohol and 

antihistamine. The 
main effect of 

alcohol adds 10 
units to reaction 

time in the absence 
of antihistamine, but 
subtracts 10 units in 

the presence of 
antihistamine. This 

strong interaction 
leads to a 

cancellation of the 
main effects on the 

marginal means, 
and so to lack of 

significance of the 
main effects in the 

ANOVA table. 

  ALCOHOL  

  NO YES  

 

AntiH 
NO 15 25 20  

YES 25 15 20  

  20 20  

     

Source DF Significance 
Among cells 3 YES 

       A | B 1 NO 

       B | A 1 NO 

       AxB 1 YES 

WITHIN 16  

TOTAL 19  

A = ALCOHOL   B = ANTIHISTAMINE 
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Hence, in the presence of an interaction, we cannot even place a 
reliable interpretation on lack of significance of the main effects. In 
this case, the interaction has led to lack of significance of the main 
effects of alcohol and antihistamine, when in fact we know that they 
exert a substantial effect. It is just that the effect of each factor is in 
different directions depending on the value of the other. 

Where have we come? 

In this lesson, you explored the concept of interaction. If this is a new 
concept for you, it will have been a steep learning curve. You need to 
appreciate that: 

 An interaction occurs in the two-way classification when the 
effect of one factor is moderated by the value taken by the second 
factor.  

 The presence of an interaction indicates that the main effects of 
the two factors do not predict perfectly the individual cell means 
– that some variability among the cell means is not attributable 
to the sum of the effects of the two factors. The effects of the two 
factors are not additive. 

 In the presence of interaction, we cannot give an unequivocal 
statement about the effect of one factor, without qualifying the 
statement in terms of the value taken by the other factor.  

 An interaction may be synergistic, whereby the effect of the two 
factors in combination is greater than would be expected from 
the sum of their two independent effects. 

 An interaction may be interference, whereby the effect of the two 
factors in combination is less than would be expected from the 
sum of their two independent effects. 

 Interaction may lead to either inflation of the variance among 
marginal means for each factor and spurious significant results, 
or deflation in the variance among marginal means and spurious 
non-significant results.  
 
Hence, in the presence of a strong interaction, it is not possible to 
unequivocally interpret the significance or lack of significance of 
the main effects in factorial ANOVA. 

We now need to consider an additional important dimension of 
Factorial ANOVA, that of different models of ANOVA. 
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Lesson 3: Models in Factorial ANOVA 

Fixed, Random or Mixed Model 

Two models were recognised in single-factor ANOVA — the fixed 
model and the random model. If you are unclear on the distinction, 
you should revise the material presented in Module 4. In the fixed 
model, the criterion upon which the factor levels are chosen are fixed 
and repeatable. In the random model, the factor levels are chosen at 
random from a substantial pool of possible choices. The two models 
differed little in the computation leading to the final F statistic in the 
single factor ANOVA. Where they differed was in the direction taken 
during follow-up analysis. 

In factorial ANOVA, three models are recognised. In the Fixed 
Model, all factors are fixed. In the Random Model, all factors are 
random. In the Mixed Model, some factors are fixed and some 
random. Unlike single-factor ANOVA, choice of model in the factorial 
ANOVA affects both the F tests of significance and the direction 
taken in follow-up analysis. 

In particular, choice of the model determines the ratio of mean 
squares that is appropriate for isolating a particular effect. We need 
to know the model we are working with in order to construct the 
appropriate tests of the main effects, and unfortunately, most 
software packages do not do this automatically. 

Constructing an appropriate F ratio 

Fixed Model 

In the fixed model factorial ANOVA, the error term in the 
denominator of the F ratios used to test the main effects and the 
interaction is in all cases withinMS . The basis for this decision lies in 

the mean squares and what they estimate. For the fixed model, they 
were 

22
AAAmong nbMS    

22
BBAmong naMS    

22
AxBAxB nMS    

2withinMS  
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Placing the mean square for each Factor and for the interaction over 

withinMS  isolates the treatment effects of Factor A, Factor B and the 

interaction respectively.  

2
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
 A

within

Aamong
A
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MS

MS
F


  
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MS

MS
F


  
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22


 AxB

within

AxB
AxB

n

MS

MS
F


  

Under the corresponding null hypotheses, each of these F ratios 
should be approximately equal to 1. If these F ratios differ 
significantly from 1, then it must be because of a bias due to the effect 
of the treatment or interaction respectively. Each F ratio isolates the 
effect we are interested in testing. 

Random Model 

For the Random Model, with both factors random, the expected 
mean squares are 

222
AAxBAAmong nbnMS    

222
BAxBBAmong nanMS    

22
AxBAxB nMS    

2withinMS  

To isolate the main effects using an F ratio, we need to place the 
mean square for the main factors over the mean square interaction as 
the error term.  

22

222

AxB

AAxB

AxB

Aamong
A n

bnn

MS

MS
F







  

22

222

AxB

BAxB

AxB

Bamong
B n

ann

MS

MS
F







  

The interaction is tested by placing the mean square interaction over 

withinMS  as before. 



Biometry  

 

University of Canberra   33 

 

Mixed Model 

For the Mixed Model, with Factor A fixed and Factor B random, the 
expected mean squares are 

222
AAxBAAmong nbnMS    

22
BBAmong naMS    

22
AxBAxB nMS    

2withinMS  

Hence, the mean square error for the fixed factor is the means square 
interaction, and the mean square error for the random factor is 

withinMS . 

22

222

AxB

AAxB

AxB

Aamong
A n

bnn

MS

MS
F







  

2

22


 B

within

Bamong
B

an

MS

MS
F


  

The interaction is tested by placing the mean square interaction over 

withinMS  as before. 

Clearly, choice of model in factorial ANOVA has a profound affect on 
the F ratios for testing the main effects. Many computer packages 
require you to explicitly state the error term for each test before 
constructing the appropriate F ratio. 

A special case — no replication 

When there is no replication, it is not possible to calculate withinMS . If 

the ANOVA were a Fixed Model, then no testing would be possible. 
However, the Mixed Model two-way ANOVA requires that the mean 
square for the fixed factor is tested against the interaction mean 
square. This test can therefore be conducted in the absence of withinMS  

and so in the absence of replication. 

This is an important special case of the two-way factorial ANOVA 
that will be introduced as a worked example later in this Module. 

When the fixed factor has only two factor levels, this analysis is 
equivalent to, and replaces, the Paired T-Test. 
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Where have we come? 

In this lesson, we revisited the concept of Models in ANOVA. You 
should now appreciate that: 

 A factor can be considered as fixed or random. This means that a 
Factorial ANOVA can be fixed (all factors fixed), random (all 
factors random) or mixed (some factors fixed and some random). 

 In single factor ANOVA, whether the factor was fixed or random 
did not alter the calculations, but had a profound effect on how 
we followed up a significant result with further analysis. 

 In factorial ANOVA, the choice of model profoundly affects both 
the calculation of the F ratios in the ANOVA and how we follow 
up a significant result. There is also the possibility of mixtures of 
fixed and random factors in the design. 

You should also be able to use a table of mean squares and what they 
estimate to determine the appropriate F ratios for isolating an effect 
of interest. 

We move now on to how to follow up a significant result in factorial 
ANOVA. 
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Lesson 4: Follow-up analysis  

Recall from Module 4 that the issue of following up a significant 
result in ANOVA requires that the compounding of error must be 
avoided (the probability of any Type I error at all in the overall 
experiment must be controlled to 0.05) and requires that we use all 
available data in estimating the error variance in our hypothesis tests. 
These same considerations apply in factorial ANOVA. 

Choice of follow-up analysis in factorial ANOVA is influenced by: 

 the type of factors involved. 

 whether or not there is a substantive interaction between the 
factors in the design. 

 whether the comparisons to be undertaken are restricted a priori 
or post hoc and exhaustive. 

In the absence of interaction 

When the factors do not interact, or when they interact only weakly, 
the multiple comparison procedures discussed in Module 4 for 
single-factor ANOVA apply to factorial ANOVA with only minor 
modifications. 

 Where there are only two factor levels for a fixed factor, no 
correction is necessary as only one comparison is possible and its 
significance has already been determined by the F statistic in the 
ANOVA table. 

 If there are more than two factor levels for a fixed factor, and all 
or a large number of comparisons are to be made between levels, 
then the Tukey-Kramer procedure is appropriate. In the context 
of factorial ANOVA, MSwithin cells is used in the Tukey-Kramer 
calculations to compare the marginal means, with improvement 
in power. 

 When only a few pairwise comparisons are to be made, and are 
specified in advance of the analysis, the Bonferroni procedure is 
appropriate. Again, MSwithin cells is used in the calculations to 
compare the marginal means. 

 If there is a single control and a number of treatment classes 
among the factor levels, then Dunnett's procedure is appropriate. 
Again, MSwithin cells is used in the calculations. 

 For random factors, the added variance component due to the 
overall influence of the factor can be estimated. Multiple 
comparisons among the factor levels are not appropriate. 
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In the presence of interaction 

When a strong interaction is present, and cannot be removed by 
transformation, we are faced with the problem that the main effects 
of one factor cannot be described in general – the effect of one factor 
will depend in magnitude or direction on the level of the other. An 
unqualified statement about the main effects of each of the two 
factors cannot be made.  

Statisticians vary in their approaches to following up a significant 
result in a factorial ANOVA where there is a substantial interaction. 

Preliminary Examination 

The very first step in interpreting a factorial ANOVA with interaction 
is to plot the treatment means. These are called profile plots.The 
response variable is assigned to the Y-axis, the factor with the most 
factor levels to the X-axis, and the levels of the other factor are 
distinguished in the profile plot with different colours or symbols 
(Figure 5-10).  

Figure 5-10. 
 Profile plot of 

treatment means 
for a factorial 

ANOVA of soil 
phosphorus 

against 
topographic 

location and soil 
type. Clearly 
topographic 

location has a 
greater effect on 
soil phosphorus 
in shale-derived 

soils than in 
sandstone-

derived soils – 
an interaction.  

The nature of the interaction should be readily apparent from the 
profile plot because the trend lines will not be parallel in the presence 
of interaction. Refer to Figures 5-4 to 5-9 for other examples. 

In the presence of such a strong and no doubt significant interaction, 
the F tests of the main effects are unreliable. So too would be any 
follow-up tests on the marginal means. 

A priori contrasts 

One option is to partition the analysis into a series of contrasts 
specified explicitly to address hypotheses of interest. Some 
statisticians would require that these contrasts be decided in advance 
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of the factorial analysis (that is, that they be a priori). The difficulty 
with this approach is that it takes no account of the compounding of 
the Type I Error rate when we undertake a chain of related tests. 
Nevertheless, it is an approach that is widely used.  

If the sample sizes are equal, a profile plot of the treatment means 
can be prepared. The least significant difference (LSD) among the cell 
means can be added to the plot to assist interpretation. 

Exhaustive post hoc contrasts 

If there are no prior expectations to guide the selection of contrasts, a 
second approach is to undertake exhaustive multiple comparisons 
among the a x b cell means, using the Tukey-Kramer Procedure. The 
comparisons of interest can then be selected from among them.  

While this approach covers all bases in terms of potential pairwise 
comparisons, it is not recommended because it is unnecessarily 
conservative. The pool of comparisons of interest usually involves 
only comparisons within rows or within columns, not comparisons 
between all cells. For example, a 5x4 table has 20 cells yielding 190 
potential comparisons, and they will form the basis of the Tukey-
Kramer correction. We will be correcting the error rate for 190 
comparisons.  

If we restrict our attention to comparisons within rows or within 
columns, we need to adjust only for 70 comparisons. Hence, applying 
the Tukey-Kramer Procedure to the 20 cell means is far too 
conservative. 

Restricted post hoc contrasts 

A third approach is to decide what comparisons among factor levels 
are of interest at the planning stages of the study (that is, a priori), 
and work out from that what is the pool of potential comparisons. 
Then use the Bonferroni to correct for multiple comparisons.  

For example, in the study of the response of feral pigs to various bait 
additives, Hone and Kleba designed the experiment as a two-way, 
fixed model, factorial ANOVA. Bait type was Factor A and pig sex was 
Factor B. Bait type had two experimental controls, Wheat and Wheat 
with Water. Sex is included in the design in order to control for that 
potential source of variation. It was not the primary focus of the 
study.  

Had an interaction sex and bait type been present, we would only be 
interested in comparisons between the bait types and the control 
treatments for each sex – 14 comparisons in all. We would apply the 
Bonferroni correction on the basis of a pool of k = 14 comparisons, 
not the k = 45 possible comparisons between all pairs of cell means. 
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Splitting the analysis 

A fourth option is to split the analysis. For example, we might 
conduct a series of single-factor ANOVAs on Factor A separately for 
each level of Factor B, with significance in the ANOVAs followed up 
with an appropriate multiple comparison procedure. However, this 
controls the "experiment-wide error rate" for each single factor 
ANOVA and not for the whole experiment, and the mean square error 
for each single factor ANOVA is based on only a portion of the 
available data. Nevertheless, this approach is sometimes 
recommended because of its simplicity. It is conservative, so if 
significant results emerge from the analysis and meet the objectives 
of the study, then they can be believed. The loss of power will only be 
a problem when non-significant results are obtained for important 
questions. 

Recommended approach 

The approach taken in this Module is to split the analysis into a series 
of comparisons when a factor involved in the interaction has more 
than two levels. This requires specifying sub-analyses where the 
effect of one factor is assessed separately for each level of the other, 
but still using the overall cellswithinMS _  as the error term to maintain 

power. There is no correction at this stage of the analysis for multiple 
comparisons. 

Significant results arising within each of the split analyses are 
followed-up with appropriate pairwise comparisons (refer to Module 
4). Corrections for compounding error are made only for a restricted 
pool of potential comparisons decided as part of the overall study 
design, or in the absence of any specific restrictions, for the restricted 
pool arising from comparisons within rows and within columns only.  

This approach enables the comparison among means of one factor for 
each level of another in the presence of interaction. It splits the 
analysis, but maintains power through the use of the overall within 
cell variance in comparisons. The impact of compounding error is 
controlled to an extent considered to be acceptable, but not to the 
fullest extent possible. 

This approach will be illustrated in the second step-though example 
of this Module. 

Where have we come? 

In this lesson, we have covered the application of multiple 
comparison tests in the context of factorial ANOVA and seen that 
when the assumption of additivity is met (no substantive 
interactions), that the procedures we covered in Module 4: Single 
Factor ANOVA apply with little modification. 
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In addition, we have explored the complexity that occurs when there 
is a substantial interaction. The key take home message is that, in the 
presence of a substantial interaction, it is not possible to report the 
significance of the main effects without qualification. The analysis 
needs to be split into sub-analyses, with a range of attendant 
challenges for the analyst – how do you maintain power, how do you 
maintain the experiment-wide error to 0.05. 

Various options have been presented, from simply graphing the data 
to explore the nature and strength of the interaction before deciding 
on how to report the main effects qualitatively, through to splitting 
the analysis into sub-analyses so that statistical significance can be 
assigned properly in reporting the main effects. 

These concepts are best conveyed by way of example, and further 
attention to them will be paid during the worked examples. 
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Lesson 5: Application 

Assumptions of Factorial ANOVA 

Up to this point, factorial ANOVA has been presented without much 
attention paid to the assumptions of the technique. This is the 
approach adopted by Sokal and Rohlf (1981), in the belief that non-
mathematical audiences learn better if they come to understand the 
structure and purpose of the analysis, without being distracted from 
the central theme by whether or not the data are strictly amenable to 
such an analysis. However, it is essential for the practitioner to verify 
that the assumptions are reasonable. If they are not, steps should be 
taken to ensure that the assumptions are met. 

In this section, I describe the assumptions of factorial ANOVA, how 
to check if they are reasonable, and how to proceed in the face of 
perceived violations. Many of the assumptions of factorial ANOVA 
are held in common with single-factor ANOVA, so the following 
treatment will be brief. You are referred to Module 4 for revision of 
the assumptions of single-factor ANOVA. 

Factorial ANOVA has five assumptions, namely, randomness and 
independence in sampling, equality of variances across samples, 
normality and additivity.  

Randomness in sampling 

Factorial ANOVA assumes that the items, individuals or entities 
allocated to each combination of the factor levels (that is, to each cell 
in the a x b classification) are done so at random. It is important that 
the only systematic difference between the cells, if any, is attributable 
to the differential effects of the factors. Non-randomness may 
manifest itself as lack of independence of the entities, or in unequal 
variances or in non-normality. Violation of the assumption of 
randomness in sampling cannot be overcome easily, and typically the 
data must be discarded, the sampling protocols redesigned and the 
data recollected. Adequate attention must be paid at the time of 
designing an experiment, or when sampling from natural 
populations, to ensure random sampling. 

Independence 

Independence requires that knowledge of the value of one 
measurement in a particular cell provides no information on the 
value of any other measurement in the same cell, with respect to its 
deviation from the cell mean. Violation of this assumption may lead 
to deflation of the within-cell variance, and so artificially inflate the 
F-value in tests of significance that use withinMS  as the denominator. 

This in turn will lead to the discovery of spurious significant 
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differences or trends, so it is fatal. This form of lack of independence 
is sometimes called pseudo-replication of the sampling units. 

Independence also requires that knowledge of the value of one 
measurement in a particular cell provides no information on the 
value of any other measurement in any other cell, with respect to its 
deviation from the overall mean. Failure of this assumption may lead 
to deflation of the among column or among row means, and so 
artificially deflate the F-value in tests of significance using AAmongMS  

or BAmongMS  as the numerator. The power of the analysis will be 

compromised. This form of lack of independence is sometimes called 
pseudo-replication of the treatment levels. 

The assumption of independence can be met through appropriate 
experimental design. Essentially, as with randomness in sampling, 
violations of the assumption of independence of errors cannot be 
overcome easily, and typically the data must be discarded, the 
sampling protocols redesigned and the data recollected. Adequate 
attention must be paid at the time of designing an experiment, or 
when sampling from natural populations, to ensure independence. 

Equality of variances 

An assumption of factorial ANOVA, in common with single-factor 
ANOVA, is that the individual sample variances within each cell 
estimate a common population variance, that is, that the population 
variances are equal. 

This assumption is evaluated using a residual analysis (Figure 5-11). 
We visually examine the scatter of sample values about their 
predicted values, the cell means. Ideally, this scatter should be 
random across the cells. There should be no systematic trend or 
difference in the scatter of values about their respective means. The 
visual examination is achieved by constructing a plot of residuals, 
that is, by plotting the observed deviation of each sample value from 
its cell mean against the predicted value for that cell, namely the cell 
mean. Often, the residuals are scaled by dividing by their standard 
errors, called Studentized Residuals, but in this Module we will use 
unstandardised residuals. The method of plotting residuals is 
demonstrated in the worked examples that follow later in this 
Module. 

If the variances appear heterogenous, then a transformation may be 
applied to bring the variance of the residuals closer to equality, or the 
original data for a single suspect outlier may be scrutinised in case an 
error has been made. An analysis of residuals should be undertaken 
routinely as part of the factorial ANOVA. 
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Figure 5-11. 
A Decision Tree 

for Residual 
Analysis. 

Normality 

A factorial ANOVA assumes that the individual measurements in 
each cell are normally distributed about the true cell mean. What we 
must do first is centre the data on the cell means, pool the resulting 
residuals, examine the distribution of the residuals, and apply tests of 
normality. 

This approach is conditional on the assumption of equality of 
variances. It is assumed that we have rectified any heterogeneity of 
variances in advance of the test of normality. 

FACTORIAL  
ANOVA 
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Additivity 

In two-way or higher-order ANOVA it is necessary to assume no 
interaction if tests of the main effects are to be efficient and reliable. 
Tests of the main effects in the ANOVA table are based on the 
assumption that the factors involved in the ANOVA are acting 
independently, that is, that their effects are additive. 

Tests of the main effects are not always the focus of attention. 
Sometimes it is the test of the interaction itself that is the focus of the 
study. If the main effects are unimportant, then no action is 
necessary in the presence of an interaction. 

In considering the impact of interaction on our ability to interpret the 
main effects, it is important to make the clear distinction between 
significance and strength of result. With sufficient data, an 
interaction of no real consequence biologically or for its impact on 
the main effects, can be highly significant. It is not sufficient that an 
interaction is significant to obscure interpretation of the main effects 
– it must be substantial. The strength of the interaction, and an 
indication of its importance in governing the direction of the 
subsequent analysis, can be assessed from the plots of treatment 
means (Figures 5-4 to 5-9). 

When the main effects are the focus of study, and a substantial 
interaction is present, it may be possible to remove the interaction by 
applying an appropriate transformation. A classic case is when the 
factors are multiplicative rather than additive. Applying a log 
transformation to the response variable will convert the 
multiplicative interaction between the factors to an additive one. The 
significance of the main effects can then be determined from the F-
tests in the ANOVA table. 

Robustness 

The approach to checking assumptions recommended in this Module, 
that is, through qualitative examination of residuals, is not 
particularly rigorous. It relies in part on a general belief that analysis 
of variance is robust to moderate violations of the assumptions of 
normality and equality of variances. All but moderate violations 
would be evident on examination of the residuals in the manner 
described. 

The foundation for this belief lies in Monte Carlo simulations 
undertaken in the middle of this century and reported by Lindquist 
(1953:78) and Keppel (1973). These studies show that moderate 
violations of normality and equality of variances do not constitute a 
serious problem provided the samples sizes are reasonable (greater 
than 10,say) and equal or nearly so. 
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If you are to rely heavily upon the robustness of ANOVA to violations 
of the assumption of equality of variances, in designing experiments, 
it is important to balance the design, that is, to ensure that the size of 
samples in each factor class are the same. 

Balancing the design carries the additional benefit of relying upon 
mathematical argument for which there is greater consensus. The 
issues of how to analyse unbalanced designs, particularly those where 
some cells contain no data, remain controversial. 

Of course, the assumptions of independence and randomness in 
sampling continue to be important regardless of sample size, and 
additivity remains important for the interpretation of the main 
effects. 

Summary of the assumptions of ANOVA 

The assumptions of randomness and independence in sampling must 
be ensured by paying adequate attention to the random selection and 
allocation of items to the experimental classes or, if the design is 
constrained by the logistics of working with natural populations, by 
paying adequate attention to the random selection of items from 
within the experimental classes. If the assumptions of randomness or 
independence are violated, the results of the analysis can be 
profoundly affected, and the only recourse is to discard the data, 
redesign and repeat the experiment. 

Departures from the assumption of equality of variances can be 
detected in a qualitative way by examining a plot of residuals, and a 
suitable transformation might be suggested by the pattern of scatter 
of those residuals. The effectiveness of the transformation may be 
evaluated by examination of the residuals following the 
transformation. 

Having convinced yourself that the assumption of equality of 
variances is tenable, the assumption of normality may be tested by 
examining a histogram of the pooled residuals, and by applying one 
or more of the tests introduced in Module 2 (Shapiro-Wilks test, 
probability plots etc) to the pooled residuals. Transformation may 
improve the normality of the residuals. 

Factorial ANOVA is robust to modest violations of the assumptions of 
normality and homogeneity of variances provided the sample sizes 
are reasonably large (say, > 10) and the design is balanced. 

The presence of a significant and substantial interaction is an 
indication of a violation of the assumption of additivity. If the main 
effects are the primary focus of the study, then the interaction may be 
removed by applying an appropriate transformation. 
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Multiplicative effects are commonplace and can be rendered additive 
with a log transformation of the response variable. 

If no suitable transformation presents itself, the analysis can be split 
into separate analyses for each level of one of the factors involved in 
the interaction. 

Unbalanced designs 

The theory presented on factorial ANOVA involving a comparison of 
the variation among the marginal means with that expected on 
consideration of variation within cells rests upon the design being 
balanced. By balanced, I mean equal sample sizes across all cells. 
When the sample sizes are unequal, or worse, when some cells lack 
data althogether, adjustments have to be made to the computations. 
Statisticians have been working on this problem since a seminal 
paper by Yates was published in the earliest days of ANOVA in 1933. 

In the case of unequal sample sizes (but not empty cells), the solution 
is to use weighting to adjust the contribution of the values in a cell to 
their marginal mean on the basis of the sample size. Using Type III 
Sums of Squares you need to use the function Anova() for within the 
R-package car. 

In the extreme case of cells with data missing altogether, the problem 
is less tractable. One approach is to use linear modelling to estimate 
the values of the means in the missing cells from information in the 
other cells. Using Type IV Sums of Squares in the Anova() function 
makes these adjustments, but the usefulness of this approach is very 
much debated among statisticians. 

The take home message here is that when the design is unbalanced, 
simply considering the marginal means in a summary table, or 
considering a profile plot of the means such as one constructed to 
examine interactions, may give very misleading results. Instead, one 
should use or plot the means adjusted to cater for the unequal cell 
sample sizes or for missing cells. 

There are clearly major advantages in striving for a balanced design. 
First, the analysis will be more robust in the presence of modest 
violations of the assumptions, and second, the need to adjust the 
computations to cater for unequal samples sizes or missing cells is 
often an avoidable complication. 

Crossed versus nested factors 

Factorial ANOVAs apply to fully crossed designs, where data has 
been collected for each combination of the factor levels for two or 
more factors. 
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Consider an example where we wish to evaluate feral donkey density 
in three areas that differ in their degree of aridity. In each area we 
establish three 50 km transects by placing prominent white cones on 
the ground to mark the beginning and end of the transects. Each 
transect is flown five times using a fixed wing aircraft and standard 
protocols for counting donkey numbers (Table 5-13). Is this a crossed 
design? 

 

Table 5-13. 
Counts of feral 
donkeys along 

50 km transects 
in coastal, semi-

arid and 
intermediate 

regions of the 
Victoria River 

catchment, 
Northern 
Territory. 

 LOCATION 
  SEMI-ARID INTERMEDIATE COASTAL 

T
ra

n
s

ec
t 

1 10   15  
  9   17  
12   11 

10   19  
13   12 
11   17 

11   20  
14   13 
12   18 

2 9   14  
15   10  
  9   15 

12   17  
  9   21  
11   11 

10   12  
  9   19  
17   12 

 
3 

15   15  
10   17  
12   13 

12   19 
15   18  
19   16 

19   27  
13   21 
20   15 

At first glance, it might appear to be a crossed design, but it is not. It 
is a single-factor ANOVA with location as the fixed factor and nested 
replication. This becomes apparent when you realise that you could 
readily swap the contents of Transect 1 and 2 in the semi-arid column 
without swapping the entire rows. Transect 1 in the semi-arid region 
is not particularly linked to Transect 1 of the Intermediate region or 
Transect 1 of the coastal region. If it were a crossed design, this would 
not be so.  

This example could be made into a crossed design if there were some 
attribute that linked Transect 1 across the levels of the factor 
Location, and similarly for Transects 2 and 3. For example, all the 
transects labeled 1 might be from the uplands, all of the transects 
labeled 3 might be from the lowlands, and all of the transects labeled 
2 might be from intermediate topographic positions. Then the 
analysis would be crossed. No longer could you sensibly swap 
transect 1 (upland) and 2 (intermediate topography) in the semi-arid 
column without corrupting the analysis. 

It is important before contemplating a factorial ANOVA that you 
check that all factors in the design are indeed crossed. 

Summary of the Factorial ANOVA Procedure 

Factorial analysis of variance is an important analysis. It carries us 
beyond the realm of single-factor ANOVA, which was seen merely as 
an extension of the t-test to cater for comparisons among more than 
two means. It allows us to investigate simultaneously the 
independent effects of two factors as well as the interaction between 
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them. The notion of interaction is the special contribution factorial 
ANOVA makes to our understanding of variation in natural systems. 

The general procedure for undertaking a study involving factorial 
ANOVA is summarised as follows: 

 Decide the questions you wish to address, involving the joint 
action of two or more factors. 

 Carefully select your factors and factor classes so that differences 
among the factor classes or interaction between the factors will 
unambiguously address the research questions. 

 Ensure that the design is fully crossed. Where possible, replicate 
the measurements for each combination of the factor classes. A 
balanced design (sample sizes equal) is desirable. 

 Design your experiment and sampling protocols to ensure that 
the entities to be measured are either randomly allocated to each 
combination of factor classes, or if class membership is beyond 
your control, to ensure that the entities are selected at random 
from the populations represented by each cell in the factorial 
classification. Ensure independence of the entities selected 
within each cell. 

 If the model is fixed, or important hypotheses relate to a fixed 
factor in a mixed design, plan your comparisons in advance of 
beginning the experiment if at all possible. 

 Collect the data. 

 Undertake an exploratory analysis, based on graphical 
techniques, preliminary runs of the ANOVA and examination of 
residuals to verify that the assumptions of ANOVA are tenable. 
Include plots of the treatment means. Transform the data where 
necessary. 

 Perform the final ANOVA, and follow by multiple comparison 
tests if the model is fixed and no strong interaction is present. If 
there is a strong interaction, and the main effects are important 
to the research questions, split the analysis before undertaking 
multiple comparison procedures. Estimate the added variance 
components for random factors. 

 Interpret significant results in the context of the initial question 
that you wished to address. 

  
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Figure 5–12. 
A Decision Tree 

for factorial 
ANOVA. 

 

 

Where have we come? 

Key concepts with which you need to be broadly familiar include: 

 The partition of the sums of squares and degrees of freedom for 
the factorial ANOVA. 

 The difference between fixed, random and mixed models in 
factorial ANOVA, and the practical consequences of these 
differences for the computation of appropriate F ratios and for 
follow-up analysis. 

FACTORIAL  
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All factors 
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comparisons only) 

Tukey-
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(see Figure 5-11) 

Y
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Stop 
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Significant?
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and enable a 
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 The issues central to choosing an appropriate multiple 
comparison procedure for fixed main effects, and a sensible 
position on a workable set of procedures to cover common 
circumstances. 

 The concept of interaction and its interpretation in a biological 
context. 

 The assumptions of factorial ANOVA, how to detect violations 
and how to overcome them, with emphasis on displaying and 
interpreting residuals. 

It is now appropriate to put this knowledge to use and to reinforce 
your understanding of the key concepts via worked examples and 
exercises. 
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Lesson 6: Step-through Examples 

Example 5-1: Bait Acceptability by Feral Pigs 

This is a fixed model, two-way factorial analysis of variance with no 
interaction. 

The problem 

Feral pigs are not native to Australia. They were introduced as 
domestic pigs at the time of European settlement.  Unfortunately 
many of these pigs were allowed to roam free.  During the 19th 
Century, many domestic pigs were transported to settlements across 
Australia and owing either to insufficient enclosures or to deliberate 
releases, it was not long before feral populations of pigs became 
established.  

Poisoning with sodium monofluoroacetate (1080) is a common 
method of feral pig control. Field observations suggest, however, that 
pigs become bait-shy to 1080. Hone and Kelba (1984) wished to 
investigate this possibility using penned pigs and a rigorous 
experimental design. 

Ten pens were constructed. Feral pigs were captured using baited pig 
traps, and from them 10 male and 10 female pigs were selected to be 
of approximately the same age and weight. Two male pigs were 
allocated randomly to each of five pens and two female pigs were 
allocated randomly to each of the remaining five pens. 

On Day 1, pigs were offered wheat only and their intake was recorded. 
On Day 2, they were offered one of the following combinations: 

 Wheat only 

 Wheat and water 

 Wheat, water and dye 

 Wheat, water and 1080 

 Wheat, water, dye and 1080 

The dye is necessary for safety reasons. Water is necessary to add the 
dye and 1080.  

Intake of the bait was again recorded. Intake on Day 1 was subtracted 
from intake on Day 2, and the response variable was change in intake 
in kg (Table 5-14).  
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The central problem Hone and Kleba wished to address was to 
determine if there was a significant difference in the response of pigs 
to the different bait mixtures.  

The data 

 

Table 5-14. Change 
in bait intake by feral 

pigs in response to 
different bait 

constituents. Pigs 
are classified 

according to two 
criteria – bait 

treatment and sex. 

 Wheat
Wheat & 
water

Wheat, 
water & dye

Wheat, water 
& 1080

Wheat, water, 
dye & 1080

Male  0.188 
-0.058 

 0.050 
-0.138 

 0.058 
-0.082 

-0.712 
-1.280 

-0.610 
-0.830 

Female -0.280 
-0.062 

-0.540 
-0.336 

-0.260 
-0.123 

-0.894 
-0.672 

-0.837 
-1.202 

 

Comments on the design 

The response variable is change in grain intake in kg, which will be 
potentially influenced by the composition of the bait and by the sex of 
the pig. Each measurement of the response variable is classified 
according to two factors – bait and sex. The design is fully crossed 
and balanced. 

A factorial analysis will be able to address the following questions: 

 Is there a significant difference in change in grain intake among 
the different bait treatments? 

 Is there a significant difference in grain intake between males 
and females? 

 If there is a difference in response of feral pigs to bait 
composition, do the trends vary in magnitude or direction 
between males and females? 

The first question is the one of greatest interest. 

The analysis 

Start a R Session 

  Double click on the Tinn-R icon and launch R from within 
Tinn-R (Click in the Menu on R->Initiate/Close Rgui->Initiate 
preferred Rgui) 

Data entry and exploratory examination 

R expects the data for a two-way classification in the form of three 
variables. Two variables contain the factor class data, and the 
remaining variable contains the values of the response variable. 
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bait sex intake 
W  MALE  0.188 
W  MALE -0.058 
W  FEMALE -0.280 
W  FEMALE -0.062 
WW  MALE  0.050 
WW  MALE -0.138 
WW  FEMALE -0.540 
WW  FEMALE -0.336 
WWD MALE  0.058 
WWD MALE -0.082 
WWD FEMALE -0.260  
WWD FEMALE -0.123 
WW1080 MALE -0.712 
WW1080 MALE -1.280  
WW1080 FEMALE -0.894  
WW1080 FEMALE -0.672 
WWD1080 MALE -0.610 
WWD1080 MALE -0.830  
WWD1080 FEMALE -0.837  
WWD1080 FEMALE -1.202 

Read the data into R, creating a new object pigs. We quickly peruse 
it and compute some basic statistics.  

> setwd("H:\\Biometry\\data\\") 
> pigs <- read.table("PIGBAIT.DAT", header=TRUE) 
> summary(pigs) 

      bait       sex         intake        
 W      :4   FEMALE:10   Min.   :-1.2800   
 WW     :4   MALE  :10   1st Qu.:-0.7415   
 WW1080 :4               Median :-0.3080   
 WWD    :4               Mean   :-0.4310   
 WWD1080:4               3rd Qu.:-0.0770   
                         Max.   : 0.1880   

> dim(pigs) 

[1] 20  3 

> names(pigs) 

[1] "bait"   "sex"    "intake" 

 Submit the above program for execution. 
 

The pigs data.frame should contain 3 variables – bait, sex 
and intake – and 20 values (4 values for each level of bait). You can 
further check the data at this point to see if it has been read as 
intended. 

Next we should construct a table of cell and marginal means. The 
easiest way to achieve that is to use the tapply()  function. The 
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tapply function has three arguments, the first is the vector (or column 
of the data frame) on which a function should be performed. The 
second is the factor (groups) which subsets the first vector and the 
third argument is the function (here we use the predefined function 
mean) that should be performed on each group of the data. 

 

> tapply(pigs$intake, pigs$bait, mean) 

       W       WW   WW1080      WWD  WWD1080  
-0.05300 -0.24100 -0.88950 -0.10175 -0.86975 

This calculates all means for all levels of bait. So if we want to check 
how many cases are there in each level of bait we could have typed: 

> tapply(pigs$intake, pigs$bait, length) 

      W      WW  WW1080     WWD WWD1080  
      4       4       4       4       4 

Which tells us that there are four pigs and its intake measured in 
each level. 

The mean for each sex is straight forward as well. First we check 
how many cases there are in each level. 

> tapply(pigs$intake, pigs$sex, length) 

FEMALE   MALE  
    10     10 

> tapply(pigs$intake, pigs$sex, mean) 

FEMALE    MALE  
-0.5206 -0.3414 

And finally we want to calculate the mean intake for both factors at 
the same time. Here we use the tapply() function, specifying both 
levels inside a list function in the second argument of tapply() 

> tapply(pigs$intake, list(pigs$sex, pigs$bait), mean) 

            W     WW WW1080     WWD WWD1080 
FEMALE -0.171 -0.438 -0.783 -0.1915 -1.0195 
MALE    0.065 -0.044 -0.996 -0.0120 -0.7200 
 

 

 

Extra task 

Can you calculate how many cases there are within both levels, i.e. how many 
real repetition there are? 
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We need the overall mean intake for all pigs regardless of bait and 
sex. This is easy: 

> mean (pigs$intake) 

[1] -0.431 

Finally we copy past all means into a nice, shiny table (Table 5-15). 

 

Table 5-15. 
 Cell and 

marginal means 
for a two-way 

classification of 
response of 

male and female 
pigs to different 

bait constituents. 

 Wheat 
Wheat & 
water 

Wheat, 
water & 
1080 

Wheat, 
water & 
dye 

Wheat, 
water , dye 
& 1080  

FEMALE -0.171 -0.438 -0.783 -0.1915 -1.0195 
-0.5206 

MALE 0.065 -0.044 -0.996 -0.012 -0.72 
-0.3424 

 -0.053 -0.241 -0.8895 -0.10175 -0.86975 -0.431 

There is some suggestion that males and females differ in their 
overall response to the experiment, with males reducing their intake 
by less than females, but is this result significant? Similarly, the data 
suggest an adverse response to baits containing 1080, but is this a 
significant result? 

Analysis of Residuals 

Before we launch into the factorial ANOVA, it is wise to pay attention 
to the assumptions. A residual analysis will allow us to assess the 
assumptions of homogeneity of variances and normality. 

In principle we can run our ANOVA using the aov() function.  

> anova.pigs <- aov(intake ~ bait * sex, data=pigs) 

Note that there are now two factors specified, and that the “model” 
specified in the aov() function specifies that variation in the response 
variable intake is to be explained by two main effects and the 
interaction. In all other respects the approach is similar to that used 
in single-factor ANOVA.  You should read the specification in the 
aov() function as follow:  

We want to explain the variation in intake by the factors bait and 
sex. To specify that we want to have the interaction between bait 
and sex taken into account aswell (as we have no reason why we 
should not) we specify our ANOVA (model) by the “*” sign between 
the factors. If we want to specify an ANOVA where no interaction 
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between bait and sex should be used, we would specify our model 
by: 

intake ~ bait + sex 

Before we have a look at our ANOVA table let us check the residuals 
as we have done with a single factor ANOVA. 

> hist(resid(anova.pigs), col="darkolivegreen") 
> plot(anova.pigs) #do not forget to select History ->  
                    recording to record your plots 

Submit the above two programs for execution. 
 

The distribution of residuals is acceptable, despite wider than average 
variances for the two samples with the largest response (Figure 5-13). 

Figure 5-13 
 Residual plot for 

change in grain 
intake by feral 

pigs versus bait 
type and sex in a 
factorial design. 
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A histogram plot of the residuals shows no substantive deviation 
from normality (though admittedly it does not look great). 
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Box 5-2. 
Histogramm for 

the residuals 
from a factorial 

ANOVA of 
change in bait 
intake versus 

bait type and sex 
in feral pigs. 

Histogram of resid(anova.pigs)
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 Submit the above program for execution. 

Analysis of Variance 

There is no need for transformation, as the assumptions of 
homogeneity of variances and normality have been upheld.  

Overall test for differences 

Before we have a look at the ANOVA table we would like to know if 
there is an overall difference between the means (disregarding the 
different factors). It this would not be the case then the ANOVA is 
quite pointless as at least some means between any combination of 
factors should be different. 

For this we use a new function called lm() [for linear model]. This 
function will be our new working horse in the future and therefore it 
is a good idea to get used to it. In principle you can forget the aov() 
function as the lm() function does provide the same and some 
additional features. Fortunately the code is the same, just exchange 
aov by lm: 



Biometry  

 

University of Canberra   57 

 

> lm.pigs <- lm(intake ~ bait * sex, data=pigs) 
> summary(lm.pigs) 

Call: 
lm(formula = intake ~ bait * sex, data = pigs) 
 
Residuals: 
       Min         1Q     Median         3Q        Max  
-2.840e-01 -1.092e-01 -2.082e-17  1.092e-01  2.840e-01  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)    
(Intercept)          -0.1710     0.1394  -1.227  0.24793    
baitWW               -0.2670     0.1971  -1.355  0.20533    
baitWW1080           -0.6120     0.1971  -3.105  0.01115 *  
baitWWD              -0.0205     0.1971  -0.104  0.91922    
baitWWD1080          -0.8485     0.1971  -4.305  0.00155 ** 
sexMALE               0.2360     0.1971   1.197  0.25876    
baitWW:sexMALE        0.1580     0.2787   0.567  0.58331    
baitWW1080:sexMALE   -0.4490     0.2787  -1.611  0.13828    
baitWWD:sexMALE      -0.0565     0.2787  -0.203  0.84343    
baitWWD1080:sexMALE   0.0635     0.2787   0.228  0.82438    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1  
 
Residual standard error: 0.1971 on 10 degrees of freedom 
Multiple R-squared: 0.8899,     Adjusted R-squared: 0.7907  
F-statistic: 8.978 on 9 and 10 DF,  p-value: 0.00099 

At this stage we are not interested in the estimates of the parameters 
of the model, but at the end of this ouput we can see the overall fit of 
the ANOVA model. The output contains an overall test for differences 
among cell means (F = 8.98; df = 9,10; p < 0.001). Overall the 
differences are highly significant, therefore finally, let us have a look 
at our ANOVA table. 

> summary(anova.pigs) 

To confuse and demonstrate you that the lm() function is equivalent 
to the aov() function, just type in: 

> anova(lm.pigs) 

This should show you the same ANOVA table as the summary 
command on the aov() object. 

 Submit the above program for execution. 
 

The results of the analysis are shown in Box 5-3. 
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Box 5-3. 
Results of a 

factorial ANOVA 
testing the 

effects of bait 
type and sex on 
the intake of bait 

by feral pigs. 

 
            Df  Sum Sq Mean Sq F value    Pr(>F)     
bait         4 2.76045 0.69011 17.7658 0.0001538 *** 
sex          1 0.16056 0.16056  4.1334 0.0694460 .   
bait:sex     4 0.21766 0.05441  1.4008 0.3022677     
Residuals   10 0.38845 0.03885                       
--- 
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

We can now construct our standard ANOVA Table (Table 5-16) using 
the data from the R output. Of the significant variation among the 
cell means, a significant component can be attributed to differences 
in the response of the feral pigs to bait type (F = 17.77; df = 4,10; p < 
0.0002).  

Differences between the sexes were not significant (F = 4.13; df = 
1,10; p = 0.069). There was no significant interaction between sex 
and bait type (F = 1.40; df = 4,10; p = 0.30), that is, the differential 
response of the feral pigs to bait type was similar for males and 
females. 

Table 5-16. Factorial 
ANOVA to determine 

the effects of bait 
constituents and sex 

on intake of bait by 
feral pigs. (see text). 

Source DF SS MS F Pr > F 
Among cells 9 3.1387 0.3487 8.98 0.0010 

       A|B 4 2.7604 0.6901 17.77 0.0002 

       B|A 1 0.1606 0.1606 4.13 0.0694 

       AxB 4 0.2177 0.05441 1.40 0.3023 

WITHIN 10 0.3885 0.03885   

TOTAL 19 3.5271    

FACTOR A: BAIT   FACTOR B: SEX 

 

As you know R has great graphic capabilities and it would be great to 
have a plot on the whole dataset, but a separated plot for each 
combination of factors. This requires an additional package named: 
lattice (see the moodle site how to install a package if you are not 
working with you own computer). So we type: 

> library(lattice) 
> install.packages( "lattice", lib="H:\\Biometry") 
#at home just type install.packages("lattice") 
> xyplot(intake ~ sex | bait, data=pigs,  , 
type=c("p","r"),pch=16) 

Box 5-4 shows the result of these commands. Here you can see the 
intake for each combination of factors. First we notice that there are 
two points for each combination, which are our repetitions. We have 
five levels in the factor bait and two in the factor sex. Graphically we 
see an increase in intake from females to males and also differences 
between bait treatments. Treatments that have 1080 showing a 
reduced intake. A slight trend of an interaction can be seen, so males 
do eat always more than females except for the WW1080 treatment. 
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From the ANOVA table we see that this effect is not significant. Once 
we have an idea of the overall effects of the factors, we can now have 
a look, if all bait levels are significantly different or not. So we need to 
do multiple comparisons, equivalent to single factor ANOVAs (R 
Module 4). 

 

Box 5-4. 
A plot of intake 

for each 
combionation of 

factors (bait & 
sex) 

 

sex
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0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

 

Multiple Comparisons 

We now need to determine which bait combinations are significantly 
different from which others.  

We have different options: 

 Tukey-Kramer Procedure (Honestly Significant Difference) 

 > TukeyHSD(anova.pigs) 

 Dunnett's Procedure (single control) 

> require(multcomp) 
> dunnett <- glht(anova.pigs, linfct= 
mcp(bait=contrMat(c(4,4,4,4,4), type="Dunnett", base=2 ) , 
interaction_average=T)) 
> summary(dunnett) 
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 Bonferroni Correction 
 
 > t.test (and use bonferroni correction for p value) 

Two approaches suggest themselves. The first, given the complex 
relationship of the factor levels, with at least three levels that can be 
regarded as experimental controls for other levels, is to conduct 
exhaustive post hoc comparisons using the Tukey-Kramer Procedure 
(refer to Module 4). Here we need to be careful that we do not want 
to test for all interactions, therefore we  

Submit the above statements for execution. 
 

 

Box 5-4. Results 
of Tukey-Kramer 

comparisons 
among mean 

response of feral 
pigs to various 

bait types 
produced by an 

LSMEANS 
statement in 
PROC GLM. 

  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = intake ~ bait * sex, data = pigs) 
 
$bait 
                   diff        lwr        upr     p adj 
WW-W           -0.18800 -0.6466610  0.2706610 0.6699170 
WW1080-W       -0.83650 -1.2951610 -0.3778390 0.0009644 
WWD-W          -0.04875 -0.5074110  0.4099110 0.9962384 
WWD1080-W      -0.81675 -1.2754110 -0.3580890 0.0011619 
WW1080-WW      -0.64850 -1.1071610 -0.1898390 0.0062714 
WWD-WW          0.13925 -0.3194110  0.5979110 0.8500012 
WWD1080-WW     -0.62875 -1.0874110 -0.1700890 0.0077296 
WWD-WW1080      0.78775  0.3290890  1.2464110 0.0015342 
WWD1080-WW1080  0.01975 -0.4389110  0.4784110 0.9998918 
WWD1080-WWD    -0.76800 -1.2266610 -0.3093390 0.0018596 
 
$sex 
              diff         lwr       upr    p adj 
MALE-FEMALE 0.1792 -0.01719271 0.3755927 0.069446 

We can peruse the output matrix (Box 5-4) for non-significant and 
significant pairwise comparisons to yield non-significant subsets. 
Clearly, bait combinations including 1080 are showing significantly 
greater reduction in intake by feral pigs. Adding water or dye or both 
had no significant impact on intake. 

Had we wished to use the potentially more powerful approach based 
on specifying in advance of the study the comparisons we wished to 
make (a priori comparisons), then Dunnett's Procedure would have 
been appropriate. Say we decided in advance that we wished to 
compare mean response for each bait type against the control of 
Wheat and Water (WW), we would use the following statement to 
produce Box 5-5. 
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> require(multcomp) #should work now, if you have alredy 
installed the package multcomp, otherwise refer to module 4 
> dunnett <- glht(anova.pigs, linfct= 
mcp(bait=contrMat(c(4,4,4,4,4), type="Dunnett", base=2 ) , 
interaction_average=T)) 
> summary(dunnett) 

 

 Submit the above statements for execution. 
 

The results are essentially the same as for the Tukey-Kramer 
Procedure (Box 5-5). Adding water or dye to the wheat has no impact 
on bait intake; both treatments including 1080 differ significantly 
from the control. 

Box 5-5. Results 
of Dunnett's 

comparisons 
among mean 

response of feral 
pigs to various 

bait types 
produced by an 

LSMEANS 
statement in 

PROC GLM. The 
experimental 

control is wheat 
and water (WW). 

         Simultaneous Tests for General Linear Hypotheses 
 
Multiple Comparisons of Means: User-defined Contrasts 
 
 
Fit: aov(formula = intake ~ bait * sex, data = pigs) 
 
Linear Hypotheses: 
           Estimate Std. Error t value Pr(>|t|)    
1 - 2 == 0   0.1880     0.1394   1.349  0.49977    
3 - 2 == 0  -0.6485     0.1394  -4.653  0.00297 ** 
4 - 2 == 0   0.1393     0.1394   0.999  0.71927    
5 - 2 == 0  -0.6287     0.1394  -4.512  0.00386 ** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
(Adjusted p values reported -- single-step method) 

Results summary 

The following is an example of an appropriate results summary, as 
would appear in your report or publication. 

Mean response of feral pigs to the various combinations of bait 
components and sex in a two-way factorial ANOVA differed 
significantly (F = 8.98; df = 9,10; p < 0.001). The percentage 
variation that could be attributed to the effect of the two factors BAIT 
and SEX, individually and in combination, was high (adj. 79.02 R ).  

Of the significant variation among the cell means, a significant 
component could be attributed to differences in the response of the 
feral pigs to bait type (F = 17.77; df = 4,10; p < 0.0002). The mean 
response varied from a reduction in intake of only 53 g for 
unadulterated wheat to a reduction of 870-890 g for treatments 
involving 1080. 
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Differences between the sexes were not significant (F = 4.13; df = 
1,10; p = 0.069). There was no significant interaction between sex 
and bait type (F = 1.40; df = 4,10;p = 0.30), that is, the differential 
response of the feral pigs to bait type was similar for males and 
females. 

Tukey-Kramer pairwise comparisons among the treatment means for 
bait type (Table5-14) revealed no significant difference between the 
treatments of Wheat, Wheat & Water, and Wheat, Water & Dye (p = 
0.67—1.00), but pigs showed significantly lower response to these 
treatments than to those involving the addition of 1080 (p < 0.01). 
Addition of dye with 1080 did not alter the high response. 

Note that the results as described include a statement of the overall 
significance of the ANOVA as well as a statement of the significance 
or lack of significance for each of the main effects and the interaction. 
The strength of the result is indicated by the overall 2R  and by the 
magnitude and direction of the difference between specific means of 
interest. Both significance and strength of result are covered. The 
ANOVA table is rarely published, but the results of the comparisons 
between means for each bait type (Table 5-17) can be optionally 
included. 

Discussion 

It appears that feral pigs can distinguish grain that is laced with 
1080, and that neither the mandatory addition of water to the grain 
nor the optional addition of dye is influencing their response.  

Nearly all the pigs used in this study were from a property where 
1080 had been used for feral pig and rabbit control, and they may 
have learned to recognise 1080 on the basis of bad experiences with 
its ingestion in the past. 

This behaviour is likely to provide a partial explanation for reduced 
efficacy of 1080 for feral pig control, and the response of feral pigs to 
alternative poisons such as Warfarin or brodifacoum should be 
explored in future studies. 

 

 Tidy up the program by ensuring there are no elements 
remaining of the program that did not work.  Save the 
program to disk within Tinn-R for future reference. You may 
also want to save your workspace and Rhistory, if you want 
to return to this example at some stage. 

Exit from R and Tinn-R by choosing File->Exit from the Menu Bar. 
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Example 5-2:  Soil phosphorus, topography and soil type 

This is a fixed model, two-way factorial analysis of variance with 
interaction.  

The problem 

Soil phosphorus is important for the invasion of native vegetation by 
exotic weeds. Anne-Marie Clements undertook a study of soil 
phosphorus in the Sydney region to investigate how soil phosphorus 
varies with topographic location and soil type (Clements, 1983). 

Bushland sites were chosen in Brisbane Waters National Park, Ku-
ring-gai Chase National Park and Royal National Park, which are 
relatively unaffected by suburban development. The sites were free 
from immediate roadside or track effects and had not been burned 
for at least two years.  

Shale-derived and sandstone-derived soils in four topographic 
locations were examined, with three 250 m2 quadrats in each of the 
eight combinations of soil type and topography. 

Cores of soil of 75 mm depth and 25 m diameter, free from surface 
litter, were collected from each of five randomly selected points in 
each quadrat. The five soil samples were pooled and the total soil 
phosphorus (ppm) was determined for each pooled sample. 

Anne-Marie was interested to learn: 

 if there were significant differences in soil phosphorus among the 
four topographic locations  valleys, north-facing slopes, south-
facing slopes and hilltops; 

 if there were significant differences in soil phosphorus between 
shale-derived and sandstone-derived soils; and 

 if any difference between topographic locations in soil 
phosphorus depended in magnitude on whether the soils were 
shale-derived or sandstone-derived. 

The data 
 

Table 5-18. Soil 
phosphorus 

(ppm) collected 
from the vicinity 

of Sydney 
according to a 

two-way factorial 
design. The 
factors are 

topography and 
soil type. 

 VALLEY NORTH SOUTH HILLTOP 
SHALE 98 

172 
185 

78 
77 

100 

117 
54 
96 

83 
12 
14 

SANDSTONE 19 
39 
25 

27 
49 
24 

28 
53 
72 

55 
21 
19 
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Comments on the design 

The response variable is soil phosphorus (phos), which will be 
potentially influenced by topographic location (topo) and soil type 
(soil).  

The factor topo has four factor levels – valleys (VALLEY), north-
facing slopes (NORTH), south facing slopes (SOUTH) and hilltops 
(HILLTOP). The factor soil has two factor levels – shale-derived 
soils (SHALE) and sandstone-derived soils (SANDSTONE). The 
design is fully crossed and balanced (n = 3). 

All hypotheses relating to the main effects and interaction are of 
interest. 

The analysis 

Start a R Session 

  Double click on the Tinn-R icon and launch R from within 
Tinn-R (Click in the Menu on R->Initiate/Close Rgui->Initiate 
preferred Rgui) 

 

Data entry and exploratory examination 

R expects the data for a two-way classification in the form of three 
variables. Two variables contain the factor class data, and the 
remaining variable contains the values of the response variable.  

We start by reading in the data from SYDNEY.DAT and store it as 
data.frame in an R-object called phosphor. 

> setwd(“H:\\Biometry\\data) 
> sydney <- read.table(“SYDNEY.DAT”, header=T) 

 

 Submit the above commands for execution. 
 

We check if the data were read in correctly. 

> dim(sydney) 
[1] 24  3 
> summary(sydney) 
        soil         topo      phosphor      
 SANDSTONE:12   HILLTOP:6   Min.   : 12.00   
 SHALE    :12   NORTH  :6   1st Qu.: 24.75   
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                SOUTH  :6   Median : 53.50   
                VALLEY :6   Mean   : 63.21   
                            3rd Qu.: 86.25   
                            Max.   :185.00  

Next we should construct a table of cell and marginal means. As in 
the first example we need to do that by “hand”, as there is no function 
available. 

> mean(sydney$phosphor) 

[1] 63.20833 

> tapply(sydney$phosphor, sydney$topo, mean) 

 HILLTOP    NORTH    SOUTH   VALLEY  
34.00000 59.16667 70.00000 89.66667 

> tapply(sydney$phosphor, sydney$soil, mean) 

SANDSTONE     SHALE  
 35.91667  90.50000 

> tapply(sydney$phosphor, list(sydney$soil, sydney$topo), 
mean) 

           HILLTOP    NORTH SOUTH    VALLEY 
SANDSTONE 31.66667 33.33333    51  27.66667 
SHALE     36.33333 85.00000    89 151.66667 

 Submit the above program for execution. 
 

The collected output is shown, rearranged to conform to a more 
conventional form, in Table 5-19. There look to be major differences 
in soil phosphorus with both topographic location and soil type. 
Shale-derived soils appear to have more phosphorus than sandstone-
derived soils, but is this result significant? Similarly, the data suggest 
differences in soil phosphorus with topographic location, but is this a 
significant result? Furthermore, the trends across topographic 
location look to be different for the two soil types, so we might 
anticipate a significant interaction. 

Table 5-19. 

Cell and marginal 
means of soil 

phosphorus for a 
two-way 

classification against 
topographic location 

and soil type. 

 HILLTOP NORTH SOUTH VALLEY  
SANDSTONE 31.67 33.33 51 27.67 35.92 

SHALE 36.33 85 89 151.67 90.5 

 34.0 59.17 70.0 89.67 63.21 
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Analysis of Residuals 

Before we launch into the factorial ANOVA, we need to attend to the 
assumptions. A residual analysis will allow us to assess the 
assumptions of homogeneity of variances and normality. This time 
we use the lm() function all the time. 

> lm.sydney <- lm(phosphor ~ topo * soil, data=sydney) 
> plot(lm.sydney, pch=16) 
> hist(resid(lm.sydney), col="gray58") 

 Submit the above two programs for execution. 
 

The distribution of residuals is acceptable (Figure 5-14). 

Figure 5-14. 
Residual plot for 
soil phosphorus 
versus soil type 

and topographic 
location in a 

factorial design. 
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Box 5-7. 
Histogramm of 

residuals for soil 
phosphorus 

versus soil type 
and topographic 

location in a 
factorial design.. 

Histogram of resid(lm.sydney)
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 Submit the above program for execution. 
 

 
Analysis of variance 

There is no need for transformation, as the assumptions of 
homogeneity of variances and normality have been upheld. So we 
finally can have a look at our ANOVA table. 

> summary(lm.sydney) 
> anova(lm.sydney) 

   Submit the above program for execution. 
 

The results of the analysis are shown in Box 5-8. 
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Box 5-8. 
Results of a 

factorial ANOVA 
testing the 

effects of soil 
type and 

topographic 
location on soil 

phosphorus. 

> summary(lm.sydney) 
 
Call: 
lm(formula = phosphor ~ topo * soil, data = sydney) 
 
Residuals: 
   Min     1Q Median     3Q    Max  
-53.67 -11.17  -4.50  16.83  46.67  
 
Coefficients: 
                     Estimate Std. Error t value Pr(>|t|)    
(Intercept)            31.667     16.102   1.967  0.06682 .  
topoNORTH               1.667     22.772   0.073  0.94256    
topoSOUTH              19.333     22.772   0.849  0.40840    
topoVALLEY             -4.000     22.772  -0.176  0.86277    
soilSHALE               4.667     22.772   0.205  0.84021    
topoNORTH:soilSHALE    47.000     32.204   1.459  0.16380    
topoSOUTH:soilSHALE    33.333     32.204   1.035  0.31603    
topoVALLEY:soilSHALE  119.333     32.204   3.706  0.00192 ** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 27.89 on 16 degrees of freedom 
Multiple R-squared: 0.7579,     Adjusted R-squared: 0.652  
F-statistic: 7.156 on 7 and 16 DF,  p-value: 0.0005729 
 
Analysis of Variance Table 
 
Response: phosphor 
          Df  Sum Sq Mean Sq F value    Pr(>F)     
topo       3  9693.8  3231.3  4.1542 0.0235128 *   
soil       1 17876.0 17876.0 22.9818 0.0001988 *** 
topo:soil  3 11390.8  3796.9  4.8814 0.0134826 *   
Residuals 16 12445.3   777.8                       

The differences among cell means are significant (F = 7.16; df = 7,16; 
p < 0.001) and the percentage variation that can be attributed to the 
effect of the two factors TOPO and SOIL, individually and in 
combination is high ( 76.02 R ).  

Table 5-20. Factorial 
ANOVA to 

determine the 
effects of 

topographic location 
and soil type on soil 

phosphorus. Note 
that in the presence 

of a significant 
interaction, the 

significant tests for 
the main effects are 

unreliable. 

Source DF SS MS F Pr > F 
Among cells 7 38960.6 5565.8 7.16 0.0006 

       A|B 3 9693.8 3231.3 4.15 0.0235 

       B|A 1 17876.0 17876.0 22.98 0.0002 

       AxB 3 11390.8 3796.9 4.88 0.0135 

WITHIN 16 12445.3 777.8   

TOTAL 23 51406.0    

FACTOR A: TOPO   FACTOR B: SOIL 

Of the significant variation among the cell means, a significant 
component can be attributed to differences in the topographic 
location (F = 4.15; df = 3,16; p < 0.05; Table 5-20). However, in 
the presence of a significant interaction (F = 4.88; df = 3,16; 
p < 0.02), this result is not reliable. For example, the 
differences in soil phosphorus among topographic locations reflected 
in this result may occur only for one soil type. Similarly, we cannot 
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believe the significant result for the other main effect, soil type, in the 
presence of the interaction. 

Explore the interaction 

We must first explore the nature of the interaction. The best way to 
do this is to plot the treatment means. Again we need to load the 
package lattice (you should have already installed on your computer, 
so a simple library command should do the trick, if not refer to the 
moodle site, how to install a package). 

> library(lattice) 
> xyplot(phosphor ~ soil | topo, data=sydney, 
type=c("p","r"), pch=16) 

 

This is clearly the sort of program you file away for future reference. 
The first two procedures average the values for each cell in the two-
way classification (we need to sort the data first) and store it in a new 
work file WORK.SUMMARY. 

The GPLOT procedure plots the cell means in a plot with the 
response variable PHOS on the Y-axis and one of the factors on the 
X-axis. It is conventional to choose the factor with the most factor 
levels to assign to the X-axis. The levels of the second factor are 
distinguished with different symbols, lines or colours. 

This is achieved with the statement 

PLOT MNPHOS*TOPO=SOIL 

which asks for a plot of mean soil phosphorus against topographic 
location, with separate graphs for each value of soil type (Figure 5-
15). 

 Submit the above program for execution. 
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Figure 5-15.  
Plot of treatment 

means for a 
factorial ANOVA 

of soil 
phosphorus 

against 
topographic 

location and soil 
type. Clearly 
topographic 

location has a 
greater effect on 
soil phosphorus 
in shale-derived 

soils than in 
sandstone-

derived soils – 
an interaction. 
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The nature of the interaction is now clearly evident. Let us view it 
first from the perspective of topographic location.  

Topographic location appears to have a marked affect on soil 
phosphorus in shale-derived soils, but its effect in sandstone-derived 
soils is not strong if present at all. We have an interaction because the 
magnitude of the effect of topography depends on which soil type you 
consider. We cannot make a general statement about the effect of 
topographic location without qualifying the statement for soil type. 

The interaction can also be viewed from the perspective of soil type. 
There is clearly no difference between shale-derived and sandstone-
derived soils when samples are taken from hilltops. In the valleys 
however, shale-derived soils have much higher levels of soil 
phosphorus than sandstone-derived soils. We have an interaction 
because the magnitude of the effect of soil type depends upon 
topographic location. We cannot make a general statement about the 
effect of soil type without qualifying the statement for topographic 
location. 

Splitting the analysis 

The significance of the main effects for topographic location is based 
on averaging soil phosphorus across soil types, and so is 
compromised by the interaction. So too is the significance of soil 
type.  
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So how then do we assess the significance of the main effects?  

We first conduct a separate sub-analysis of the effect of topographic 
location for each soil type. We split the data set using the subset 
command. 

> s.shale <- subset(sydney, soil=="SHALE") 
> s.sandstone <- subset(sydney, soil=="SANDSTONE") 

Then we perform an ANOVA on the subsets. 

>  lm.shale <- lm(phosphor ~ topo, data=s.shale) 
> anova(lm.shale) 

Analysis of Variance Table 
 
Response: phosphor 
          Df Sum Sq Mean Sq F value  Pr(>F)   
topo       3  20124  6707.9  5.3294 0.02605 * 
Residuals  8  10069  1258.7                   

> lm.sandstone <- lm(phosphor ~ topo, data=s.sandstone) 
> anova(lm.sandstone) 

Analysis of Variance Table 
 
Response: phosphor 
          Df  Sum Sq Mean Sq F value Pr(>F) 
topo       3  960.92  320.31  1.0785 0.4115 
Residuals  8 2376.00  297.00     
 

   

 Submit the above program for execution. 
 

On sandstone-derived soils, there is no significant effect of 
topographic position on soil phosphorus (F = 1.07; df = 3,8; p = 0.41, 
whereas a effect was evident for shale-derived soils (F = 5.33; df = 
3,8; p < 0.05) (Figure 5-15). 

Multiple comparisons 

We are now in a position to undertake pairwise comparisons, with 
corrections for compounding error, across the levels of topographic 
position in shale-derived soils and across soil types in each 
topographic position. 

The pool of potential comparisons in a 4x2 classification is 16, if we 
restrict our attention to comparisons within rows and columns. This 
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comprises 6 potential comparisons in each of the 2 rows and 1 
comparison per each of the 4 columns. 

Pairwise comparisons will be significant under the Bonferroni 
Method (see Module 4). 

003.0
16

05.0
p  

Thus, if we apply a significance level of 003.0  to individual 
comparisons, we will control the probability of getting a spurious 
significant result in any of the comparisons to 0.05. 

To do a test for only a subsample we could select all the 16 necessary 
pairs of test data and then do a simple t.test. If the p-value is below 
0.003 then we have a significant difference. A much easier way is to 
do an exhaustive comparison between all levels (as in a Tukey test), 
but look only at the selected 16 tests, if they are  below 0.003. 

Unfortunately the TukeyHSD() function does not allow to set for an 
uncorrected p-value, therefore we need to use the function, 
pairwise.t.test(). Before we can use the function we need to 
combine both factors into a single one, as this function allows only 
one factor as an argument. 

> onefactor <- as.factor(paste(sydney$topo,   
               sydney$soil,sep="")) 
> onefactor 

 [1] VALLEYSHALE      VALLEYSHALE      VALLEYSHALE      
NORTHSHALE       NORTHSHALE       NORTHSHALE       
SOUTHSHALE       SOUTHSHALE       
 [9] SOUTHSHALE       HILLTOPSHALE     HILLTOPSHALE     
HILLTOPSHALE     VALLEYSANDSTONE  VALLEYSANDSTONE  
VALLEYSANDSTONE  NORTHSANDSTONE   
[17] NORTHSANDSTONE   NORTHSANDSTONE   SOUTHSANDSTONE   
SOUTHSANDSTONE   SOUTHSANDSTONE   HILLTOPSANDSTONE 
HILLTOPSANDSTONE HILLTOPSANDSTONE 
Levels: HILLTOPSANDSTONE HILLTOPSHALE NORTHSANDSTONE 
NORTHSHALE SOUTHSANDSTONE SOUTHSHALE VALLEYSANDSTONE 
VALLEYSHALE 

So onefactor is a single factor combined of the levels of topo and 
soil. Now we can use the pairwise.t.test() function, specifying 
that we do not want to have a adjustment by the argument p.adj-
“none”. 

> pairwise.t.test(sydney$phosphor, sf, p.adj="none") 

 Submit the above statements for execution. 
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Box 5-10. 
Uncorrected 

pairwise 
comparisons 

between all 
treatment cells in 

the factorial 
ANOVA to 
assess the 

effects of 
topographic 

location and soil 
type on soil 

phosphorus. 
Bonferroni 

correction to the 
level of 

significance 
yields 003.0  

for each 
comparison. The 
experimentwise 

error rate 
remains at 

05.0 . 

 
        Pairwise comparisons using t tests with pooled SD  
 
data:  sydney$phosphor and sf  
 
                HILLTOPSANDSTONE HILLTOPSHALE NORTHSANDSTONE 
HILLTOPSHALE    0.84021          -            -              
NORTHSANDSTONE  0.94256          0.89683      -              
NORTHSHALE      0.03244          0.04837      0.03746        
SOUTHSANDSTONE  0.40840          0.52866      0.44918        
SOUTHSHALE      0.02284          0.03437      0.02646        
VALLEYSANDSTONE 0.86277          0.70851      0.80665        
VALLEYSHALE     7.6e-05          0.00011      8.8e-05      
 
 
   
                NORTHSHALE SOUTHSANDSTONE SOUTHSHALE VALLEYSANDSTONE 
HILLTOPSHALE    -          -              -          -               
NORTHSANDSTONE  -          -              -          -               
NORTHSHALE      -          -              -          -               
SOUTHSANDSTONE  0.15487    -              -          -               
SOUTHSHALE      0.86277    0.11462        -          -               
VALLEYSANDSTONE 0.02284    0.32077        0.01599    -               
VALLEYSHALE     0.00986    0.00043        0.01418    5.4e-05         
 

P value adjustment method: none  

Perusal of the results of the pairwise comparisons (only bold faced 
comparison are the correct ones) reveals the following as significant 
at the 003.0  level of significance: 

SHALE [Valley vs Hilltop]  p = 0.00011 < 0.003 

VALLEY [Shale vs Sandstone] p < 5.4e-05 < 0.003 

 

Results summary 

The following is an example of an appropriate results summary, as 
would appear in your report or publication. 

Mean soil phosphorus varied significantly across the various 
combinations of topographic location and soil type in a two-way 
factorial ANOVA (F = 7.16; df = 7,16; p < 0.001). The percentage 
variation that could be attributed to the effect of the two factors, 
individually and in combination, was high ( 76.02 R ). 

There was a significant interaction between soil type and topographic 
location in their influence on soil phosphorus (F = 4.88; df = 3,16; p 
< 0.02). Topographic location had no effect on soil phosphorus in 
sandstone-derived soils (F = 1.07; df = 3,8; p = 0.41), whereas a 
pronounced effect was evident for shale-derived soils (F = 5.33; df = 
3,8; p < 0.05) (Figure 5-15). In particular, soil phosphorus in shale-
derived soils of valleys (151.67 ppm) was significantly greater than for 



Biometry  

 

 74 University of Canberra 

 

similar soils on the hilltops (36.33 ppm) (Bonferroni correction; p < 
0.003). 

The interaction was also evident on consideration of soil types. On 
hilltops, soil phosphorus was very similar for both shale and 
sandstone-derived soils (36.33 and 31.67 ppm respectively), whereas 
in valleys the difference between the two soil types was substantial 
(Figure 5-15). Soil phosphorus in shale-derived soils in valleys (151.67 
ppm) was significantly greater than in sandstone-derived soils in 
valleys (27.67 ppm) (Bonferroni correction; p <  0.003). 

Note that the analysis for factorial ANOVA with interaction is much 
more complicated than where interaction is absent. It required us to 
consider the effects of each factor separately for each level of the 
other factor.  

The results as described include a statement of the overall 
significance of the ANOVA. The strength of the overall result is 
indicated by the 2R  and by the magnitude and direction of the 
difference between specific means of interest (means are given where 
appropriate). Both significance and strength of result need to be 
covered.  

The interaction is described in full, and the results of the split 
analysis are presented.  

The ANOVA table is rarely published, but the graph of treatment 
means showing the nature of the interaction is very informative and 
was published by Anne-Marie Clements. 

Discussion 

Clearly topographic location and soil type have an influence on the 
levels of phosphorus found in the soils and this will influence the 
susceptibility to weed invasion.  

In response to the questions posed at the beginning of the study: 

 Yes, there were significant differences in soil phosphorus among 
the four topographic locations  valleys, north-facing slopes, 
south-facing slopes and hilltops – but the differences were only 
evident in shale-derived soils; 

 Yes, there were significant differences in soil phosphorus 
between shale-derived and sandstone-derived soils, but this 
difference was significant only in the valleys; and 

 Yes, the difference between topographic locations in soil 
phosphorus depended in magnitude on whether the soils were 
shale-derived or sandstone-derived. 
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The relationships are clearly complex. It appears that shale-derived 
soils are better at retaining soil phosphorus than are sandstone-
derived soils, and that this difference in capacity is most prominent 
in valleys. 

 

 Tidy up the program by ensuring there are no elements 
remaining of the program that did not work.  Save the 
program to disk within Tinn-R for future reference. You may 
also want to save your workspace and Rhistory, if you want 
to return to this example at some stage. 

Exit from R and Tinn-R by choosing File->Exit from the Menu Bar. 
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Where have we come? 

With some sound theory behind us from Lessons 1 to 4, it was time to 
get our hands dirty with some blow-by-blow sample analyses.  

In this lesson, you were introduced to a few common examples of 
factorial ANOVA, namely: 

 Fixed design, with replication, no interaction (the Pig Trials) 

 Fixed design, with replication, with interaction (the Soil 
Phosphorus Study) 

 Mixed design, without replication (the Marine Turtle Study) as 
an example of an analysis that extends the Paired T-test to 
inlcude triplicates, quadruplicates, etc. 

The Random design, where the analysis is continued with estimation 
of the added variance components, is outside the scope of this course. 
Many other designs, such as three-way ANOVAs and mixed model 
ANOVAs with replication, are natural extensions of what you have 
learned and are not beyond your capability. 

Skills imparted in Lesson 5 include 

 How to compare means of samples classified by two or more 
criteria in a single factorial design, combining the power of the 
ANOVA with appropriate follow-up analysis. 

 How to use R graphics to display the data in both tablular and 
graphical form in the exploratory phase of the analysis, and later 
during the analysis of residuals. 

 How to make important decisions that govern the direction of the 
analysis, such as whether the model is is fixed, random or mixed, 
whether the overall result of the ANOVA was significant,whether 
or not there is a substantial interaction, what follow-up options 
are available, and whether there are a priori constraints that need 
to be accommodated in the follow-up analysis. 

 How to report the results of your analysis of variance. There is a 
very formal and agreed format for this.  

And of course, working through these examples should have 
reinforced a number of skills required to use R for statistical 
analyses. 
Time to try some challenging exercises. This is where the real 
learning occurs.So there was both practice and theory introduced in 
these worked examples. Now it is time for you to apply what you have 
learned in some challenging exercises. 
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Lesson 7: Some Challenging Exercises 

Exercise 5-1: Chase duration in Chats (Mark II) 

Three species of Australian Chat (Epthianura) can be found in micro-
sympatry in mesic coastal, semi-arid and xeric arid regions of 
Western Australia.  Epthianura aurifrons is the most physiologically 
competent to handle aridity, Epthianura albifrons is the least 
physiologically competent and Epthianura tricolor is intermediate in 
competence. 

Territorial behaviour is expensive in terms of maintaining water 
balance, so data was collected  for each species in each of the three 
habitats (mesic coastal, semi-arid, xeric arid) to see if physiological 
competence and habitat have a bearing on the duration of the 
territorial chase. A bird is said to engage in a territorial chase when it 
sees another bird off its territory.  

The data comprise variables giving the species, the habitat the 
duration of chase (in seconds). 
 

Table 5-23. 
Duration of 

territorial chase 
for three species 

of Australian 
Chat in each of 

three different 
habitats. 

Albifrons 
 Mesic coastal 58 60 72 76 

 Semi-arid 56   58 68 74 

 Xeric arid 48 24 32 39 

Tricolor 
 Mesic coastal 72 75 78 79 

 Semi-arid 60 70 74 77 

 Xeric arid 66 66 54 51 

Aurifrons 
 Mesic coastal 84 86 88 88 

 Semi-arid 76 80 80 84 

 Xeric arid 72 74 76 70 

We need to analyse the data using an appropriate ANOVA model to 
address hypotheses on differences in duration of chase. 

Describe as completely as possible an appropriate analysis and give 
reasons for your choice.  Be sure to specify the nature of the Factor 
(s) involved, to identify the response variable and to state clearly the 
null hypotheses to be addressed. 

Enter the data in a form suitable for the nominated analysis, and 
conduct an exploratory analysis based on graphical presentations 
with box diagrams.  Include the box diagrams below. What would you 
anticipate the results of an appropriate ANOVA to be? 
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Before preparing an ANOVA table, examine a plot of the residuals to 
determine whether the assumptions of the analysis are tenable.  If 
not, try some potential remedies, and repeat the ANOVA. Please 
include any graphs from your residual analysis below. 

Perform the Analysis of Variance and summarise the results  
in the form of an ANOVA table. 

If the above analyses demonstrate a significant difference among the 
mean chase durations, perform an appropriate graphic analysis to 
facilitate interpretation of the results. Present your results below. 

Write a summary of the results of the entire analysis, as might be 
included in the results section of a report or manuscript.  Refer in 
your summary to an ANOVA table and a figure showing the variation 
among species and habitats.  Include in your results, a statement of 
any clear and statistically significant trends in chase duration, but do 
not at this stage attempt to explain them. 

Discuss the analysis in the context of the reasons for
 conducting the study.  What might be the causes of the observed 
variation in chase duration among species and habitats, taking into 
account differences in their physiological tolerance to aridity?  
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Exercise 5-2: Trace Metals in Botany Bay 

Botany Bay is the first place of European settlement in Australia, 
and now has the burgeoning metropolis of Sydney on its shores 
and adjacent hinterland. This urban and industrial development 
brings with it many pressures on the environment, pressures that 
may interfere with its ability to deliver for human health, 
recreation and fisheries. 

Daniel Spooner undertook a study of the spatial and temporal 
distribution of trace metals in the sediments of the bay to identify 
the zones and extent of contamination by a variety of trace metals.  
He sampled sediments at locations for three southern sites, three 
western sites and one eastern site (Figure 5-16). The southern and 
western sites were selected systematically according to their 
relative proximity to inflows from the river catchments of 
metropolitan Sydney.  The eastern site was close to the open end of 
the bay.   

Daniel visited the sites on five occasions between January 1998 to 
May 1999 to capture seasonal variance. Sediment samples were 
randomly taken from a 10 m x 10 m quadrat for each site at each 
sampling occasion. Daniel assayed a suite of metals that are of 
concern (arsenic, zinc, copper, lead, and cadmium) but this 
exercise will concern just the arsenic data (g/g).   

The central issue of concern is whether there are significant 
differences among sites in the concentration of arsenic in the 
sediments, and if there is, where do these differences lie and how 
do they relate to the distribution of inflows to the bay. 

Figure 5-16: Botany 
Bay location map, 
showing sampling 

sites, dredging 
activities, and 
proposed flow 

patterns for 
sediment deposition 

and erosion. 
Source: Kinhill, 

1990. Arrows show 
tidal & river flow 

depositional & 
erosion path. 
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The data reside in a file called botbay.dat on the data disk. The 
contents are in the following form, without the headers. Not all the 
data are shown. 

Table 5-24. 
Concentrations of 

eight trace elements 
in the sediments of 

Botany Bay, 
Australia. 

TIME SITE Al Mn Zn Cu As Se Cd Pb 

Jan-98 SITE-1 1172.52 49.36 21.80 10.95 1.60 0.4374 0.0324 16.61 

Jan-98 SITE-1 1170.41 31.39 17.34 3.69 1.54 0.5043 0.0285 14.18 

Jan-98 SITE-1 1169.26 31.36 17.32 3.69 1.54 0.5038 0.0285 14.16 

Jan-98 SITE-2 1667.29 25.64 20.75 3.65 1.64 0.7296 0.0469 10.56 

Jan-98 SITE-2 1092.27 16.44 9.86 1.50 0.99 0.2503 0.0258 7.29 

Jan-98 SITE-2 1928.75 29.26 28.77 4.40 1.65 0.9063 0.0812 12.25 

Jan-98 SITE-3 1047.30 33.45 8.32 1.16 0.89 0.2574 1.9892 7.43 

May-98 SITE-1 2893.57 47.88 50.22 13.20 3.47 0.7173 0.0970 33.61 

May-98 SITE-1 2450.45 44.64 40.13 9.07 2.82 0.7737 0.7782 29.01 

May-98 SITE-1 3245.13 54.35 60.10 18.13 4.36 1.6431 0.1590 39.77 

May-98 SITE-2 1624.02 52.65 27.42 1.98 2.21 0.9481 0.0583 11.80 

 

You are asked to analyse the data using an appropriate ANOVA 
model to address hypotheses on differences in arsenic 
concentration across the different sites. Optionally conduct similar 
analyses for the other trace metals. 

(a) Describe as completely as possible an appropriate analysis and 
give reasons for your choice.  Be sure to specify the nature of 
the Factor (s) involved, to identify the response variable and to 
state clearly the null hypotheses to be addressed. 

(b) Access the data using an appropriate DATA step, and peruse it 
to ensure it has been read as intended. Conduct an exploratory 
analysis based on a table of cell and marginal means.  Include 
the table below. What would you anticipate the results of an 
appropriate ANOVA to be? 

(c) Before preparing an ANOVA table, examine a plot of the 
residuals to determine whether the assumptions of the analysis 
are tenable.  If not, try some potential remedies, and repeat the 
ANOVA. Are there any outliers, and if so, what is your advice? 
Please include any graphs from your residual analysis below. 

(d) Perform the Analysis of Variance and summarise the results  
in the form of a standard ANOVA table. 

(e) If the above analyses demonstrate a significant interaction 
between site and time, perform an appropriate graphic analysis 
to facilitate interpretation of the interaction. Present your 
graph and interpretation below. 

(f) What is an appropriate follow-up analysis to facilitate 
interpretation of significant differences among sites (Hint: Is 
the interaction strong or weak?). Perform the analysis, and 
present the outcome below. 
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(g) Write a summary of the results of the entire analysis, as might 
be included in the results section of a report or manuscript.  
Refer in your summary to an ANOVA table and a figure 
showing the variation among sites and times.  Include in your 
results, a statement of any clear and statistically significant 
trends in arsenic concentration, including any interactions, but 
do not at this stage attempt to explain them. 

(h) Discuss the analysis in the context of the reasons for 
conducting the study.  Where are the major concentrations of 
arsenic and how does its distribution relate to the inflows and 
flow patterns for Botany Bay? What advice would you give to 
the organisation funding this study? Feel free to use poetic 
licence for the sake of this exercise.  
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Exercise 5-3: Frequent burns and ant communities 

Periodic low-intensity fires (hazard-reduction burning) are a 
common management strategy in virtually all of Australia’s dry 
forest communities, primarily to reduce fuel levels and thereby 
minimise the extent and severity of wildfires.  However, 
surprisingly little is known about how repeated burns affect 
invertebrate communities of natural ecosystems over long periods 
of time.  Alan York studied the long-term effects of frequent low-
intensity fire on forest ant communities by comparing frequently 
burned sites with long-unburned sites. 

In 1970, six pairs of plots were selected along Sandy Hollow Road 
in Bulls Ground State Forest on the mid north coast of NSW. 
Membership of each pair was decided on the basis of similarity in 
their soil, aspect and overstory characteristics. The pairs were 
treated as blocks in the design.  

Two fire treatments, burning and no burning, were randomly 
allocated to the plots with the constraint that there was one site in 
each block scheduled for burning and one site in each block 
scheduled to be free of burning. This is a randomized block design. 

The regime applied to the burnt plots conformed with the Zone 1 
standards laid down by the Hazard Reduction Zoning System for 
managed forests in NSW. The burnt plots were subjected to low 
intensity burns in autumn whenever fuel buildup permitted, 
usually every three years (1970, 1973, 1977, 1980, 1983, 1986, 1989 
and 1992). The unburnt plots were not burned during this period. 

In February of 1994, two years after the final fire, four subplots were 
selected within each plot to capture within plot variation. Four 1.0 m2 
randomly selected samples of leaf litter were collected from each 
subplot. The litter collections for each subplot were pooled and 
invertebrates were extracted over a four day period using modified 
Tullgren funnels. Samples were returned to the lab and sorted under a 
microscope to quantify and identify the insects.   

Sampling 2 years postfire largely avoids the known short-term 
responses of invertebrates to a single fire event.  The samples 
represent a snapshot of the effect of frequent low intensity fires on 
a time scale appropriate to the dynamics of insect communities 
(20 years). 

The data comprise total ant abundance and ant species richness, 
respectively, classified according to whether they were in a burnt 
or unburnt plot in each of the six blocks. The data reside in the file 
ants.dat. 
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The problem is to determine if there is an effect of low intensity 
fires, over 20 years, on ant species abundance and richness, after 
correcting for the natural variation that would be expected to 
occur among blocks that differ in overstory, soil and aspect. 

(a) Describe as completely as possible an appropriate analysis and 
give reasons for your choice.  Be sure to specify the nature of 
the Factor (s) involved, to identify the response variable and to 
state clearly the null hypotheses (plural) to be addressed. 

(b) Read the dataset into a R workfile suitable for analysis.  
Construct a table of cell and marginal means and peruse the 
marginal means as a preliminary assessment of likely outcomes 
of the analysis.  Include the table of marginal and cell means 
below. What would you anticipate the results of an appropriate 
ANOVA to be? 

(c) What is the hypothesis of greatest interest? Why? 

(d) Before preparing an ANOVA table, examine a plot of the residuals 
to determine whether the assumptions of the analysis are tenable.  
If not, try some potential remedies, and repeat the ANOVA. Please 
include any graphs from your residual analysis below. 

(e) Perform the Analysis of Variance and summarise the results  
in the form of an ANOVA table. 

(f) What do you conclude from the analysis? Provide a concise 
summary of the results, such as might appear in the results 
section of a manuscript or report.  Remember to distinguish 
between the magnitude of the result and its statistical 
significance. 

(g) Discuss the analysis in the context of the reasons for 
conducting the study.  This analysis is referred to as a 
randomised blocks design. Explain what the benefits were of 
blocking the data into pairs with similar characteristics. How 
did your conclusions benefit from the blocking of treatment 
and control?  
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Exercise 5-4: Lake fertilization and fish growth (BACI) 

Lake fertilization is a fishery management tool that brings about 
increased productivity at different trophic levels of a lacustrine 
food web.  Lake productivity is strongly influenced by phosphorus 
inputs yet a relationship between total phosphorus (TP) and fish 
biomass or fish yield varies from year to year.  A debate continues 
as to whether the biomass patterns are more reliant on resource 
inputs (“bottom-up” controls) or predation (“top-down” controls).  
The relative importance of bottom-up and top-down controls 
depend partially on the efficiency of prey consumption by 
predators.  A sophisticated and ambitious field test of the 
competing models of trophic structure is through whole-lake 
experiments.   

Based on outcomes of previous studies, additions of fertilizer to 
lake ecosystems are predicted to alter feeding, growth, survival, 
fecundity, abundance, biomass, and production of the aquatic flora 
or fauna.  Johnston et al. (1999) documented the responses of 
rainbow trout (Oncorhynchus mykiss) and their prey to 5 years of 
increased nutrient loading.  Their aims were to test the predictive 
relationships between productivity (nutrient concentration) and 
trophic-level biomass patterns and to identify specific changes in 
the trout populations’ parameters.  The detection of environmental 
change in response to a perturbation is addressed by the class of 
ANOVA models known as Before-After Control-Impact studies or 
BACI designs. 

The study site is the Twin Lakes in British Colombia, Canada.  The 
two lakes are small (4.5 and 7.7 ha surface area) and oligotrophic.  
Physical and chemical characteristics of the lakes were similar, 
although West Twin Lake was marginally deeper and had less 
littoral area.  East Twin Lake was the treatment lake (it received 
fertilizer) and West Twin Lake was used as a control (it received 
none).  Lakes were without fish prior to 1982.  The study design 
includes a pre-fertilization period (1982-1989) and a fertilization 
period (1990-1994). Data for a post-fertilization period (1995-
1996) are not included.    

The data reside in a datafile called twinlakes.dat, and comprise two 
categorical variables LAKE and YEAR and total phosphorus. 

You are asked to analyse the data to determine if phosphorus level 
is affected by fertilization.  

(a) Describe as completely as possible an appropriate analysis and 
give reasons for your choice.  Be sure to specify the nature of 
the Factor (s) involved, to identify the response variable and to 
state clearly the null hypotheses (plural) to be addressed. 
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(b) Read the data into a R  in a form suitable for the nominated 
analysis, and conduct an exploratory analysis based on 
graphical presentations of the treatment means.  Include the 
graphs below. What would you anticipate the results of an 
appropriate ANOVA to be? 

(c) What is the hypothesis of greatest interest? Why? 

(d) Before preparing an ANOVA table, examine a plot of the 
residuals to determine whether the assumptions of the analysis 
are tenable.  If not, try some potential remedies, and repeat the 
ANOVA. Please include any graphs from your residual analysis 
below. 

(e) Perform the Analysis of Variance and summarise the results  
in the form of an ANOVA table. 

(f) Write a summary of the results of the entire analysis, as might 
be included in the results section of a report or manuscript.  
Refer in your summary to an ANOVA table and a figure 
showing the variation across time for each lake.  Include in 
your results, a statement of any clear and statistically 
significant trends in total phosphorus over time, but do not at 
this stage attempt to explain them. 

(g) Discuss the analysis in the context of the reasons for 
conducting the study.  This analysis is referred to as a BACI 
design. Explain how your conclusion is strengthened by having 
a spatial as well as a temporal control.  
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Exercise 5-5: Competition from exotics on a rare native 
plant 

Introduced plant species threaten many terrestrial and aquatic 
ecosystems by altering geomorphological processes, nutrient cycles 
and fire regimes, and by displacing native plant species.  Rare plants 
in some ecosystems may be particularly vulnerable because of small 
population size, poor competitiveness or small geographic ranges. 
Although many endangered or threatened plants are thought to be 
declining because of introduced plants, few studies have quantified 
the impact of introduced species on the establishment, survival, 
growth, and reproduction of rare plants.   

Solidago shortii is an endangered plant endemic to a 12.2 km2 area 
in north-eastern Kentucky (USA).  Jeffery Walck and his colleagues 
studied the impacts of introduced plants on the viability of this relict 
population.  They gathered data designed to determine the effect of 
removing exotic plants on the reproductive performance of Solidago 
shortii.   

The field study established twenty replicate plots with each plot 
containing a clump of ramets (stems) of S. shortii.  Soil nutrients and 
light are relatively high at the site and thus do not appear to limit 
growth of S. shortii.  Ten plots were selected randomly for treatment 
(removal of non-native vegetation) and the other ten plots served as 
control plots (non-native vegetation not removed).  The experimental 
plots were maintained free of non-native vegetation from 1993-1996. 
The number of flowering and nonflowering ramets of S. shortii were 
counted each September, in each year from 1992 to1996 on both the 
treatment and control sites.   

The data are held in the file solidago.dat and comprise five columns – 
plot number, removal treatment (CONTROL, TRT), year, number of 
flowering ramets, number of non-flowering ramets. 

You are asked to analyse the data on total number of ramets per plot 
to determine if there was a significant effect of removal of non-native 
species on the reproductive capacity of this rare plant. 

(a) Describe as completely as possible an appropriate analysis and 
give reasons for your choice.  Be sure to specify the nature of 
the Factor (s) involved, to identify the response variable and to 
state clearly the null hypotheses to be addressed. Which 
hypothesis is likely to be of greatest interest? 

(b) Access the data using an appropriate DATA step, and peruse it 
to ensure it has been read as intended. Conduct an exploratory 
analysis based on a table of cell and marginal means.  Include 
the table below. What would you anticipate the results of an 
appropriate ANOVA to be? 
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(c) Before preparing an ANOVA table, examine a plot of the 
residuals to determine whether the assumptions of the analysis 
are tenable.  If not, try some potential remedies, and repeat the 
ANOVA. Are there any outliers, and if so, what is your advice? 
Please include any graphs from your residual analysis below. 

(d) Perform the Analysis of Variance and summarise the results in 
the form of a standard ANOVA table. 

(e) If the above analyses demonstrate a significant interaction 
between treatment and year, perform an appropriate graphic 
analysis to facilitate interpretation of the interaction. Present 
your graph and interpretation below. 

(f) What is an appropriate follow-up analysis to facilitate 
interpretation of significant differences among treatments and 
across years. Perform the analysis, and present the outcome 
below. 

(g) Write a summary of the results of the entire analysis, as might 
be included in the results section of a report or manuscript.  
Refer in your summary to an ANOVA table and a figure 
showing the variation among sites and times.  Include in your 
results, a statement of any clear and statistically significant 
trends, including any interactions, but do not at this stage 
attempt to explain them. 

(h) Discuss the analysis in the context of the reasons for 
conducting the study.  What advice might you give to the 
management agencies responsible for the conservation of this 
endangered species?  
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Exercise 5-6: Artificial substrates in pond aquaculture 

Asia accounts for 90% of the world’s aquaculture production, the 
bulk of which occurs in ponds or rice fields.  Pond production 
systems in southern Asian countries are increasingly reliant on 
external resources (feed, fertilizers) to supplement or stimulate 
autochthonous food production for pond fish.  Ways that enhance the 
conversion of these nutrients into harvestable products, through 
adoption of periphyton-based production into existing pond systems, 
are worth exploring. 

Periphyton is defined as the entire complex of all sessile biota 
attached to the substratum, plus associated detritus and 
microorganisms.  A less technical though accurate name for 
periphyton is ‘pond scum’.  Culturing fish that graze on the 
periphyton is an old and proven approach.  The approach derives 
from traditional fishing practices, such as the ‘acadjas’ of the Ivory 
Coast, the ‘samarahs’ of Cambodia and the ‘katha’ fisheries of 
Bangladesh where tree branches are placed in shallow open waters to 
attract fish and enhance productivity.  Some studies suggest that fish 
yields from periphyton grown on these artificial substrates could be 
up to 8 tons per hectare a year, which is potentially 8 times higher 
than in control areas without artificial substrates. 

However, the results from experiments in aquaculture ponds can be 
quite variable within and between substrate types, and the design of 
many trials allows no conclusion about the causal factors responsible 
for differences. 

This need for a systematic research program on the potential of 
periphyton-based aquaculture stems was a stimulus for experiments 
conducted by Mohammed E. Azim and his colleagues to determine: 

 if there were significant differences in quantity and quality of 
periphyton grown on artificial substrates of three locally available 
plant materials, in the absence of fish; 

 If there significant differences in periphyton occurred with depth, 
which would potentially indicate some need to control water 
depth for optimal growth. 

Field trials were carried out in 9 earthen ponds of 1.2 m depth.  Three 
common substrate types (bamboo, kanchi, and hizol) were evaluated 
in triplicate using a complete randomised design.  Ponds were 
drained and prepared similarly.  Ponds were filled from ground water 
and topped up weekly to replace any evaporative losses.  A traditional 
schedule of fortnightly fertilization was maintained after pond filling 
and through the experimental period of 6 weeks.  The substrates were 
made available by putting clusters of bamboo poles, or kanchi poles, 
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or hizol branches in a 1 m2 arrangement that yielded a total 
submerged substrate area about the same as the pond surface area. 

Each week the periphyton biomass growing on a substrate was 
sampled to determine the dry matter (DM) and pigment 
concentration (Chlorophyll a).  Areas were scraped from the pole 
substrate and replaced to the pond, but marked so that they were 
excluded from other subsequent sampling.  Data on dry mass of the 
periphyton (DM) are given for the final sample (Week 6), broken 
down by substrate (control or B, K, H), and depth (0,30,60,90 cm). 

The data reside in the file PERIPHYTON.DAT. 

 

Table 5-25. Dry 
weight of 

periphyton 
grown on 
different 

substrates at 
different depths 

in a two-way 
factorial design.  

Substrate Depth DM 

bamboo 0 1.67 

bamboo 30 1.67 

bamboo 60 0.83 

bamboo 90 1.67 

hizol 0 0.83 

hizol 30 4.17 

hizol 60 7.5 

hizol 90 4.17 

kanchi 0 0.83 

etc. etc. etc 

 

You are asked to analyze the data to determine if there are significant 
differences periphyton growth among the different substrates, if 
there is a significant difference in periphyton with depth, and if there 
is a difference in periphyton growth on the substrates, does the 
difference depend in magnitude or direction on the water depth? 

The first question is the one of greatest interest. 

(a) Describe as completely as possible an appropriate analysis and 
give reasons for your choice.  Be sure to specify the nature of 
the Factor (s) involved, to identify the response variable and to 
state clearly the null hypotheses to be addressed.  

(b) Access the data using an appropriate DATA step, and peruse it 
to ensure it has been read as intended. Conduct an exploratory 
analysis based on a table of cell and marginal means.  Include 
the table below. What would you anticipate the results of an 
appropriate ANOVA to be? 

(c) Before preparing an ANOVA table, examine a plot of the 
residuals to determine whether the assumptions of the analysis 
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are tenable.  If not, try some potential remedies, and repeat the 
ANOVA. Are there any outliers, and if so, what is your advice?  

(d) Perform the Analysis of Variance and summarise the results in 
the form of a standard ANOVA table. 

(e) If the above analyses demonstrate a significant interaction 
between treatment and year, perform an appropriate graphic 
analysis to facilitate interpretation of the interaction. Present 
your graph and interpretation below. 

(f) What is an appropriate follow-up analysis to facilitate 
interpretation of significant differences among treatments and 
across years. Perform the analysis, and present the outcome 
below. 

(g) Write a summary of the results of the entire analysis, as might 
be included in the results section of a report or manuscript.  
Refer in your summary to an ANOVA table and a figure 
showing the variation among sites and times.  Include in your 
results, a statement of any clear and statistically significant 
trends, including any interactions, but do not at this stage 
attempt to explain them. 

(h) Discuss the analysis in the context of the reasons for 
conducting the study.  What advice might you give to the 
aquaculturalists?  



Biometry  

 

University of Canberra   91 

 

Exercise 5-7: Phytoplankton in Peel-Harvey Estuary 

Peel-Harvey estuary is a shallow estuary located approximately 80 
km south of Perth in the south-west of Western Australia.  Clearing 
and agriculture in the catchments of the estuary have led to a 
dramatic increase in the levels of nutrients entering the estuary.  For 
more than 30 years prior to 1994, the estuary was plagued by algal 
blooms, including blooms of the toxic blue-green algae Nodularia.  
Build-up of macroalgae was also a problem and the shorelines were 
regularly cleared by front end loaders.  The only opening to the ocean 
was by a small channel running north from the Peel Inlet and 
flushing of the system was poor (the tidal range in the estuary was 
only 10% of that in the ocean – Hale and Paling, 1999).  

A three part strategy was developed to reduce eutrophication in the 
Peel-Harvey Estuary (Peel Inlet Management Authority 1994): 

 reduce the nutrient run-off from the catchment; 

 continue harvesting macroalgae as necessary; and 

 increase flushing to the ocean. 

The third point was addressed by the construction of the Dawesville 
Channel (see Figure 5-17.)  It is a $65 million engineering approach 
to improving water quality.  The Channel is approximately 130 to 
200m wide, 3.5 km long and 4.5 to 6.5 metres deep and was opened 
in 1994. 

This study aims to use the extensive data set collected before and 
after the opening of the Channel to see if the construction of the 
Channel has had the desired effect of reducing algal blooms 
throughout the whole year.  Chlorophyll-a concentrations will be 
used as an indicator of algal blooms.  

You are asked to analyze the data to determine if there are significant 
differences in chlorophyll-a pre-channel and post-channel, if there 
are significant differences in chlorophyll-a with season, and if there is 
a difference in chlorophyll-a pre and post channel, does the 
difference depend in magnitude or direction on the season? 

(a) Describe as completely as possible an appropriate analysis and 
give reasons for your choice.  Be sure to specify the nature of 
the Factor (s) involved, to identify the response variable and to 
state clearly the null hypotheses to be addressed.  

(b) Access the data using an appropriate DATA step, and peruse it 
to ensure it has been read as intended. Conduct an exploratory 
analysis based on a table of cell and marginal means.  Include 
the table below. What would you anticipate the results of an 
appropriate ANOVA to be? 
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Figure 5-17: 
Peel-Harvey 

Estuary in 
Western 

Australia.  Red 
dots show 

sampling sites 

(c) Before preparing an ANOVA table, examine a plot of the 
residuals to determine whether the assumptions of the analysis 
are tenable.  If not, try some potential remedies, and repeat the 
ANOVA. Are there any outliers, and if so, what is your advice?  

(d) Perform the Analysis of Variance and summarise the results in 
the form of a standard ANOVA table. 

(e) If the above analyses demonstrate a significant interaction 
between treatment and year, perform an appropriate graphic 
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analysis to facilitate interpretation of the interaction. Present 
your graph and interpretation below. 

(f) What is an appropriate follow-up analysis to facilitate 
interpretation of significant differences among treatments and 
across seasons. Perform the analysis, and present the outcome 
below.  

(g) Write a summary of the results of the entire analysis, as might 
be included in the results section of a report or manuscript.  
Refer in your summary to an ANOVA table and a figure 
showing the variation among sites and times.  Include in your 
results, a statement of any clear and statistically significant 
trends, including any interactions, but do not at this stage 
attempt to explain them. 

(h) Discuss the analysis in the context of the reasons for 
conducting the study.  What advice might you give to the Peel 
Inlet Management Authority?  

 



Biometry  

 

 94 University of Canberra 

 

Where have we come? 

This lesson is where the real learning occurs. In earlier lessons, you 
have read and understood written material and been led through 
worked examples. In this lesson, you were required to recall and 
integrate the information to complete some challenging real-world 
exercises. Recall in the context of problem solving is one of the best 
ways of achieving lasting learning. It is hard yakka. 

In completing this module successfully, you will have achieved a 
number of core competencies, namely, 

 Knowledge of the analysis options available to you under the 
broad heading of Factorial ANOVA. 

 Understanding the distinction between the various classes of 
analysis (fixed, random, mixed), and the questions that can be 
addressed by them. 

 A working knowledge of the lm() procedure, and how to specify a 
model with more than one factor including an interaction term.  

 The ability and confidence to to interpret the results of the 
analyses in a biological context based on demonstrated 
understanding of the analyses. In particular, you should have a 
sound understanding of the biological meaning of interaction. 

 The ability to present findings in a style appropriate to the 
scientific literature. 

 Appropriate attitudes and efficient strategies for extending your 
abilities to conduct analyses and solve problems beyond the 
scope of this module, by using resource materials such as 
statistical texts, software manuals, and your colleagues. 

In terms of practical skills, on completing this Module, you should be 
able to competently undertake the following analyses: 

 Two-way and three-way Fixed Model Factorial ANOVA with 
replication, with or without significant interactions. 

 Two-way Mixed Model Factorial ANOVA with or without 
replication. 


