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Lesson 1: Key Concepts in Regression 

Overview 

In regression, we estimate the relationship one variable has with 
another by expressing one as a function of the other.  

The growth curve of a weed species is spoken of as a regression of 
height against age. If we know the age of a stand, we can use this 
relationship to obtain an estimate of the height of the plants. 
Turbidity in a lake varies with distance from the primary inflow, and 
this relationship may be modelled as a regression. Length-weight 
relationships are of great value in fisheries, where it is useful to 
obtain predictions of the weight of a fish from a measurement of its 
length. Mercury concentrations accumulating in the muscle tissue of 
fish may be strongly related to the age of a fish, and therefore its size, 
so we may be interested in establishing a regression of mercury 
concentration on body mass. 

Regression analyses can have a number of objectives. Most 
commonly, regression is used to predict the value of one variable 
from the value of another, when the two are related. 

In regression, the relationship between two variables is expressed as 
a function, expressed graphically as a line. In simple linear 
regression, the function is a straight line that can be expressed as: 

XBBY 10   

where  B0 is the Y intercept and B1 is the slope of the line.  

You can verify that this is a straight line on a graph by plotting it for 
selected points, or by noting that a given increment in X yields a 
given change in Y that does not vary with the value of X. This would 
not be true of the relationship 

2
10 XBBY   

for example. 

The regression equation describes the fitted line that minimises the 
squared deviations of the data points from the line, the residual sums 
of squares, and as such is sometimes called least squares 
regression. 

Regression analysis does not treat the two variables equally. Y, the 
response or dependent variable, is treated as a function of X, the 
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regressor or independent variable. The values of X are usually 
under the control of the investigator. 

Statistical analyses involve estimating the parameters of the 
regression, their standard errors and confidence limits. The 
parameters can be tested for significance.  

If the slope is significantly different from zero, we say that there is a 
significant regression. In other words, for an incremental change in 
the regressor X, we can expect a corresponding incremental change 
in the response variable Y. The two variables are related in a 
predictable way. A test for a significant slope is a test for a significant 
regression. 

We can use a significant regression to predict a value of the response 
variable for a given value of the regressor, and set confidence limits 
for this prediction. 

If the slope of the regression is not significant, we have no evidence to 
refute the suggestion that the two variables are varying 
independently. An incremental change in the regressor X provides no 
information on the corresponding change likely to occur in the 
response variable Y. 

While regression might be very useful for prediction, it is important 
to note that no matter how strong the regression or how tight the fit 
of the data to the regression line, causality is not necessarily implied. 
The number of churches in a city and the crime rate are strongly and 
positively related. Indeed, if we draw from American towns and 
cities, a regression between the number of churches and the number 
of violent crimes yields and R2 of 0.72. The more churches, the more 
violent crime.  

The number of churches may be used as a regressor to predict the 
crime rate well in a linear regression, but no one suggests that the 
churches or those who preach in them are causing the crime. City size 
is the likely culprit, hidden behind the scenes as a coincident driver of 
the crime rate and the number of churches in a city. A strong and 
significant regression does not, on its own, provide evidence of 
causality. Causality cannot easily be established outside a strict 
experimental context. 

Simple linear regression can be regarded as a natural extension of 
fixed-model single-factor ANOVA, bringing the two together under 
the umbrella of a General Linear Model (GLM). Modern 
statistical packages present the output of a regression analysis in the 
form of an analysis of variance, and interpretation of this output 
demands an understanding of the theoretical links between 
regression and ANOVA. Much of the theoretical material presented 
in this workbook will deal with this link. 
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Simple linear regression in a nutshell 

The Regression Equation 

The objective of regression analysis is usually to obtain a predictive 
relationship between one variable, the regressor or independent 
variable, and the other, the response or dependent variable. Usually, 
values of the regressor variable are deliberately chosen or controlled 
by the investigator. 

In simple linear regression, we assume that the underlying 
relationship between two variables, if any, is linear. A linear 
relationship can be described by the function: 

XXY 10|    

where XY |  is the true parametric mean of response Y for a given 

value of the regressor X, and 0 and 1 are parameters to be 
estimated.  

When this function is graphed (Figure 6-1), the parameters 0 and 1 

take on intuitive meaning.  0 is the Y intercept; it is the value of Y 
when X = 0.   1 is the slope or regression coefficient; it is the 
incremental change in Y for a unit change in X. If the response 
variable Y increases with increasing X, then the slope is positive; if Y 
decreases with increasing X, the slope is negative. 

Figure 6-1. 
 A linear function 

of Y on X 
showing the 

interpretation of 
the parameters 

0 (the Y 
intercept) and 1 
(the slope). Note 
that the slope is 

the amount by 
which Y 

increases for 
each unit 

increase in X. 

 

The problem of quantifying the regression of one variable on the 
other becomes the problem of estimating the intercept and slope of 
the relationship between the two variables. 

In the real world, variables are not perfectly related (Figure 6-2). 
There may be a good relationship between the age of a woody weed 
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and its height, but it would be too much to expect that knowledge of a 
plant's age would enable us to calculate its height exactly. We might 
expect to get an estimate of its height from our regression of height 
against age, but the estimate would be subject to natural error. Plants 
of the same age vary in height. 

Figure 6-2. 
 True underlying 

relationship 
between height 

and age in young 
individuals of a 

woody weed. Note 
that the 

relationship is not 
perfect. Plants 

vary in height from 
that predicted from 
the true underlying 

relationship. 

Hence, the relationship between Y and X becomes: 

iXY   10  

where Y is an actual value of the response variable for a given X and i 
is the deviation of the value from that expected from the linear 
relationship. Height of a woody weed is governed by some underlying 
average relationship between height and age, and an additional 
component, the error i, associated with that particular plant. 

Parameter Estimation 

When faced with data such as those shown in Figure 6-2, we do not 
know the true parametric relationship between the two variables, but 
can calculate our best estimate of it, the straight line of best fit: 

XBBY 10
ˆ   

where Ŷ is the value on the line corresponding to our given value of 

X. Intercept B0 and slope B1 are estimates of the true parameters 0 
and 1 respectively (Figure 6-3).  
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Figure 6-3. 
Relationship 

between the true 
regression line (solid 

line) and that 
estimated from the 
data (dashed line). 

Note that the 
sample regression 

differs from the true 
regression in slope 

( 11 B ) and in 

elevation 

( YY  ). Note 

also the difference 
in terminology for 

describing the true 
line and its estimate. 

In particular, Ŷ is 
the value taken by 
the estimated line 

for a given value of 

X ( XYY |
ˆ  ). 

       

The regression line we calculate from our data will be our best 
estimate of the true but unknown linear relationship, but will differ 
from it because of sampling error. It will differ in two important 
ways. First, it will differ from the true relationship because the slope 
is subject to sampling error. B1 will not equal 1, but rather will be an 
estimate of it. Second, our calculated relationship will differ from the 
true underlying relationship because the bivariate mean through 
which our line runs will be subject to sampling error. Y and X will 
only be estimates of their parametric values Y and X respectively. 

But how do we calculate our sample line? The line we seek is the least 
squares line of best fit. It is the line for which the sum of the squared 
deviations of the points Y from their corresponding values on the line 
is a minimum. We write: 

 2ˆ 
i

residual YYSS  

We could find the least squares line of best fit by fitting a best guess 
to the data by eye, then jiggling it about in some systematic way to 
iteratively find the combination of slope and intercept that minimises 
the residual sums of squares. This is the approach often taken in non-
linear regression (see nls() in R). Alternatively, and more usually in 
cases of linear regression, we can rely on the work of mathematical 
statisticians who have derived formulae for the least squares 
solutions for the slope and intercept of the line of best fit. 
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  

 








n

n

XX

YYXX

B
2

1
 

XBYB 10   

Confidence Limits 

Confidence limits are used to place bounds on the value of population 
parameters whose values are typically unknown. Confidence limits, 
for example, may be used to determine the range within which we 
can be 95% sure the true parametric population mean lies (refer to 
Workbook 3). 

ErrordardStStatisticCL n tan2]2[05.095   

In regression, three parameters were introduced. There were the 
parameters of the regression line itself, the intercept 0 and slope 1, 
and there was the parametric value of the true value of Y for a given 
value of X, Y|X. We can set confidence limits for each of these. We 
can also set confidence limits for the determination of a single value 
of Y for a given value of X. When referring to confidence limits in 
regression, it is important to distinguish among these possibilities. 

The 95% confidence limits for the slope provide bounds within which 
we can be 95% sure the true parametric slope lies. The range of 
slopes within which you can be 95% sure the true slope lies can be 
shown graphically as two lines intersecting at the bivariate mean of X 
and Y. 

Calculation of the 95% confidence limits for the expected value of Y 
(that is, Y ) for a given value of X is more complicated. Such 
estimates will have two sources of error—error in the estimate of the 
elevation of the regression line (our estimate of Y at X ) and error in 
the slope. Clearly, the impact of error in the slope on our predictions 
will depend on the value of X (Figure 6-4). Thus, the confidence 
limits for the prediction of Y for a given value of X will depend on 
which value of X we choose. The further away our X value is from X , 
the poorer will be the precision in our estimates of Y (Figure 6-4). 
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Figure 6-4. 
Regression of 

height of young 
woody weeds 

against age, 
showing the 95% 
confidence limits 
for the expected 

value of height 
(that is, the 

mean value of 
height) for a 

given value of 
age. 

The 95% confidence limits for the expected value of the Y intercept 
are just a special case of the confidence limits for the expected value 
of Y for a given value of X  (X is zero). Of course, great care must be 
taken in relying on these confidence limits if the Y intercept lies 
outside the range of the data. 

The 95% confidence limits for a single value of Y for a given X are 
very different from the 95% confidence limits for the mean value of Y 
for a given X. You need to be careful in choosing the limits 
appropriate to your research question. If, for example, you are 
wishing to set limits for the average consumption of mercury in fish 
for the human population, limits based on the 95% confidence limits 
for the determination of mean mercury content from fish length may 
well be appropriate. If however you intend to set a maximum limit for 
mercury in any fish sent to market, then the appropriate confidence 
limits are the ones that give you 95% assurance that no single fish 
exceeds your limits. The confidence limits for determination of 
mercury in an individual fish will be much wider than those for the 
mean determination for fish of a given size. 

Sokal and Rohlf (1994: Box 14.2) provide formulae for standard 
errors and confidence limits in regression. Most statistical packages 
will provide output that includes all of the above confidence limits. 
The distinction between the various confidence limits will be 
provided in the worked examples. 

Significance Testing 

Testing the significance of the regression involves testing the 
significance of the regression coefficient 1 , that is, we test the null 
hypothesis that the sample value of B1 comes from a population with 
a parametric value of 01  :  

0: 10 H  0: 11 H  

The sampling distribution of B1 is normal under not too restrictive 
assumptions, so the regression can be tested with a t-test: 
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1

0

tan
1

BS

B

ErrordardS

Statistic
t


  

where 
1BS is the standard error for the slope B1. The degrees of 

freedom for the test are 2 n  as there are two fitted parameters. 
The test is a two-tailed test because the parametric slope may be less 
than, equal to or greater than zero. 

Of course, we could also test whether B1 was different from a 
parametric value of 1 other than zero. 

Strength of Result 

The strength of the regression is given by the magnitude of the 
regression coefficient, the steepness of the slope, though you need to 
be careful as it is unit dependent. It is the measure of the magnitude 
of expected change in Y for a given change in X. Note that where the 
data are abundant, a highly significant regression can nevertheless be 
a weak regression. 

Adequacy of Fit 

The coefficient of determination (R2) is a measure of the 
adequacy of the regression line as a summary of the data upon which 
it is based.  

 

 








n

n

total

regression

YY

YY

SS

SS
R

2

2

2

ˆ

 

It is coincidentally equal to the square of the Pearson correlation 
coefficient, with 10 2  R . 

If there is wide scatter of the data about the regression line, then the 
fit is poor, predictions will be imprecise, and the coefficient of 
determination, R2, will be small. 

If there is a tight fit of the data to the regression line, then the fit is 
good, predictions will be precise, and R2 will be close to 1. If all the 
data points lie on the line, then 12 R .  

What is regarded as a good fit will vary from discipline to discipline 
and from application to application. When calibrating a piece of 
equipment, an R2 of at least 0.98 might be expected for the 
regression of the instrument readings against the true value. In an 
ecological context, R2 of 0.70 might be regarded as a good fit. 



Biometry  

 

University of Canberra   13 

 

Note that statistical significance, strength of result and adequacy of 
fit are not closely coupled. A highly significant result can occur when 
the regression is weak and the fit poor, if the sample size is large. The 
fit can be good, and predictions precise, even though the influence of 
the regressor variable on the response variable is modest (the 
regression is weak). And of course, a strong regression apparent in 
the sample data (B1 large) may not be significant if the sample size is 
small. 

Where have we come? 

Much of the above introduction to regression should have been 
revision for you, as this course assumes that you have done a first 
course in statistics. You should now appreciate that 

 Regression	is	an	analysis	that	estimates	a	linear	function	relating	one	
variable	(the	response	variable	Y)	to	another	variable	(the	
independent	variable	X).	

 Regression	is	used	to	predict	the	value	of	the	response	variable	for	a	
given	value	of	the	independent	variable.	

 Regression	does	not,	on	its	own,	have	anything	to	say	on	the	matter	
of	causality.	

 In	a	regression	analysis,	we	typically	estimate	the	slope	of	the	
regression	and	the	Y	intercept.	These	two	statistics	enable	us	to	
construct	the	regression	equation	used	to	predict	Y	from	X.	

 A	t‐test	can	be	used	to	test	the	significance	of	the	regression,	or	more	
precisely,	whether	or	not	the	slope	of	the	regression	is	significantly	
different	from	zero.	A	zero	slope	means	that	variation	in	X	is	
unrelated	to	variation	in	Y.	

 R2,	the	coefficient	of	determination,	provides	a	measure	of	the	
proportion	of	variation	in	Y	that	can	be	explained	by	variation	in	X.	If	
there	is	a	perfect	fit	of	the	line	to	the	data,	then	R2	will	be	equal	to	1.	
If	there	is	no	regression	at	all,	R2	will	be	equal	to	0.	R2	is	a	measure	of	
the	scatter	(unexplained	noise)	of	the	points	about	the	regression	
line.	

 Strength	of	result	is	given	by	the	magnitude	of	the	slope,	in	that	the	
magnitude	of	the	slope	tells	us	by	how	much	Y	changes	for	a	given	
change	in	X.	This	assessment	needs	to	take	into	account	the	units	of	
measurement.	

 Confidence	limits	of	the	slope,	for	the	predicted	mean	value	of	Y	for	a	
given	X,	and	for	the	prediction	of	an	individual	Y	estimate	for	a	given	
value	of	X	are	all	available	to	assist	in	conveying	confidence	in	the	
results	of	the	analysis.	

If any of these matters remain unclear to you, refer to an elementary 
text in statistics. 
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Lesson 2: Regression as an Analysis of Variance 

Single-factor ANOVA revisited 

In a pilot study, Kurt Hammerschmidt collected ten replicate samples 
of water from each of ten sites in Lake Burley Griffin (Figure 6-5).  
The sites were specifically chosen at set intervals along the main 
channel leading from the inflow to the Scrivener Dam wall so that 
they could be revisited if necessary.  Turbidity (in ntu) was measured 
for each replicate sample taken at each site, and the data are shown 
in the Table 6-1. 

Figure 6-5. 
 A map of Lake 

Burley Griffin 
showing the 

main channel 
(dashed line) 

and the sampling 
stations used for 

collection of 
water samples 

().  
Table 6-1. 

Turbidity values 
(NTU) for each 

of 10 water 
samples taken at 
each of 10 sites 

in Lake Burley 
Griffin, 

Canberra. 

SITE 
A B C D E F G H 1 J 

43 25 23 32 17 23 14 13 15 13 

28 28 24 32 21 21 18 26 15 15 

43 28 30 32 18 17 14 18 14 14 

28 25 32 33 17 18 16 15 12 13 

42 25 25 32 25 19 14 15 17 16 

43 25 28 29 17 24 9 14 19 19 

40 26 23 26 18 14 14 17 15 16 

35 25 25 38 14 17 26 15 14 15 

42 23 26 27 15 17 10 11 16 11 

43 25 27 29 15 18 15 14 14 15 

We could analyse these data as a single-factor ANOVA to determine if 
there were differences in turbidity among sites and where those 
differences lie. Indeed, this was the objective of Exercise 4-1 of 
Module 4. 

It is a fixed model ANOVA, as the sampling sites were chosen 
specifically and systematically along the drainage channel.  

Sites in Lake Burley Griffin differed significantly in turbidity 
(F=52.62; df=9,90; p<0.0001) (Table 6-2). Site A, closest to the 
inflows of the Molonglo River and Jerrabomberra Creek had 
significantly higher turbidity than any other site (Tukey-Kramer 
Procedure, P<0.05). Sites B, C and D of the east and central basins 
did not differ significantly in turbidity, and were intermediate. Sites 
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E, F, G, H, I and J of the western basin, closest to the dam wall, did 
not differ significantly in turbidity, and collectively had the lowest 
turbidity (Table 6-2). 

 

Table 6-2. 
 Results of a 
single-factor 

ANOVA 
comparing 

turbidity (NTU) 
among sites in 

Lake Burley 
Griffin.  

Source DF 
Sum of 
Squares 

Mean 
Square F Value Pr > F 

Among Sites 9 6025.04 669.448889 52.62 <.0001 

Within 90 1145.00 12.722222   

Total 99 7170.04    

      

 

Non-significant 
subsets were 
obtained from 
Tukey-Kramer 

multiple 
comparisons. 

   

B C D 

30.5 26.3 26.0 

 
      

F E H I G J 

18.8 17.7 15.8 15.1 15.0 14.7 

The results are shown graphically in Figure 6-6. The overall pattern is 
obvious, supported by the Tukey-Kramer analysis. There is a 
progressive decline in turbidity as turbid water entering the lake 
moves through the lake toward the outflow. The suspended solids are 
flocculating out over time. 

Figure 6-6. 
Turbidity values 
(NTU) for each 

of 10 water 
samples taken at 
each of 10 sites 

in Lake Burley 
Griffin, 

Canberra. Error 
bars show 

ranges, boxes 
show   2 

standard errors 
(n=10). 

  

                         

A 

38.7 
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From ANOVA to regression  

A Fundamental Difference 

But might not this analysis be better done using regression? What 
change do we have to make to convert the problem from a single-
factor ANOVA to a regression? It turns out that the only change we 
need is to convert our factor SITE, measured at the nominal or 
ordinal scale, to a regressor variable DISTANCE (X), measured at the 
ratio scale. Distance can be measured along the drainage channel 
from the inflow. TURBIDITY remains as the response variable (Y). 
The new dataset is shown in Table 6-3 and graphed in Figure 6-7.  

Table 6-3. 
Turbidity values 
(NTU) for each 

of 10 water 
samples taken at 
each of 10 sites 

in Lake Burley 
Griffin, 

Canberra. 
Distance is 

measured as km 
from the inflow of 

Molonglo River. 

DISTANCE 
0.82 2.00 3.09 3.91 5.59 6.47 8.00 9.00 10.44 12.65 

43 25 23 32 17 23 14 13 15 13 

28 28 24 32 21 21 18 26 15 15 

43 28 30 32 18 17 14 18 14 14 

28 25 32 33 17 18 16 15 12 13 

42 25 25 32 25 19 14 15 17 16 

43 25 28 29 17 24 9 14 19 19 

40 26 23 26 18 14 14 17 15 16 

35 25 25 38 14 17 26 15 14 15 

42 23 26 27 15 17 10 11 16 11 

43 25 27 29 15 18 15 14 14 15 

 

Partition of the Sums of Squares 

The linear regression line is clearly a poor model for these data, but 
let us persist with it for the moment. 

Figure 6-7. A 
plot of turbidity 

against distance 
from the inflow of 

Lake Burley 
Griffin, 

Canberra. Both 
individual data 
points (+) and 
means () are 

shown. The line 
is for the least 

squares 
regression. 

In our single-factor ANOVA, we partitioned the total variation in 
turbidity measurements into two components, a component 
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attributed to variation among the means and a component attributed 
to variation of individual measurements about their site mean: 

SStotal = SSamong + SSwithin 

We can now carry this partitioning one step further. We can ask, how 
much of the variation among site means can be attributed to an 
underlying linear relationship with distance and how much remains 
unexplained? 

SSamong = SSregression + SSresidual 

This new, more detailed partition of the total sums of squares is 
illustrated diagrammatically in Figure 6-8. The corresponding 
ANOVA table is shown in Table 6-4. 

Figure 6-8.  
A diagramatic 

representation of 
the partition of 

sums of squares 
for the 

regression with 
more than one 

value of Y for 
each value of X. 
The grand mean 

Y is shown as a 
horizontal 

dashed line; the 
individual 

sample mean 

Y is a dot (); 
the individual 

data points (Y) 
are crosses (+). 

 

 
 

  

The ANOVA Table 

There is much to interpret in this ANOVA table (Table 6-4). There are 
significant differences in turbidity among the sites (F=52.62; 
df=9,90; p<0.0001). We knew this from the single-factor ANOVA. 
The among sites line and within lines in this expanded table are the 
same as for the single-factor ANOVA. What we can now say, though, 
is that a significant component of the variation among sites can be 
explained by a linear regression of turbidity against distance from the 
inflow (F=31.76; df=1,8; p<0.0005). The regression equation can be 
calculated separately, and is XY 905.166.33ˆ  .  
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Table 6-4. 
Results of a 

regression of 
turbidity (NTU) 

versus distance 
from the inflow 
for Lake Burley 

Griffin, 
Canberra. Note 

that there is 
more than one 

value of Y 
(turbidity) for 

each value of X 
(distance), which 
allows for a more 

detailed 
analysis.   

Source DF Sum of Squares 
Mean 
Square F Value Pr > F 

Among Sites 9 6025.04 669.4489 52.62 0.0001 

   Regression 1 4812.73 4812.730 31.76   0.0005 

   Residual 8 1212.31 151.5388 11.91 0.0001 

Within 90 1145.00 12.72222   

Total 99 7170.04    

      

Source Expected MS 
Among Sites 22

An   

   Regression 222
regres nn    

   Residual 22
resn   

Within 2  

In testing the regression, we use: 

22

222

res

regres

res

reg

n

nn

MS

MS
F







  

MSreg always has 1 degree of freedom in simple linear regression. 

Note that had we tested the slope by traditional means, using a t-test, 
we would have obtained t = 5.636 with 82 n  degrees of freedom. 
This is the third instance of where 2

,1]1[05.0
2]2[05.02 v

tF v  , ensuring that the 

two approaches to testing regression always yield the same outcome. 

Adequacy of Fit 

Just how good is the regression line in summarising the observed 
variation among the site means? One way of measuring this is to 
express the sums of squares explained by the regression (SSreg) as a 
proportion of the total sums of squares among means  (SSamong). This 
value is called the coefficient of determination and usually 
represented by the symbol 2R : 

7899.0
04.6025

73.48122 
among

regression

SS

SS
R  

So 79% of the variation among mean turbidity measurements can be 
explained by a linear regression against distance from the inflow. 

If you have computed linear regressions in elementary statistical 
courses, you will have come across 2R  before. You will have 
appreciated that it is a measure of the proportion of variation 
explained by the regression, but it is not until you view regression as 
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a natural extension of ANOVA that you can understand why it gives 
the proportion of variation explained. 

Interpreting a Significant Residual 

Once we have taken out the effect of the regressor, that is, the 
variation explained by the regression, we can ask if the remaining 
variation among the means, the residual, is greater than we might 
expect by chance. We are effectively taking the regression line as our 
base line, and then performing a single-factor ANOVA to compare the 
means. Such means are referred to as corrected means. 

In testing the residual, we use: 

2

22


 res

within

res n

MS

MS
F


  

Clearly, the variation of the site means about the regression line is 
greater that we would anticipate on consideration of the variation 
within sites (F=11.91; df=8,90; p<0.0001).  

A significant residual can occur in one of two ways. We have assumed 
under our null hypothesis, that the true population means Y|X  all lie 
on the regression line, that is, that there is a true underlying linear 
relationship. Under the null hypothesis, all of the variation in sample 
means about the regression line would be a result of sampling error. 
If the true population means are not perfectly linearly related, then 
we can expect a significant residual variance. This can occur if the 
underlying relationship is curvilinear rather than linear. It can also 
happen if there is another factor or regressor, uncorrelated or poorly 
correlated with distance from the inflow, that is differentially pulling 
the site means away from the regression line. Often, it is a 
combination of both influences that leads to a significant residual. 

Curvilinearity 

Let us explore the curvilinear option first. Curvilinearity certainly 
appears to be the case in our turbidity example. A significant residual 
would indicate that our linear model is a poorly specified model. 
Examination of the residuals in graphic form demonstrates this 
clearly (Figure 6-9). If the regression model was appropriate, we 
would expect no systematic trend in the residuals across the plot—
they should scatter about the reference line randomly. They clearly 
do not. 
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Figure 6-9. A 
plot of residuals 

for mean 
turbidity across 
10 sites in Lake 

Burley Griffin, 
Canberra. There 
is clear evidence 
of curvilinearity. 

There are several approaches to overcoming curvilinearity. We may 
turn to theory for a better model to describe our trend. Length-weight 
relationships are usually not linear, but follow a power function of the 
form: 

BAwl   

A suitable transformation may bring the relationship into the linear 
regression fold: 

wLogBALoglLog 101010 .  

In other cases, no suitable transformation to linearity exists, and we 
must turn to iterative approaches to fitting the least squares solution 
to the theoretical model (using nls() in R). 

In still other cases, there may be no basis for selecting an underlying 
theoretical curve, and we may need to take an empirical approach—
fitting a generic polynomial model is one such approach. Here we 
first fit a linear model as above, then fit a quadratic term to 
accommodate the curvature and reduce the residuals, and so on, until 
the residual variation is no longer significant. 

Table 6-5. Results 
of a polynomial 

regression of 
turbidity (NTU) 

versus distance 
from the inflow for 

Lake Burley 
Griffin, Canberra. 

Source DF 
Sum of 
Squares Mean Square F Value Pr > F 

Among Sites 9 6025.04 669.4489 52.62 0.0001 

   Distance 1 4812.73 4812.730 210.35 0.0001 

   Distance2 1 1052.15 1052.15 45.99 0.0001 

   Residual 7 160.157 22.8796 1.80 0.0969 

Within 90 1145.00 12.72222   

Total 99 7170.04    

      

Our revised ANOVA table will look like that shown in Table 6-5. Note 
that both the linear and the quadratic terms are significant. The 
residual is no longer significant, so there is no point in carrying the 
analysis further by including a cubic or higher order terms. The 
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polynomial equation to describe the relationship between turbidity 
and distance from the inflow is given by: 

2.2596.0.3211.542.41 ceantDiscentaDisTurbidity   

The coefficient of determination is: 

9734.0
04.6025

88.5864

04.6025

15.105273.48122 



among

regression

SS

SS
R  

So 97.3% of variation in mean turbidity among sites can now be 
explained by a regression against distance from the inflow, a 
substantial (and significant) improvement on the 79.0% that could be 
explained by the linear regression. The regression is plotted in Figure 
6-10. It is a descriptive model only, useful for prediction, but not 
necessarily giving any insight into a functional relationship between 
turbidity and distance. 

Figure 6-10 
 A plot of 

turbidity against 
distance from 

the inflow of 
Lake Burley 

Griffin, 
Canberra. Both 
individual data 
points (+) and 
means () are 

shown. The line 
is for the least 

squares 
quadratic 

regression. 

Other influential regressors 

The second way that a significant residual can arise is if there is a 
second regressor (or discrete factor), uncorrelated or poorly 
correlated with our regressor, that is pulling the site means away 
from our underlying linear relationship.  

For example, distance from the shoreline may influence turbidity if 
wind action is influential in re-suspending the sediments. Distance 
from the shoreline is not particularly well correlated with distance 
from the inflow (Figure 6-5). We might wish to include this second 
regressor in the analysis. Here we first fit the regressor distance from 
outflow, then we ask how much of the residual variation can be 
explained by the second regressor, distance from the shoreline. This 
approach takes us into the domain of multiple regression. The 
ANOVA table is shown in Table 6-6. 
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Table 6-6. Results 
of a multiple 

regression of 
turbidity (NTU) 

versus distance in 
km from the inflow 
(DISTLONG) and 

distance in metres 
from the shoreline 

(DISTLAT) for 
Lake Burley 

Griffin, Canberra. 

Source DF 
Sum of 
Squares 

Mean 
Square F Value Pr > F 

Among Sites 9 6025.04 669.4489 52.62 0.0001 

   DISTLONG 1 4812.73 4812.730 36.54 0.0005 

   DISTLAT 1 250.6421 250.6421  1.82 0.2188 

   Residual 7 961.668 137.3812 10.80 0.0001 

Within 90 1145.00 12.72222   

Total 99 7170.04    

      

Clearly, the second regressor does not provide an explanation for the 
significant residual variation in the earlier analysis (F=1.82; df=1,7; 
p=0.2188). That is, distance from the shoreline does not explain any 
significant variation in turbidity over and above what was already 
explained by distance from the inflow. The residual variance remains 
significant (F=10.80; df=7,90; p<0.0001). 

Reporting the results 

We would report the results of the overall analysis as follows: 

Mean turbidity differed among sites chosen at intervals along the 
drainage channel in Lake Burley Griffin (F=52.62; df=9,90; 
p<0.0001).  

Highest turbidity of 38.7 ntu occurred at Site A adjacent to the inflow 
of Molonglo Creek (Tukey-Kramer Procedure, p<0.05). The six sites 
above the outflow at Scrivener Dam had the lowest turbidity 
averaging 16.2 ntu, with the lowest recorded turbidity of 14.7 ntu at 
Site J adjacent to the Scrivener Dam wall. Sites B, C and D were 
intermediate in turbidity.  

A total of 79% of variation in turbidity could be explained by a 
significant linear regression of turbidity against distance from the 
inflow of the Molonglo River (F=31.76; df=1,8; p<0.0005) described 
by the formula: 

 nceatDisTurbidity .905.166.33   

                              79.02 R  

where turbidity is in ntu and distance is in km. Some variation 
remained unaccounted for by the regression (F=11.91; df=8,90; 
p<0.0001), and a plot of turbidity against distance revealed that this 
was probably a reflection of curvilinearity in the relationship between 
the two variables. 

We could go on to report the results of the polynomial regression or 
the multiple regression, but these analyses are beyond the scope of 
this introductory treatment. 
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Note that in this description, we have:  

 described	the	trends	in	the	data,	including	a	summary	of	the	
magnitude	of	the	response	variable	across	the	sites,	and	specification	
of	the	linear	regression	equation	with	units	of	measurement	for	both	
variables;	

 provided	an	indication	of	the	significance	of	the	results,	including	
significance	of	the	differences	among	sites	(Tukey‐Kramer	
Procedure)	and	significance	of	the	regression	and	residual	(ANOVA	
results);	

 provided	an	indication	of	the	strength	of	the	regression	(1.905	ntu	
reduction	for	every	km	down	the	channel);	

 provided	an	indication	of	the	adequacy	of	fit	( 79.02 R ),	which	is	
poor	in	the	context	of	this	problem,	and	reasons	why	it	is	so	poor.	

Special Case: Simple linear regression 

It is time now to come back down to earth and the topic of this 
Workbook. Regression with more than one Y value for each value of 
X, although an elegant and powerful analysis, is rarely undertaken. 
More often, we have only one value of Y for each X. What happens to 
the analysis when we have no replication? What functionality is lost, 
and what functionality is retained? 

Consider the analysis of variance table that would arise had Kurt 
Hammerschmidt collected not 10 but one sample of water at each site 
(Table 6-7). With only one value per site, there is no estimate of the 
within-site variance, so that line in the ANOVA table would contain 
no useful information. The total sums of squares would now be equal 
to the sums of squares among sites (with n=1), so the Among Sites 
entry and the Total entry would become one and the same.  

It would not be possible to conduct any tests with MSwithin as the 
error term, so tests of variation among sites and of the residual would 
no longer be possible. However, a test of the regression would still be 
possible as the residual mean square is the error term for that test. 
Hence, in the simplified analysis with only one Y for each X, we can 
still test for a significant regression. 

Table 6-7. 
Results of a 

regression of 
turbidity (NTU) 

versus distance 
in km from the 
inflow for Lake 
Burley Griffin, 

Canberra. Only 
one sample is 
collected from 

each of 10 sites, 

Source DF 
Sum of 
Squares Mean Square F Value Pr > F 

Among Sites 9 6025.04 669.4489   .   . 

   Regression 1 4812.73 4812.730 31.76   0.0005 

   Residual 8 1212.31 151.5388   .   . 

Within 0     .    .   

Total 9 6025.04    
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so n=1. Note 
how the ANOVA 

table collapses 
to a much 

simpler form. 

Source DF 
Sum of 
Squares Mean Square F Value Pr > F 

Regression 1 4812.73 4812.730 31.76   0.0005 

Residual 8 1212.31 151.5388   .   . 

Total 9 6025.04    

 

 

Source Expected MS 
Among Sites 22

An   

   Regression 222
regres nn    

   Residual 22
resn   

Within  

A summary of the results for this simplified analysis might read as 
follows: 

Turbidity declined progressively from 38.7 ntu at the inflow from 
Molonglo River to 14.7 ntu at the outflow near the Scrivener Dam 
wall. A linear regression of turbidity against distance from the inflow 
was significant (F=31.76; df=1,8; p<0.0005) and could be described 
by the formula: 

ceDisTurbidity tan.905.166.33   

           79.02 R  

where turbidity is in ntu and distance is in km. However a plot of 
turbidity against distance from the inflow showed distinctive 
curvilinearity (Figure 6-12), and the linear model was clearly a poor 
description of the variation and inadequate for predictive purposes. 
Modelling the trend with curvilinear models should be explored.’ 

The ANOVA table can be included in your report or publication, but 
it is not customary. 

Notice how much weaker this statement is than the equivalent 
statement for the analysis with more than one Y for each X. This is 
the cost of failing to replicate, but one that most investigators are 
willing to wear in the case of simple linear regression. 
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Figure 6-12. A 
plot of turbidity 

against distance 
from the inflow of 

Lake Burley 
Griffin, 

Canberra. One 
sample is taken 
from each of 10 
sites. The line is 

the least squares 
regression. 

Where have we come? 

The major message of this lesson is to establish that simple linear 
regression can be viewed as a natural extension of single-factor 
ANOVA. Regression and ANOVA are just two forms of a more general 
class of analyses, called general linear models (GLM). The take home 
messages from this Lesson are: 

 The	full	analysis	involves	more	than	one	value	of	Y	for	each	value	of	
X.	In	this	case,	the	values	of	the	X	variable	can	be	considered	levels	of	
a	discrete	factor,	and	a	single	factor	ANOVA	can	be	used	to	explore	if	
there	is	significant	variation	among	the	means.	No	particular	
relationship	between	the	means	and	the	X	variable	is	assumed.	

 Where	there	is	a	significant	difference	among	the	means,	we	can	
further	partition	SSamong	into	a	component	explained	by	a	linear	
regression	and	a	residual	component.		

 Where	the	residual	means	square	is	significant,	two	possible	
explanations	present	themselves.	One	possibility	is	that	the	linear	
model	is	inappropriate.	We	need	to	explore	curvilinear	models	or	
transformations	to	render	the	linear	model	appropriate.		

 The	second	possibility	is	that	a	second	regressor	(or	factor),	
uncorrelated	or	poorly	correlated	with	the	first,	is	pulling	the	points	
away	from	the	underlying	linear	relationship	with	the	first	regressor	
and	inflating	the	residual	variance.	We	can	account	for	the	effects	of	
such	a	second	regressor	using	multiple	regression.	

 Simple	linear	regression	is	the	case	where	we	have	only	one	value	of	
Y	for	each	X,	and	this	leads	to	a	much	simplified	ANOVA	Table.	

A diagram showing where we have come since is shown in Figure 6-
11. We link to polynomial regression and multiple regression, but 
they are beyond the scope of this Module. 

We need now to consider some practicalities of regression analysis, 
when it is applied to real world data. 
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Figure 6-11. 

Diagrammatic 
representation of 
how far we have 

come in 
developing a 

general 
framework of 

linear models.  

 

 

 

 

 

 

   Student's t -test 
Y=A 

(2 factor levels)  

Single-Factor ANOVA
Y=A

(2 or more levels)

Simple Linear 
Regression

Y=X
(X continuous)

Multiple Regression
Y=X 1   X2  X3

(two or more regressors)

Factorial ANOVA
Y=A B A*B

(2 or more factors)

Polynomial Regression   
Y=X  X 2  X3

(successive powers in X)   
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Lesson 3: Application Notes 

Assumptions of regression 

Because regression is a natural extension of the fixed model single-
factor ANOVA, it should not come as a surprise to discover that 
regression and fixed model ANOVA share many assumptions.  

 Randomness:	that	the	entities	subject	to	measurement	have	been	
allocated	or	selected	at	random.	 	

 Independence:	that	we	have	achieved	independence	in	sampling,	
that	is,	the	value	of	any	one	measurement	has	no	bearing	on	the	
value	of	any	other,	relative	to	the	predicted	value	of	the	underlying	
model.			

 Normality:	that	the	Y	values	for	each	X	are	drawn	from	a	population	
with	a	normal	distribution.	

 Homogeneity	of	variances:	that	the	variances	 2 of	the	underlying	
distributions	of	Y	for	each	X	are	equal	across	the	range	of	X.	

 Linearity:	that	the	true	population	means	of	Y	for	each	X	lie	on	the	
regression	line.		

The analysis is derived from a fixed factor ANOVA, so we have the 
additional constraint that X is fixed — the regressor X takes on fixed 
values that are fully under the control of the investigator.  Any error 
is derived from uncertainty in Y. 

Violations of these assumptions involve trade-offs for the 
interpretation of regression analysis. We need to ascertain whether 
the assumptions are met before embarking on an analysis, and if they 
are not, we need to take steps to ensure that they are met.  

Below, we look in more detail at the assumptions of regression, at 
how to check if they are reasonable, and at how to proceed in the face 
of perceived violations.  

X values fixed 

Often it is possible to specifically select the values of the regressor in 
designing a study. For example in manipulative experimental studies, 
the fire frequency can be manipulated in plots established at a 
landscape scale and used in a regression of floristic attributes against 
fire frequency.  

Even if the plots are not selected at random and manipulated, it is 
still possible to control the values of the regressor variable. Fire may 
not be manipulated, but rather plots selected systematically on the 
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basis of their fire history, and a regression developed between bristle 
bird abundance and fire frequency. Because the plots have been 
selected specifically on the basis of particular fire frequency, the 
regressor is fully under the control of the investigator. 

However, regression analyses are frequently applied in observational 
studies, where the values of both response and regressor variables are 
drawn at random. Alternatively, the regressor may be measured with 
non-negligible error. For example, we may wish to establish a 
predictive regression between fish length and fish weight. Fish are 
selected at random from the population, weighed and measured. 
Both the regressor (length) and the response variable (weight) are 
subject to sampling error and length is measured with non-negligible 
error. How does this violation of theory compromise the analysis? 

The subject is one on which research and controversy are continuing, 
so a definitive answer is difficult to provide. 

The first thing to consider is whether you really need a regression 
analysis. If your interest is solely on testing whether two variables co-
vary, without any interest in quantifying a presumed linear 
relationship, then a correlation analysis is appropriate (refer to 
Section 15.1 of Sokal and Rohlf, 1994, for a comparison of correlation 
and regression). If prediction is your goal, then proceed with the 
regression. 

If we treat X as fixed when in fact it is measured with error, and X 
and Y are related, then we will have in effect artificially inflated the 
variance of Y for a given X. All of the error variance is assigned to the 
response variable, including that variation in Y that can be attributed 
to random shifts in X. The inflated residual variance will reduce the 
power of our regression, and in marginal cases, lead to a failure to 
detect an underlying true regression—undesirable but not fatal.  

The advice of Neter et al (1996) is that all results on estimation, 
testing and prediction still apply to regression where X is random, 
provided we make an additional assumptions about the distribution 
of X. The values of X must be independent and random with a 
probability distribution that does not involve the parameters 0 , 1  

or 2 .  

Most people therefore are willing to apply regression techniques to 
data where X is not fixed. We will adopt this approach in this Module. 

Randomness in sampling 

As with any statistical inference, it is important that the data at hand 
are representative of the population(s) from which they are drawn. In 
that we have fixed values of X, regression assumes that the items, 
individuals or entities allocated to each of value of X are done so at 
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random. It is important that the only systematic difference between 
them, if any, is attributable to the differential effect of the regressor. 
Non-randomness may manifest itself as lack of independence of the 
entities, unequal variances, non-normality or non-linearity. 

Violation of the assumption of randomness in sampling cannot be 
overcome easily, and typically the data must be discarded, the 
sampling protocols redesigned and the data recollected. Adequate 
attention must be paid at the time of designing an experiment, or 
when sampling from natural populations, to ensure random 
sampling. 

Linearity 

The existence of a true underlying linear relationship among the 
means of Y for each value of X is fundamental to the analysis. In the 
analysis with more than one value of Y for each X we can test this 
assumption by asking if there is variation in the deviations of the 
means for each X from the line, over and above what would be 
expected by chance. We can test the residual variation for 
significance. 

If we restrict our attention to simple linear regression with one Y for 
each X, then we can look for violations of this assumption in the 
distribution of residuals (see Figure 6-9 for an example). 

Violations of this assumption will result in an inflation of the 
MSresidual, and so greatly reduce the power of the test to detect a 
significant regression. 

Independence 

The assumption of independence refers to independence in the error 
term, and an error term is defined in the context of an underlying 
model. It makes no sense to ask, ‘Are the measurements of platypus 
bill length independent?’—independent with respect to what 
underlying model? Clearly they are not independent entirely, as the 
mere fact that they are taken from the same species provides some 
indication of their collective magnitude. Measure the first few, and 
you have general idea of the magnitude of subsequent measurements. 

When we ask, ‘Are the measurements of platypus bill length 
independent?’, we are asking if they are independent with respect to 
the mean. Does information on the length of one platypus bill 
relative to the mean provide information on the length of any other 
platypus bill relative to the mean? If we have siblings in our sample, 
and the bill of one sibling is longer than the average, then there is a 
high probability that the bill of the other sibling will be longer than 
average. The error terms for the bills of the two siblings will be 
correlated, and the assumption of independence violated. 
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In the context of regression, our underlying model is not the mean 
but the regression equation. Bill length in a platypus may regress 
with age. The question of independence relates to whether 
information on the length of one platypus bill with respect to the line, 
provides any information on the length of any other bill, with respect 
to the line. We will have the same problem of independence with our 
siblings. 

Lack of independence manifests itself in a particularly destructive 
way when it artificially deflates the mean square error in the F ratios 
of the regression ANOVA table. The consequences are dire because 
the analysis will yield significant results apparently at the 0.05 level 
of significance when in fact the real probability of Type I error may be 
0.15, 0.20 or worse. The analysis will yield significant results without 
foundation. This is most undesirable. 

In regression with more than one Y for each value of X, lack of 
independence among the Y values for a given X may deflate the 
MSwithin, which is used as the error mean square in tests of the 
residual and overall variation among means. We may be led to 
believe that the regressor does not explain all of the significant 
variation among the means when in fact it does. This may send us 
down the path of searching inappropriately for a curvilinear model or 
additional regressors. The test of regression is not affected by this 
violation of independence. 

Lack of independence in the mean values of Y for a given X, or in the 
values of Y if there is only one for each X, can lead to deflation of the 
MSresidual. A common scenario is where the values of Y are serially 
dependent in time, if X is a time related variable, or in space, if X is a 
spatial variable. Serial time dependence means that if a value of Y is 
particularly high with respect to the regression line, then the next 
value is also likely to be high. The variance in Y values about the line 
is constrained by this dependence, and so artificially deflated. 
Regressions that would not otherwise be significant will become so, 
in the absence of a true underlying relationship. Certainly, given the 
objective of undertaking statistical analysis, this is an intolerable 
violation of the underlying basis of the technique. 

A residual analysis, described in a later section, will reveal cases of 
serial dependence. 

Equality of variances 

In developing the rationale of single-factor ANOVA, it was argued 
that the effect of the factor across samples should act differentially to 
increase or decrease the sample means, but not to differentially alter 
the sample variances. An assumption of ANOVA is that the individual 
sample variances for each factor level estimate a common population 
variance, that is, that the population variances are equal. This 
assumption carries through to regression. 
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Where we have more than one value of Y for each value of X, this 
assumption is easy to visualise (Figure 6-13). We must be willing to 
accept that the variation in Y for each value of X, 2

|XYS , is estimating a 

population variance, 2
|XY  common to all X. Perusing the data for 

turbidity in Lake Burley Griffin would suggest that this is a 
reasonable assumption. 

Figure 6-13. A 
plot of turbidity 

against distance 
from the inflow of 

Lake Burley 
Griffin, 

Canberra. Both 
individual data 
points (+) and 
means () are 

shown. 

Where there is one value of Y for each X, it is not possible to assess 
the validity of this assumption directly. However, if the conditional 
means XY |  all lie on the parametric regression line, as we require 

under the assumption of linearity, then the variation among 
conditional means, XYY | , will be driven entirely by variation in Y for a 

given X. We can look at the scatter of the means about the regression 
line to assess whether the variation in Y values is estimating a 
common population variance. This will work even when there is only 
one Y for each X (means with n=1). 

In regression with only one value of Y for each X, testing the 
assumption of homogeneity of variances becomes a check of whether 
there is an even spread in the scatter of points about the regression 
line. Again, this can be done with an analysis of residuals, as we will 
see later. 

Normality 

A single-factor ANOVA assumes that the individual measurements in 
each sample are normally distributed about the true sample mean. 
For regression, the assumption is that the Y values for each X are 
drawn from a normal distribution (Figure 6-14). Again, if the 
linearity assumption is met, then the mean values of Y across the 
range of X will be normally distributed. We can examine the residuals 
to verify this assumption. 
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Figure 6-14. An 
assumption of 
regression is 
that, for each 

given value of X, 
repeated 

measurements 
of Y will be 

drawn from a 
normal 

distribution. 

 

Pooling the residuals for a test of normality is only valid provided 
there is no evidence of a departure from the assumptions of linearity 
or homogeneity of variances. 

Analysis of residuals 

Residual analysis is a graphical approach to diagnosing violations of 
the assumptions in regression. This approach does not require 
hypothesis testing, but does require some experience on the part of 
the researcher. 

The ideal residual plot has the points distributed at random with 
respect to the horizontal reference line across the full domain of the 
regressor (Figure 6-15). 

Figure 6-15. A 
regression with the 
ideal distribution of 

residuals—the 
residuals are 
distributed at 
random with 

respect to the 
horizontal 

regression line, 
with no systematic 

trend evident.  

Residual analysis can detect five important departures from the 
underlying assumptions of the simple linear regression model: 

 Non‐linearity	in	the	regression	function.	

 Heterogeneity	of	the	error	variance	across	the	range	of	X,	including	
the	presence	of	aberrant	points	(outliers).	

 Lack	of	independence	of	the	errors	(deviations	of	the	points	from	the	
line).	

 Non‐normality	of	the	distribution	of	errors.	
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Non-linearity in the regression function 

Take again the example of turbidity in Lake Burley Griffin, where 
only one sample of water was collected from each site. In Figure 6-16, 
we have a scatterplot of the data with a simple linear regression line 
fitted. To get a simple residual plot, we take the regression line to be 
our X-axis reference line, and show only the deviations of the Y 
values from the line (Figure 6-16). The curvilinearity is more strongly 
evident in the residual plot, which is one reason why such plots are 
used. 

Figure 6-16. 
A scatterplot and 

regression of 
turbidity against 

distance from the 
inflow of Lake 
Burley Griffin, 

Canberra (left) and 
a residual plot of 

the same data 
(right). Note that 

the curvilinearity is 
more strongly 
evident in the 
residual plot.   

     

A linear model is clearly poorly specified. If we now look at the 
residuals following a quadratic regression (Figure 6-17), we see a 
much more satisfactory spread of residuals. The objective of residual 
analysis is to have the residuals fall with even spread in a horizontal 
band centred on zero, with no systematic tendencies to be positive or 
negative. 

Figure 6-17. A 
scatterplot and 

polynomial 
regression of 

turbidity against 
distance from the 

inflow of Lake 
Burley Griffin, 

Canberra (left) and 
a residual plot of 

the same data 
(right).   

     

We have several options to respond to curvilinearity: 

a.	 Identify	a	theoretical	underlying	curvilinear	function	and	select	a	
transformation	that	will	linearise	the	function.		

b.	 Fit	the	theoretical	underlying	curvilinear	function	using	non‐linear	
iterative	techniques	(eg	nls()	in	R).		
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Both options will yield an estimate of the functional relationship 
between the response variable and regressor, as well as providing a 
foundation for prediction. Option (b) may be preferred over option 
(a) depending on the effect of transformation on other assumptions 
(normality, homogeneity of variances). 

c.	 Select	a	transformation	that	yields	adequate	residual	plot,	but	which	
has	no	foundation	in	theory.		

d.	 Apply	a	generic	polynomial	model,	as	we	did	in	the	turbidity	
example.	

Both of these options will yield a regression function that is an 
adequate statistical description of the data useful for prediction, but 
provides little insight into the form of the underlying functional 
relationship. 

Only options (a) and (c) are covered by this Workbook. They will be 
dealt with in the worked examples and exercises. 

Heterogeneity of the error variance 

Heterogeneity of the error variance is evident in a residual plot as 
variation in the spread of values across the domain the residual plot 
(usually Ŷ ) (Figure 6-18). 

Figure 6-18. 
Regression 

where the errors 
are correlated 

with X.  

 

 

A common instance of this is when the variance in Y and the X are 
correlated. Variation in body weight, for example, depends upon 
body size, so we would expect heterogeneity in the error variance for 
a length-weight relationship. One can also encounter error variances 
that decrease with increasing values of the regressor X or sometimes 
varying in more complex fashion. 

The solution of heterogeneous variances is typically transformation, 
and this option will be demonstrated in the worked examples. 
Common transformations used for this purpose are: 

 YLogY 10'  



Biometry  

 

University of Canberra   35 

 

YY '  

In cases where there is more than one value of Y for each X, it is 
possible to estimate the variance of Y for each X. We can then weight 
the observations, giving less weight to those observations that are 
more variable. The optimal weight to use for each observation is:  

2
|

2
|

1
~

1

XYXYS
W


  

This is an alternative to transformation that can be used in 
experimental situations where we can design the data collection to 
obtain estimates of 2

|XY . 

Lack of independence of the errors 

Whenever the data are collected in a time sequence or in a spatial 
sequence, such as for adjacent plots, it is sensible to prepare a 
sequential plot of residuals. Sometimes the regressor X is a 
temporal or spatial variable. 

A sequential plot of residuals will reveal if there is any correlation 
between the error terms for adjacent observations in time or space. Is 
there any indication that the magnitude or sign of the residual of one 
observation in the series has an influence on the magnitude or sign of 
the residual of the next? The autocorrelation can be positive, as in 
Figure 6-19, or more rarely, negative. 

Figure 6-19. 
Linear 

regression 
where the 

regressor is 
Time and the 

errors in Y are 
serially 

dependent. Note 
the progression 
of the residuals. 

   

The consequences of correlated errors has been discussed earlier, 
namely deflation, or more rarely inflation, of the error term in the 
test of significance of the regression coefficient. Deflation leads to 
significant results that would not otherwise occur, and so is a serious 
violation of the assumptions of regression. 

First order autocorrelation is where the value of Y at time t is 
influenced only by the value of Y immediately preceding and the 
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regressor X. This can be overcome by applying a first-order 
autocorrelative model defined by: 

tttt YXY   1210  

Note here that Y at time t is determined by Y at time t-1 and X.  We 
can convert to this autoregressive model from our standard 
regression model: 

ttt XY   10  

by subtracting 12 tY  from both sides of the equation. 

ttttt YXYY    121012  

Setting 12
*

 ttt YYY   we have: 

 1110210
*

  ttttt XXY   

     1222120 1   tttt XX   

Setting 12
*

 ttt XXX  , we have: 

**
1

*
0

*
ttt XY    

which is conveniently in linear form. Unbiased estimates of the 
parameters *

0  and 1  can be obtained by linear regression. 0  can 

be back-calculated from *
0 . An estimate of 2 used in the 

transformation of X can be obtained by regressing tY  against 1tY .  

A more thorough treatment of time series regression can be 
obtained from the text by Box and Jenkins (1976). 

Presence of aberrant points (outliers) 

Aberrant points can have a profound effect on the final solution for 
the regression equation. They also affect the residual variance and 
therefore the outcome of significance testing in regression.  

The effect of a single aberrant point with leverage (some distance 
from the bivariate mean) on the regression line is shown in Figure 6-
20. The aberrant point is circled. Note the dramatic effect on both the 
least squares solution for the regression and on the residual plot. 
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 Figure 6-20.  
A regression 

where a single 
outlier (circled) 

exerts undue 
influence on the 

outcome. The 
dashed line 

shows the 
regression in the 

absence of the 
outlier. Note the 

impact on the 
regression line 

itself and the 
dramatic effect 

on the residuals.  

 

This sensitivity presents the researcher with one of the greatest 
dilemmas in regression analysis. The aberrant points may arise for a 
number of reasons. They may be suspect, having been mistyped or 
recorded incorrectly at the time of measurement. It could be that the 
entity under measurement is itself aberrant, having come from a 
dirty test tube or deformed animal, or that some unmeasured 
regressor is differentially influencing the aberrant data point. Or 
perhaps the error variance in Y is greater for the value of X 
corresponding to the aberrant point than for other values of X. 

Unfortunately, it could also be that the point is not biased at all, or 
that the error variance is homogeneous, and that the large error 
associated with the aberrant point occurred by chance alone. 
Elimination of outliers from a dataset in order to improve the fit of 
the regression model is therefore problematic. First port of call is to 
check the original data sheets, and if possible to re-measure the 
suspect animal, plant or entity. However, there is often no clear-cut 
reason to believe that a suspect point should be deleted, and the 
researcher must use judgment, guided by some form of statistical 
assessment of the suspect point's probability of occurrence. 

The traditional tool for detecting outliers is again an examination of 
residuals. Instead of considering raw residuals, it is possible to 
compute standard errors of the residuals and scale the Y-axis on the 
residual plot in terms of units of standard error. Such residuals are 
called studentised residuals. When the error degrees of freedom 
for the regression exceed 10, a studentised residual of 2.5 or greater is 
rare, and so forms the basis for identifying outliers. A larger cut-off 
may be chosen if the number of data points is large. 

A plot of the studentised residuals for the data shown in Figure 6-20 
is presented in Figure 6-21. Clearly, the suspected outlier (circled) is 
the only point that is greater than 2.5 standard errors from expected, 
and so is a candidate for greater scrutiny or omission. 
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Figure 6-21. A 
plot of 

studentised 
residuals used 

for the 
identification of 

outliers. The 
circled point is 

clearly an outlier 
as it is more than 

2.5 standard 
errors from 
expected.  

A difficulty with the use of studentised residuals for detecting outliers 
is that the outliers themselves influence the position of the regression 
line against which they are being assessed. This is clearly evident in 
Figure 6-20. As a consequence, many researchers prefer to use what 
are referred to as influence statistics in making their judgments. 

Residuals are calculated for each point after omitting that point from 
calculations leading to the regression equation (Figure 6-22). You can 
see how much more sensitive this approach is for detecting outliers. 
The cut-off of 5.2 standard errors still applies. 

We would omit this outlier as aberrant, and restrict our predictions 
from the regression to the domain of the remaining points. 

Figure 6-22. A 
plot of 

studentised 
residuals where 

each point is 
assessed 

against the 
regression 

calculated with 
the point under 

scrutiny omitted. 
The circled point 

is clearly an 
outlier as it is 

more than 2.5 
standard errors 
from expected. 

 

Non-normality in the distribution of errors 

The distribution of residuals when pooled will be influenced by:  

 curvilinearity	which	adds	a	systematic	element	to	their	distribution;		

 heterogeneity	of	the	variances	which	can	lead	to	kurtosis	in	their	
distribution;		

 the	presence	of	outliers;	and		

 non‐normality	in	the	errors	in	Y	for	a	given	value	of	X.		
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Hence, using residuals for detecting deviations from the assumption 
of normality of the errors in Y for a given X is a staged process. We 
must first ensure that the linear assumption is satisfied, then ensure 
that the variances are homogeneous, then pool the residuals for a 
check on the assumption of normality. 

The data of Figure 6-15 clearly meet the assumptions of linearity, 
homogeneity of variances, and there are no obvious outliers, so we 
can pool the residuals as in Figure 6-23. Clearly, on perusing the 
histogram, there are no substantive departures from normality, a 
conclusion we could reinforce with a probability plot or other 
diagnostics (refer to Module 2). 

Figure 6-23. 
 A scatterplot, 

plot of residuals 
and histogram of 

residuals as a 
check on the 

assumption of 
normality. 

 

If the errors are not normal, or at least approximately so, remedial 
action is advised. The most common approach is to transform the Y 
variable using a transformation appropriate to the violation of the 
normality assumption. Such transformations were introduced in 
Module 3. Following transformation, the regression analysis should 
be repeated, and the residuals examined a second time. 

As an alternative to transformation, theory has advanced to the stage 
where regression models have been developed for a range of 
underlying distributions for the error term—binomial, Poisson, 
negative-binomial, etc. Referred to as Generalised Linear Models 
(GLIMs), they are particularly useful in cases where no 
transformation can normalise the errors (such as Poisson counts of 
rare events with lots of zeros) or where transformation to rectify the 
error structure leads to secondary violations of other assumptions. 

GLIMs are beyond the scope of this Module. 

Caveats on the use of transformations 

Transformations were recommended as a method of linearising data 
as a prelude to regression, to homogenise the variances, to deal with 
serial dependence of the errors, and to render the errors normal. 
Transformation to linearise the relationship between two variables as 
a prelude to regression will implicitly alter the error structure. If the 
error structure was in good shape before the transformation, it is 
unlikely to be so after the transformation. 
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The researcher must learn to draw from the suite of regression 
options in order to adequately meet the requirements of the various 
assumptions. Transformation is not always appropriate. The options 
include: 

 Transformation	of	X	or	Y	or	both	to	address	one	or	more	of	the	
assumptions	of	linearity,	normality	of	errors,	heterogeneity	of	
variances,	and	independence.	

 Use	of	iterative	non‐linear	least‐squares	techniques	where	there	is	
clear	evidence	of	a	curvilinear	relationship	but	where	the	error	
structure	is	appropriate	(eg	nls()in	R).	

 Use	of	weighted	regression	to	address	violations	of	the	assumption	
of	homogeneity	of	variances,	as	an	alternative	to	transformation,	
where	such	transformation	is	likely	to	produce	a	second	violation.	

 Use	of	Generalised	Linear	Models	(GLIMs,	distinctive	from	General	
Linear	Models	or	GLMs)	to	cater	for	non‐normal	distributions	of	the	
error	terms	(eg	or	glm()	in	R).	

Caveats on the use of R2 

The coefficient of determination, R2, provides an indication of the 
proportion of total variation in the response variable Y that can be 
explained by the regressor X. It gives an indication of adequacy of fit, 
of scatter about the regression line.  

This said, R2 is not estimating a true parametric value and so in some 
respects is subjective. For a given scatter about the regression line, R2 
can be made arbitrarily high by simply increasing the range of X 
subject to experimentation. 

Failure to appreciate these qualities of R2 has led to many 
misunderstandings. 

Where have we come? 

You should now have a grasp of another of the most important 
statistical concepts of use to biologists—simple linear regression. Its 
fundamental objective is to estimate a linear functional relationship 
between two variables or to formulate a linear model useful for 
predicting one variable from the other. 

Linear regression can be seen as a natural extension of single-factor 
ANOVA, where the discrete factor A of the ANOVA is converted to a 
continuous regressor X. From this perspective, the traditional 
approach of testing the regression coefficient with a student's t-test is 
replaced by testing the regression coefficient in an ANOVA table. 
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Where there is more than one value of the response variable Y for a 
given value of the regressor X, a full ANOVA is possible including a 
test of the residual variance remaining after the regression has been 
fitted. 

The many assumptions of simple linear regression were presented 
together with an introduction to analysis of residuals in regression. 
Analysis of residuals provides a graphic way of verifying that the 
assumptions of regression are satisfied, and checking the 
effectiveness of remedial measures taken when violations are 
detected. 

Although the workbook focuses on simple linear regression, links 
were made to other very important analyses, including polynomial 
regression, multiple regression, time series analysis, generalised 
linear models (GLMs) and iterative curvilinear regression. It is 
important that you see simple linear regression as embedded in a 
broader class of linear models. 

Key concepts with which you need to be broadly familiar include: 

 an	intuitive	meaning	for	the	regression	coefficient,	the	Y	intercept	
and	the	coefficient	of	determination	R2;	

 the	distinctive	meanings	of	MSwithin,	MSamong,	MSregression,	MSresidual,	their	
sums	of	squares	and	degrees	of	freedom,	and	the	various	F	ratios	
used	for	testing	in	regression;	

 the	assumptions	of	simple	linear	regression,	how	to	detect	violations	
and	how	to	overcome	them,	with	emphasis	on	displaying	and	
interpreting	residuals.	

It is now appropriate to put this knowledge to use via worked 
examples and exercises.  



Biometry  

 

 42 University of Canberra 

 

Lesson 4: Step-through Examples 

Example 6-1: Time to pipping in the pig-nosed turtle 

This is a simple linear regression provided as an elementary example.  

The problem 

Laboratory studies of the embryonic development of the pig-nosed 
turtle revealed that the embryos develop rapidly then, when fully 
formed, enter diapause—oxygen consumption drops precipitously 
and the embryos become torpid (Webb et al, 1986). Hatching of 
diapausal eggs could be stimulated by immersion in water or by 
displacing the air around the eggs with nitrogen. This strongly 
suggested to the researchers that depletion of oxygen in nests 
following early wet-season inundation of torrential rain was the 
stimulus required for successful hatching. 

The eggs of pig-nosed turtles are hard-shelled, so dehydration causes 
an air pocket to form between the eggshell and the underlying egg 
membranes. The air pocket of dehydrated eggs could be expected to 
sustain the embryo for longer following immersion in water 
compared to turgid eggs. An experiment was mounted to test this. 

Eggs were weighed before and after incubation on wire racks at 30oC 
and a high but unmeasured humidity. Eggs incubated under these 
conditions progressively dehydrated by amounts not under the 
control of the experimenter. When the eggs had reached full term, 
they were immersed in water at 30oC to stimulate hatching. Just 
before hatching, the hatchlings pip the egg—a small egg tooth on the 
tip of the snout is used to break the eggshell. The time to pipping 
after immersion was recorded. 

The data 
Table 6-8. 

Percentage 
weight loss and 

time to pipping in 
minutes for eggs 
of the pig-nosed 

turtle from the 
wet-dry tropics of 

northern 
Australia. 

% Wt 
Loss 

Time % Wt 
Loss 

Time % Wt 
Loss 

Time % Wt 
Loss 

Time 

21.10 41.00 12.36 32.66 23.51 53.02 8.72 17.92 

21.12 59.33 12.78 32.66 20.15 49.83 7.73 26.33 

15.83 42.33 14.65 39.66 16.66 44.83 8.32 9.38 

17.62 42.70 15.89 32.66 11.03 27.28 7.72 12.55 

17.53 43.34 23.65 55.91 5.86 16.17   

        

The data are held in a file called PIPPING.DAT as two columns, 
percent dehydration (weight) and time to pipping (time) (Table 6-
8). 
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The Analysis 

  Double click on the Tinn-R icon and launch R from within 
Tinn-R (Click in the Menu on R->Initiate/Close Rgui->Initiate 
preferred Rgui) 

The first step in the analysis is to read the data in to a data frame 
called turtle, quickly peruse it and compute some basis statistics.  

> setwd("H:\\Biometry\data") 
> turtle <- read.table("PIPPING.DAT",header=T, sep="", 
na.strings=".",  header=FALSE)# Read in data 
> turtle 

   weight  time 
1   21.10 41.00 
2   21.12 59.33 
3   15.83 42.33 
4   17.62 42.70 
5   17.53 43.34 
6   12.36 32.66 
7   12.78 32.66 
8   14.65 39.66 
9   15.89 32.66 
10  23.65 55.91 
11  23.51 53.02 
12  20.15 49.83 
13  16.66 44.83 
14  11.03 27.28 
15   5.86 16.17 
16   8.72 17.92 
17   7.73 26.33 
18   8.32  9.38 
19   7.72 12.55 

> dim(turtle) 

[1] 19  2 

> names(turtle) 

[1] "weight" "time"   

 Submit the above program for execution. 

The resulting data frame turtle should contain two variables— 
weight and time. You can peruse the data at this point to see if it 
has been read as intended. 
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Look at some simple summary statistics for the variables contained 
within the data frame turtle. 

> summary(turtle) 

  
Box 6-1. 

Summary 
statistics for 
percentage 
dehydration 
and time to 

pipping for the 
pig-nosed 

turtle. 

  
    weight            time       
 Min.   : 5.860   Min.   : 9.38   
 1st Qu.: 9.875   1st Qu.:26.80   
 Median :15.830   Median :39.66   
 Mean   :14.854   Mean   :35.77   
 3rd Qu.:18.885   3rd Qu.:44.09   
 Max.   :23.650   Max.   :59.33   

Percentage dehydration ranges from 5.86% to 23.65% by weight. 
Time to pipping ranges from 9.38 minutes to 59.33 minutes. 

The next step in the analysis is to plot the data to see if there is any 
indication of a relationship between the two variables. For revision 
we use several versions of the plot commands to improve the plot. 
Feel free to use different colors, symbols, labels (Figure  6.24, note 
the regression line will be added later). 

> plot(turtle$time, turtle$weight) 
> plot(turtle$time, turtle$weight, pch=16)  
> plot(turtle$time, turtle$weight, pch=16, 
col="springgreen4") #nice filled coloured dots 
> plot(turtle$weight, turtle$time, pch=16, 
col="springgreen4", xlab="Dehydration [%]", ylab="Time to 
pipping [min]") #nice filled coloured dots and lables 

 Submit the above program for execution. 

 
Try to create a plot the ranges from zero to max(time) on the x-axis and zero to 
max(weight) on the y-axis (see ?xlim, ?ylim) 
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Figure 6-24.  
A plot of time to 

pipping 
(minutes) 

against 
percentage 

dehydration by 
weight for the 

pig-nosed turtle 
(Carettochelys 

insculpta). 
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Regression analysis 

Perusing the data of Figure 6-24 suggests that a linear model is quite 
appropriate. To create a simple linear model in R we will use the lm() 
function just as in the ANOVA case in R module 5. We want to do a 
regression of weight against time, so our response is time. 

> lm.turtle <- lm(time ~ weight, data=turtle) 
> lm.turtle #brings you the regression coefficients, 
intercept and beta-weight 

Call: 
lm(formula = time ~ weight, data = turtle) 
 
Coefficients: 
(Intercept)       weight   
    -0.3281       2.4299   

Before we check the residuals, we would like to draw the proposed 
regression line into the scatterplot above. A convenient way is to use 
the abline() function. This function can be used to draw a line 
based on a formula such as the regression coefficients (see output 
above). (You can also draw horizontal and vertical lines, see 
?abline for all options.) 

> abline(lm.turtle, col="blue", lwd=2) #line in color and 
thicker 
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If you are interested in the regression coefficient only, just use the 
coef() function on the lm.turtle object. 

> coef(lm.turtle) 

(Intercept)      weight  
 -0.3281128   2.4299123 

Hence the regression equation is: 

time = -0.328113 + 2.429912 * weight 

This can be quite convenient if a full analysis is not required. 

No we should examine the residuals for the linear model, and then 
plot them.  

> plot(lm.turtle, pch=16) #switch on History->Recording in 
the graphics window)     

 Submit the above program for execution. 

 

 

Figure 6-25. A plot 
of residuals for the 
linear regression of 
time to pipping 
against percent 
dehydration for the 
pig-nosed turtle 
(Carettochelys 
insculpta). 
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The plot of the residuals (Figure 6-25) shows an adequate spread of 
the response variable across the range of the expected values (and 
therefore the regressor). We can now check the normality of the 
residuals using the qqnorm() function to make a quantile-quantile 
plot (Figure 6-26). 
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> qqnorm(resid(lm.turtle), pch=16) # Make qq-plot 
> qqline(resid(lm.turtle)) 
 

 Submit the above program for execution. 

 
You can also check the normality be plotting a histogram of the residulas, just like in 
the ANOVA in R module4 and 5. 

Figure 6-26. 
 A normal 

probability plot of 
the residuals. 
The residuals 
appear to be 

approximately 
normally 

distributed. 
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With the assumptions satisfied, we can proceed to interpret the 
output of the regression.  This is found by using the anova() and 
summary() functions: 

> summary(lm.turtle) 

Call: 
lm(formula = time ~ weight, data = turtle) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-10.509  -3.360   1.072   3.574   8.338  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -0.3281     3.6449   -0.09     0.93     
weight        2.4299     0.2303   10.55 7.02e-09 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 5.483 on 17 degrees of freedom 
Multiple R-squared: 0.8675,     Adjusted R-squared: 0.8597  
F-statistic: 111.3 on 1 and 17 DF,  p-value: 7.016e-09  
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> anova(lm.turtle) 

Analysis of Variance Table 
 
Response: time 
          Df Sum Sq Mean Sq F value    Pr(>F)     
weight     1 3346.4  3346.4  111.32 7.016e-09 *** 
Residuals 17  511.0    30.1                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

The resulting output gives us everything we need. We have the 
ANOVA table giving a test of the significance of the regression 
coefficient. The regression is highly significant (F=111.3; df=1,17; 
p<0.0001) with a coefficient of determination of R2 = 0.87. 

The equation for the regression line is: 

time = -0.328113 + 2.429912 * weight 

where time is in minutes and dehydration is a percentage.  

Note that while the regression coefficient is significant, the intercept 
is not significantly different from zero (t=-0.09; p=0.93). 

 

Results 

The following is an example of an appropriate results summary, as 
would appear in your report or publication. 

There was a strong linear relationship between time to pipping and 
percentage dehydration by weight (F=111.32; df=1,17; p<0.0001). For 
every increase in dehydration of one percentage unit, in the range 5–
24%, there was a 2.4 minute increase in the delay of hatching 
following immersion (Figure 6-29). The relationship is adequately 
described by: 

time = -0.328113 + 2.429912 * weight 

where time is in minutes and dehydration measured in terms of final 
egg weight expressed as a percentage of initial weight. A total of 
86.75% of variation in time to pipping could be explained by level of 
egg dehydration. The intercept of 0.32 minutes was not significantly 
different from zero, suggesting that fully turgid eggs would hatch 
immediately on immersion.  

Note that the relationship is described, its statistical significance 
established (p <0.0001), the strength of the regression is explicitly 
stated, and the adequacy of fit, assuming linearity, is given 
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(percentage variation explained). A graphic representation of the 
data and regression accompanies the results summary. 

Discussion 

The strong linear relationship between dehydration of the eggs and 
delay in the time to pipping following immersion is consistent with 
the notion that it is oxygen deprivation that stimulates the hatchling 
to emerge from its torpor and break free of the egg. The greater the 
level of dehydration, the greater the size of the air pocket that forms 
between the egg shell and internal shell membranes. This air 
presumably sustains the partial pressure of oxygen available to the 
young turtle within the egg after immersion, and delays the trigger 
for hatching. 

The very small intercept, not significantly different from zero, 
suggests that fully turgid eggs would hatch immediately upon 
immersion. This is consistent with the observations of Webb et al 
(1986) who report that eggs of the pig-nosed turtle hatch 
immediately and forcibly on immersion in water. 

Dehydration of eggs occurs more frequently in nests laid higher 
above the water, where the sand is dryer and the temperatures 
higher. This study suggests that a greater stimulus will be required 
for these eggs than for those closer to the water, which may afford 
some selective advantage. 

 

 Tidy up the program by ensuring there are no elements 
remaining of the program that did not work.  Save the 
program to disk within Tinn-R for future reference. You may 
also want to save your workspace and Rhistory, if you want 
to return to this example at some stage. 

Exit from R and Tinn-R by choosing File->Exit from the Menu Bar. 

Sources 

Venables, W. & Ripley, B. (2002). Modern Applied Statistics Using S-
Plus. 4th Edition. Springer-Verlag, Berlin. 
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Example 6-2: Mercury in Gemfish 

This is a simple linear regression where a transformation is applied 
to rectify curvilinearity and heterogeneity of variances.  

The problem 

Raymond Chvojka and Denis Reid of the NSW Fisheries Research 
Institute collected data on mercury contamination of gemfish (Rexea 
solandri) of different lengths. Mercury accumulates in biological 
systems, and gemfish, being higher tropic consumers, are ideal 
candidates for mercury contamination. Furthermore, as fish are 
accumulators, we might expect larger and therefore older fish to be 
contaminated to a greater extent than smaller fish.  

The NSW Environmental Protection Authority's safe limit for the 
ingestion of mercury in fish is 0.5 mg/kg. A limit on the size of 
gemfish for sale may need to be set. Analyse the data of Chvojka and 
Reid to see if there is a relationship between fish length and 
concentration of mercury in their tissues.  

The data 

Fish were sampled from commercially exploited stocks, their length 
measured, and tissue extracted and assayed for mercury according to 
standard protocols. The data are in the file gemfish.dat, with the first 
column containing the length data (cm) and the second column 
containing the mercury concentrations (mg/kg). 

The analysis 

  Double click on the Tinn-R icon and launch R from within 
Tinn-R (Click in the Menu on R->Initiate/Close Rgui->Initiate 
preferred Rgui) 

Data entry and exploratory examination 

The first step in the analysis is to read the data in, and compute some 
basis statistics. It is often conventional to signify a "missing" data 
point with a period (.).  The convention in R is "NA" and when 
reading in a text data file we need to warn R of the possibility of this 
using the argument na.strings="." within the read.table() 
function: 

> setwd("H:\\Biometry\\data") 
> gemfish <- read.table("GEMFISH.DAT", header=T, 
na.strings=".") 
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 Submit the above commands for execution. 

The resulting R data frame gemfish should contain two variables—
lenght and mercury. By simply entering the name of the data 
frame object at the command prompt, you can peruse the data at this 
point to see if it has been read as intended: 

> str(gemfish) 

'data.frame':   243 obs. of  2 variables: 
 $ length : num  56 56 50 57 48 59 72.5 64.5 63 63 ... 
 $ mercury: num  0.16 0.2 0.16 0.21 0.19 0.27 0.32 0.22 
0.16 0.22 ... 

> names(gemfish) 

[1] "length"  "mercury" 

Note there is a missing value, signified by a “.” in the data file. R has 
replaced it by NA as intended. 

 
Extra task 

Try to find out which case is missing?  

> summary(gemfish) 

 Submit the above commands for execution. 

Concentrations of mercury vary from 0.08–3.46 mg/kg, with many 
fish having mercury concentrations in excess of the safe limit of 0.5 
mg/kg (Box 6-3). 

Box 6-3. 
Summary 

statistics for 
mercury 

concentration 
against fish length 

for the gemfish 
(Rexea solandri) 

captured in 
eastern Australian 

waters. 

     length         mercury       
 Min.   : 40.0   Min.   :0.0800   
 1st Qu.: 64.0   1st Qu.:0.2600   
 Median : 81.5   Median :0.6400   
 Mean   : 78.5   Mean   :0.7592   
 3rd Qu.: 93.0   3rd Qu.:1.0450   
 Max.   :114.5   Max.   :3.4600   
                 NA's   :1.0000   
 

The next step in the analysis is to plot the data. Launching into a 
regression analysis without first plotting the data is not a good idea. 
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> plot(gemfish$length, gemfish$mercury, pch=16, 
col="springgreen4", xlab="Dehydration [%]", ylab="Time to 
pipping [min]") 

 Submit the above command for execution. 

Again, we have added a few bells and whistles to the plot in terms of 
optional options on the axis statements. The plot is shown in Figure 
6-27. 

 

Figure 6-27. A 
plot of mercury 

concentration 
against fish 

length for the 
gemfish (Rexea 

solandri) 
captured in 

eastern 
Australian 

waters. 
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Regression analysis 

Clearly a linear model is not appropriate. We can also see that the 
variances in mercury concentration for fish of given lengths are not 
equal—the larger the fish, the greater the variation in mercury 
concentration. 

A plot of residuals brings this point home strongly (Figure 6-28). We 
need to run a linear regression model to generate the residuals, then 
plot them.  The linear model function lm() is used here to reinforce 
the point that we are treating regression and ANOVA as two classes 
of a linear model. The glm() function is also available, has more 
diagnostic options available, and is more interactive in model 
building beyond simple linear regression. 

> lm.gemfish <- lm(mercury ~ length, data=gemfish)  # Fit a 
linear model 
> plot(lm.gemfish, pch=16) 
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 Submit the above program for execution. 

 

 

Figure 6-28. 
 A plot of 

residuals for 
the linear 

regression of 
mercury 

concentration 
against the 

predicted 
value of fish 

length for the 
gemfish 
(Rexea 

solandri). 
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So we have two violations of the assumptions of simple linear 
regression. A transformation is needed, and several spring to mind. 
You can try some for yourself, but the log transformation applied to 
mercury concentration appears to work best. 

We need to transform the data and refit the model using the 
transformed data. We then generate the residuals once more, and 
plot them. We do this by adding a new column lg.mercury to the 
gemfish data.frame. 

> gemfish$lg.mercury <- log(gemfish$mercury) 
> head(gemfish) 

  length mercury lg.mercury 
1     56    0.16  -1.832581 
2     56    0.20  -1.609438 
3     50    0.16  -1.832581 
4     57    0.21  -1.560648 
5     48    0.19  -1.660731 
6     59    0.27  -1.309333 

 

Now we can fit a new model using the transformed mercury data and 
check the residuals. 
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> lm.log.gemfish <- lm(lg.mercury ~ length, data=gemfish) 
> plot(lm.log.gemfish, pch=16)  

 Submit the above program for execution. 

 

Figure 6-29. 
 A plot of 

studentised 
residuals for the 
linear regression 

of logged 
mercury 

concentration 
against the 

predicted value 
of  fish length 

for the gemfish 
(Rexea 

solandri). 
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Apart from a few outliers, the plot of the residuals shows an adequate 
spread of the response variable across the range of the expected 
values (and therefore the regressor) (Figure 6-29). Having achieved 
linearity and homogeneity of variances, we can check the normality 
of the residuals (Figure 6-30). 

> par(mfrow=c(1,2)) 
> qqnorm(resid(lm.log.gemfish), pch=16) 
> qqline(resid(lm.log.gemfish)) 
> hist(resid(lm.log.gemfish), col="rosybrown") 
 

 Submit the above program for execution. 
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Figure 6-30.  
A normal 

probability plot 
of the residuals 

and a histogram 
of the residuals. 

-3 -2 -1 0 1 2 3

-1
.0

-0
.5

0
.0

0
.5

1
.0

1
.5

Normal Q-Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
til

e
s

Histogram of resid(lm.log.gemfish)

resid(lm.log.gemfish)

F
re

q
u

e
n

cy

-1.5 -0.5 0.5 1.5

0
2

0
4

0
6

0
8

0
1

0
0

 

Apart from the nuisance outliers evident in the residual plot, the 
residuals appear normally distributed (refer to Module 2). With the 
assumptions satisfied, we can proceed to interpret the output of the 
regression (Box 6-4).  This is done by using the anova() and 
summary() functions: 

> summary(lm.log.gemfish)  #brings you the summary 
statistics on the regression, R2, F statistic etc.  
 
> anova(lm.log.gemfish) #brings you the ANOVA table for 
this regression 
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Box 6-4. 
 Output of a 

regression 
analysis of log-

transformed 
mercury 

concentration 
against fish 

length for the 
gemfish 
(Rexea 

solandri). 

Call: 
lm(formula = lg.mercury ~ length, data = gemfish) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.07019 -0.21346 -0.01326  0.18690  1.50932  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) -4.166968   0.095181  -43.78   <2e-16 *** 
length       0.045279   0.001184   38.25   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.3268 on 240 degrees of freedom 
  (1 observation deleted due to missingness) 
Multiple R-squared: 0.8591,     Adjusted R-squared: 0.8585  
F-statistic:  1463 on 1 and 240 DF,  p-value: < 2.2e-16  
Analysis of Variance Table 
 
Response: lg.mercury 
           Df  Sum Sq Mean Sq F value    Pr(>F)     
length      1 156.314 156.314  1463.4 < 2.2e-16 *** 
Residuals 240  25.636   0.107                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 
1 
Analysis of Variance Table 
 
Response: lg.mercury 
           Df  Sum Sq Mean Sq F value    Pr(>F)     
length      1 156.314 156.314  1463.4 < 2.2e-16 *** 
Residuals 240  25.636   0.107                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

 

The regression is highly significant (F=1463; df=1,240; p<0.0001) 
with a coefficient of determination of R2 = 0.8591. 

The equation for the regression line is: 

167.404528.0)(  lengthmercuryLoge  

where length is in cm and mercury concentration is in mg/kg. 

We should also plot the transformed data, with the regression line 
shown (Figure 6-31). 

 
> plot(gemfish$length, gemfish$lg.mercury, pch=16, 
col="springgreen4", xlab="Dehydration [%]", ylab="Time to 
pipping [min]")  
> abline(lm.log.gemfish, lwd=2, lty=2, col="red") 
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 Submit the above program for execution. 

 

Figure 6-31.  
A plot of log-
transformed 

mercury 
concentration 

against fish 
length for the 

gemfish 
(Rexea 

solandri) 
captured in 

eastern 
Australian 

waters. 
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To express the relationship in the original units of measurement, we 
can reverse transform the equation: 

lengthemercury  04528.001550.0  

where length is in cm and mercury concentration is in mg/kg. 
Note that this is the least squares solution for the log transformed 
values of the response variable, mercury. The R2 value should only be 
presented with the linearised form of the relationship. 

We now have a satisfactory predictive relationship. How do we use it 
to answer some management questions? The Environmental 
Protection Agency has, somewhat arbitrarily, set the safe limits for 
human ingestion at 0.5 mg/kg. Does this mean that we must prevent 
any fish with mercury levels in excess of this limit from hitting the 
market, or that we should ensure that the average mercury levels in 
the fish do not exceed this level?  

There are two sets of confidence limits that have a bearing on these 
questions—the 99% confidence limits of the prediction of an 
individual Y for a given X (int="c") and the 99% confidence limits for 
the prediction of the mean value of Y for a given value of X (int="p"). 
Both are shown in Figure 6-28. The confidence limits for the mean 
are the narrow limits. We want to predict the confidence limits for all 
values of length, to make the plot easier we have first to sort the 
values and store them in a new object, newlength. The predict 
function has to be supplied with the model object, a new data.frame 
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for the value that are used to predict the values and the type and level 
of the confidence interval (see ?predict.lm)   

 
> newlength <- sort(gemfish$length) 
> conf99 <- predict(lm.log.gemfish,new=data.frame(length 
=newlength), int="c", level=0.99) 
> pred99 <- predict(lm.log.gemfish,new=data.frame(length 
=newlength),  int="p", level=0.99) 

The objects we have now created, conf99 and pred99, are in fact 
matrices containing the fitted values of the model (column "fit"), and 
the lower (column "lwr") and upper (column "upr") intervals:   

> head(conf99) 

        fit       lwr       upr 
1 -1.631358 -1.719266 -1.543451 
2 -1.631358 -1.719266 -1.543451 
3 -1.903031 -2.006036 -1.800026 
4 -1.586080 -1.671598 -1.500561 
5 -1.993588 -2.101856 -1.885321 
6 -1.495522 -1.576402 -1.414642  

The easiest way to plot this data is using the matlines() function, 
which plots the columns of a matrix. We want to plot the confidence 
intervals against length, so let us create a new plot and then add the 
new confidence limits to this plot. 

> plot(gemfish$length, gemfish$lg.mercury, pch=16, 
col="springgreen4", xlab="Dehydration [%]", ylab="log(Time 
to pipping [min])") 
> abline(lm.log.gemfish, lwd=2, lty=1, col="red") 
> matlines(newlength, conf99, lty=2, 
col=c("red","black","black"), lwd=2) 
> matlines(newlength, pred99, lty=2, 
col=c("red","green","green"), lwd=2) 

 Submit the above program for execution.   
 

Now we need to find the length, where the upper limit of the 
confidence limits crosses the 0.5 mg/kg threshold. This involves 
some clever indexing operations. The basic idea is, to ask, at which 
position are the values in the confidence limits still below the 
threshold (which()) and then look in the newlength object at this 
position to find out the length. 

Graphically we are looking for the intersection of a horizontal line at 
the value mercury=0.5 mg/kg. Remember we are plotting on the log 
scale so we need to plot the line at log(0.5) = -0.69. So let us plot this 
line first: 
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> abline(h=-0.69, col="orange") 

From the plot (figure 6=32) we can see that the value for the 
predicted (the wider confidence interval should be something below 
60). Now we check which values are below the threshold (we need to 
retransform the log values (using the exp() function) of the upper 
confident limit pred99[,3].  

> which(exp(pred99[,3])<0.5) 

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26  
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26  
27 28 29 30 31 32 33 34 35 36 37 38 39 40  
27 28 29 30 31 32 33 34 35 36 37 38 39 40  

So the 92nd value is still below the threshold. 

> newlength[40] 

[1] 57 
 

And this belongs to the length of of 57 cm. We can check this 
graphically and draw a vertical line at this value. 

> abline(v=newlength[40], col="green", lty=2) 

The intersection of the black dashed line and the orange threshold 
line, is directly at the upper confidence limits of the confidence 
interval of the mean mercuary value. We do the same for the other 
criteria. 

> which(exp(conf99[,3])<0.5) 

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26  
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52  
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78  
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78  
79 80 81 82 83 84 85 86 87 88 89 90 91 92  
79 80 81 82 83 84 85 86 87 88 89 90 91 92  

> newlength[92]  

[1] 74.5 

> abline(v=newlength[92], col="black", lty=2) 
 

If we adopt the first, more stringent approach, then we seek the 
length of fish for which we can be 99% sure that the mercury level 
will be equal to or less than 0.5 mg/kg. On our log scale this 
corresponds to loge 0.5=-0.69. From Figure 6-32, we can be 99% sure 
that an individual fish of length 57 cm will have a mercury 
concentration equal to or less than 0.5 mg/kg. Perhaps this should be 
our size limit? 
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If we adopt the second approach, on the basis that it is the average 
intake of mercury over a long period that matters, then we should use 
the confidence limits for the prediction of mean concentration. We 
can be 99% sure that fish of length 74.5 cm will have a mean 
concentration of mercury less than or equal to 0.5 mg/kg. Perhaps 
this should be our limit?  

Clearly, the choice between the two possibilities will have major 
commercial implications, yet we need to protect human health. 

 

Figure 6-32. A 
plot of 

mercury 
concentration 

(log-
transformed) 

against the 
length of 
gemfish 
(Rexea 

solandri). The 
99% 

confidence 
limits for the 
prediction of 

the mean 
value of Y for a 

given X 
(narrow limits, 
black), and for 
the prediction 

of an 
individual 

value of Y for a 
given X (wide 
limits, green) 

are shown. 
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Results 

The following is an example of an appropriate results summary, as 
would appear in your report or publication. 

Mercury concentration and the length of gemfish were positively 
related (Figure 6-27). A linear regression applied after a log 
transformation of mercury concentration was highly significant 
(F=1463.35; df=1,240; p<0.0001) with a coefficient of determination 
of R2 = 0.8591. Mercury concentration could be predicted from the 
equation: 

167.404528.0)(  lengthmercuryLoge  
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where length is in cm and mercury concentration is in mg/kg (Figure 
6-32).  

Two approaches to setting safe size limits for gemfish were 
explored—the 99% confidence limits for the prediction of mercury in 
an individual fish suggest a limit of 57 cm; the 99% confidence limits 
for the prediction of mean mercury levels for a given fish length 
suggest a limit of 74.5 cm (Figure 6.32). 

Note that the relationship is described with an equation, its statistical 
significance established (p <0.0001), the strength of the regression is 
explicitly stated, and the adequacy of fit, assuming linearity, is given 
(R2 = 0.8591). It is clear that a transformation has been applied, and 
the form of the transformation is evident. A graphic representation of 
the data and regression accompanies the results summary. 

Discussion 

Setting size limits for the commercial capture and sale of fish for 
human consumption is always going to be difficult when those fish 
are carrying mercury in their tissues. The commercial interests resist 
setting size limits unless it can be shown that not to do so would 
cause risk to human health. The public has a right to be protected 
from unacceptable health risks, and it is the government's 
responsibility to ensure that appropriate measures to protect public 
health are in place. 

Providing advice from an analysis such as ours must be done in the 
context of the biology of the fish and the behaviour of the humans 
catching and eating them. How much mercury is actually consumed? 
This depends on the amount of gemfish eaten, the average 
concentration of mercury in the fish, and the level of other dietary 
sources of mercury. Gemfish are sold as fillets, or occasionally as 
cutlets, and so it would be rare for individual consumers to 
consistently eat large fish. The EPA set the limit at 0.5 mg/kg rather 
arbitrarily, without a clear documented basis addressing these issues, 
so the decision on the limit to apply is a matter for both the manager 
and the researcher. 

In the context of these caveats, two approaches to setting size limits 
for the gemfish catch were presented—the 99% confidence limits for 
the prediction of mercury in an individual fish suggest a limit of 57.5 
cm; the 99% confidence limits for the prediction of mean mercury 
levels for a given fish length suggest a limit of 75 cm (Figure 6-32). 
The lower limit of 57.5 cm is based on a desire to have any fish with a 
mercury content in excess of the safe level excluded from sale. 
However, if the safe levels are to be based on average consumption of 
mercury, then the limit of 75 cm would be appropriate. The choice 
will have a major impact on the commercial returns of the fishery. 
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The high variability in mercury concentration among fish of the same 
size (14% of variation unexplained) suggests that fish vary in their 
exposure to mercury contamination. Identifying locations of the 
catch, that yield fish with particularly high concentrations of 
mercury, excluding those locations from the fishery, and repeating 
this study, may be an appropriate response that meets the 
requirements of human health and allows fish of greater size to reach 
the market. 

 

 Tidy up the program by ensuring there are no elements 
remaining of the program that did not work.  Save the 
program to disk within Tinn-R for future reference. You may 
also want to save your workspace and Rhistory, if you want 
to return to this example at some stage. 

Exit from R and Tinn-R by choosing File->Exit from the Menu Bar. 

Sources 

Box & Jenkins (1976). Time Series Analysis: Forecasting and 
Control, 2nd ed, San Francisco: Holden-Day. 

Neter J, Kutner, MH, Nachtsheim, CJ & Wasserman, W (1996). 
Applied Linear Statistical Models. 4th ed, Chicago: Irwin. 

Sokal & Rohlf (1994). Biometry. The Principles and Practice of 
Statistics in Biological Research. 3rd ed, San Francisco: W.H. 
Freeman and Company.  

Venables, W. & Ripley, B. (2002). Modern Applied Statistics Using S-
Plus. 4th Edition. Springer-Verlag, Berlin. 

Webb, G.J.W., Choquenot, D. & Whitehead, P. (1986). Nests, eggs 
and embryonic development of Carettochelys insculpta (Chelonia: 
Carettochelidae [sic]) from northern Australia. Journal of Zoology 
1B:521-550. 

Where have we come? 

In this lesson, we have put theory into practice with a couple of fully 
worked examples. These examples reinforced the concepts developed 
earlier by putting them in context, and provided the means for 
introducing the concepts of confidence limits more thoroughly. 

It is now time to put what you have learned into practice with some 
challenging exercises. 
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Lesson 5: Exercises 

Exercise 6-1: Mercury Contamination of Gemfish 

Australian dietary intakes of fish are relatively small. Nevertheless, 
fish is a comodity of potential public health concern as it can be 
contaminated with a range of environmentally persistent chemicals, 
including metals. 

Maximum permitted concentrations are set for contaminants in food 
when the health of consumers cannot be safeguarded by other 
mechanisms. These maximum permitted concentrations are 
determined by the Australia New Zealand Food Authority and are set 
out in Standard A12 of the Food Standards Code. Any maximum 
permitted concentration must be considered safe at the upper end of 
the range of dietary intakes of the population. The maximum 
permitted concentration for mercury in fish is 1.0 mg/kg. 

In an earlier step-through example, size limits for Gemfish were 
explored on the basis of a maximum permitted concentration of 0.5 
mg/kg. In this exercise, you will be asked to set a size limit on the 
basis of the revised figure of 1.0 mg/kg set by Standard A12. You will 
be further asked to consider the impact of this size limit on the 
commercial catch of Gemfish in eastern Australian waters. 

Three datasets are at your disposal. The first file 
(gemfish_mercury.dat) contains data on mercury concentrations in 
the tissue of fish of various sizes. It can be used to develop a 
relationship between fish length and mercury concentration. The 
second file (gemfish_lw.dat) contains data on length and weight for a 
large sample of gemfish. It can be used to develop a relationship 
linking fish length with weight. The third file (gemfish_size.dat) 
contains data on the size distribution of gemfish in the fishery for 
each year since 1975. 

gemfish_mercury.dat 

Fish length is measured as the length to caudal fork (cm) and 
mercury concentration is measured as mg/kg. The data are 
represented as two columns in the datafile, with fish length values 
first. 

gemfish_size.dat 

Fish length is measured as the length to caudal fork to the nearest 
whole cm below the true length. The dataset contains a column for 
fish length, and a series of columns containing fish counts in each 
size class for each year from 1975 to 1997. 
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gemfish_lw.dat 

Fish length is again measured as the length to caudal fork to the 
nearest whole cm below the true length. Fish whole weight is given in 
kg. The sex of the fish is also provided. There are three columns in 
the datafile – sex, length, weight. 

In this exercise, you are asked to 

 Develop	a	relationship	between	mercury	and	fish	length.	

 Set	a	length	limit	on	the	basis	of	the	mercury	considerations.	

 Develop	a	length‐weight	relationship	for	gemfish	(male	and	female	
data	combined).	

 Construct	a	size	frequency	distribution	for	gemfish	

 Estimate	the	magnitude	of	forfeited	catch	in	tonnes	if	the	length	limit	
is	applied.	

Gemfish (Rexea solandri) have only recently been fished 
commercially, but their stocks have become rapidly depleated.  Their 
rates of growth are exceptionally slow, a fact not appreciated at the 
time the fishery began. Furthermore, gemfish tend to school and are 
spatially clustered near ocean mounts, increasing their vulnerability 
to overfishing. Changes in their size distribution over time are clearly 
evident in the data contained in gemfish_size.dat. We require 
estimates of the impact of size limits on the contemporary catch (say 
combining the statistics for 1993-97).  

Analysis -- Mercury 

 Plot	mercury	concentration	against	fish	length	and	present	the	graph	
below.	Would	a	standard	least‐squares	linear	regression	be	
appropriate?	If	not,	give	two	reasons	why	not?	Do	not	forget	to	plot	
the	residuals	for	the	raw	data,	and	to	include	the	plot	below.	

 Explore	a	range	of	transformations	likely	to	linearise	the	relationship	
between	mercury	and	fish	length,	and	select	the	one	that	you	regard	
as	most	appropriate	–	give	the	formula	for	the	transformation	below.	
Apply	the	transformation,	and	re‐plot	the	data	and	residuals.	Present	
the	plots	below.	Are	there	any	outliers?		

 Which	confidence	limits	are	appropriate	for	setting	a	maximum	
allowable	mercury	concentration	in	a	given	fish	presented	to	market.	
Justify	your	choice.	Plot	the	data	again,	this	time	showing	the	
regression	line	and	the	appropriate	confidence	limits.	Use	the	graph	
to	set	a	size	limit	appropriate	to	the	government	maximum	allowable	
standard	of	1.0	mg/kg.	

 Conduct	the	Regression	Analysis	and	summarise	the	results	in	the	
form	of	an	ANOVA	table.	Present	the	regression	equation	in	two	
forms	–	first	as	a	linear	equation	involving	the	transformed	
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variable(s)	(with	an	R2	value),	and	second	in	terms	of	the	original	
measurement	variables.	

Analysis – Length-Weight Relationship 

 Plot	whole	body	weight	against	fish	length,	with	data	for	males	and	
females	combined,	plot	the	residuals,	and	present	the	graphs	below.	
Would	a	linear	regression	be	appropriate?	If	not,	give	two	reasons	
why	not?	

 What	would	you	regard	as	the	most	likely	form	of	the	relationship	
between	weight	and	length?	Give	an	equation	for	it	below.	What	
transformation	will	linearize	such	a	relationship?	Apply	the	
transformation,	and	re‐plot	the	residuals	and	the	data	with	the	
regression	line	included.	Present	the	plots	below.	There	is	a	strange	
pattern	in	the	residuals	–	can	you	suggest	a	cause?	

 Conduct	the	Regression	Analysis	and	summarise	the	results	in	the	
form	of	an	ANOVA	table.	Present	the	regression	equation	in	two	
forms	–	first	as	a	linear	equation	involving	the	transformed	
variable(s)	(with	an	R2	value),	and	second	in	terms	of	the	original	
measurement	variables.	

Analysis – Size Frequency Distribution 

 Plot	the	size	frequency	distribution	for	gemfish	for	the	years	1993	to	
1997	inclusive.	Present	your	plot	below.	

 Calculate	the	total	biomass	of	the	fish	contributing	to	the	frequency	
histogram	presented	above	and	the	biomass	of	fish	that	exceed	your	
size	limit.	What	proportion	of	potential	gemfish	biomass	will	be	
sacrificed	by	setting	a	maximum	permitted	mercury	concentration?	

Results summary 

 Write	a	summary	of	the	results	of	the	entire	analysis,	as	might	be	
included	in	the	results	section	of	a	report	or	manuscript.		Refer	in	
your	summary	to	ANOVA	tables	and	figures	generated	during	the	
analysis	as	appropriate.	Include	in	your	results,	only	descriptions	of	
any	clear	and	statistically	significant	trends,	but	do	not	at	this	stage	
attempt	to	explain	them.	

Discussion 

 Discuss	the	analysis	in	the	context	of	the	reasons	for	conducting	the	
study.		Refer	to	the	document	Metal	Contamination	of	Major	NSW	
Fish	Species	available	for	Human	Consumption,	which	is	available	for	
download	at	
http://learnonline.canberra.edu.au/file.php/5339/papers/Exercise_
6‐1_paper.pdf			
for	background	information.			
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Exercise 6-2: Zinc Accumulation in Cockles 

Bivalves can be used as a bio-indicator because they readily 
accumulate trace metal pollutants through their filter-feeding or by 
absorption into the body tissue.   Oysters, cockles and mussels are 
efficient tools to monitor the water quality of a polluted estuarine 
environment.  Bioaccumulation often depends on an size, gender or 
breeding condition of an organism, so these factors must be 
addressed when investigating patterns of bioaccumulation. 

Rajani Rai undertook a study of pollution in an enclosed estuarine 
environment, in Lake Macquarie, New South Wales. She chose the 
Sydney cockle (Anadara trapezia) as a potential bio-indicator of 
cadmium, copper and zinc pollution.  Her study sampled cockles 
across all size ranges, sexes, and seasons in order to unravel the 
pattern of bioaccumulation in these organisms.   

Rai determined the dry mass of the individual cockles and total body 
zinc concentration in the laboratory.  She found that the cockles were 
accumulators of cadmium and copper but were regulators of zinc.  As 
part of her study, Rajani wanted to investigate the relationship 
between zinc and cockle mass. 

The data reside in the file cockle.dat, and comprise four columns – 
sample label, sex (M or F), weight (g), and zinc load (g/g). Weight is 
total dry weight and zinc load is total body concentration in g/g. 

 Plot	zinc	concentration	against	cockle	weight	and	present	the	graph	
below.	Would	a	linear	regression	be	appropriate?	If	not,	give	two	
reasons	why	not?	Do	not	forget	to	plot	the	residuals	for	the	raw	data,	
and	to	also	include	the	residual	plot	below.	

 Explore	a	range	of	transformations	likely	to	linearise	the	relationship	
between	zinc	concentration	and	cockle	weight,	and	select	the	one	
that	you	regard	as	most	appropriate	–	give	the	formula	for	the	
transformation	below.	Remember,	the	objective	of	transformation	is	
to	both	linearize	the	relationship	and	homogenize	the	variances.		
	
Apply	the	transformation,	and	re‐plot	the	data	and	residuals.	Present	
the	plots	below.	Are	there	any	outliers?		

 Conduct	the	Regression	Analysis	and	summarise	the	results	in	the	
form	of	an	ANOVA	table.	Present	the	regression	equation	as	a	linear	
equation	involving	the	transformed	variable(s)	(with	an	R2	value).	

 Write	a	summary	of	the	results	of	the	entire	analysis,	as	might	be	
included	in	the	results	section	of	a	report	or	manuscript.		Refer	in	
your	summary	to	ANOVA	tables	and	figures	generated	during	the	
analysis	as	appropriate.	Include	in	your	results,	only	descriptions	of	
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any	clear	and	statistically	significant	trends,	but	do	not	at	this	stage	
attempt	to	explain	them.	

 Discuss	the	analysis	in	the	context	of	the	reasons	for	conducting	the	
study.		If	you	were	comparing	zinc	concentrations	in	cockles	from	
two	areas,	what	measures	would	you	need	to	take	to	ensure	that	the	
comparison	was	informative.	
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Exercise 6-3: Patterns of butterfly species richness  

The distribution of most pollinator species is poorly documented 
despite the important ecosystem services they provide. Pollinator 
species are threatened by human-induced environmental change, and 
a potentially severe concern is that of climate change.  There is 
mounting evidence for a biotic response to relatively small climate 
changes within this century, evidence such as the spatial shifts in the 
distribution of European and North American butterfly and bird 
species.  Although much of the evidence is circumstantial, the 
findings are also consistent with predictions from current models of 
spatial patterns of species richness. 

Jeremy Kerr of the University of Oxford used GIS to investigate the 
spatial patterns of butterfly diversity in Canada.  He was particularly 
interested to learn if butterfly species richness was influenced by 
climate, and in particular average annual potential 
evapotranspiration (PET, measured in mm/yr).  The butterflies of 
Canada provide a superb baseline for studying the effects of climate 
on contemporary patterns of species richness and comprise the only 
complete pollinator taxon for which this sort of analysis is possible.   

The data are found in the file butterfly.dat and comprise three 
columns – quadrat number, potential evapotranspiration (mm/yr) 
and butterfly species richness (no. of species).  

 Plot	butterfly	species	richness	against	potential	evapotranspiration	
and	present	the	graph	below.	Would	a	linear	regression	be	
appropriate?	If	not,	give	two	reasons	why	not?	Do	not	forget	to	plot	
the	residuals	for	the	raw	data,	and	to	also	include	the	residual	plot	
below.	

 Explore	a	range	of	transformations	likely	to	linearise	the	relationship	
between	butterfly	species	richness	and	potential	evapotranspiration,	
and	select	the	one	that	you	regard	as	most	appropriate	–	give	the	
formula	for	the	transformation	below.	Apply	the	transformation,	and	
re‐plot	the	data	and	residuals.	Present	the	plots	below.	Are	there	any	
outliers?		

 Conduct	the	Regression	Analysis	and	summarise	the	results	in	the	
form	of	an	ANOVA	table.	Present	the	regression	equation	in	two	
forms	–	first	as	a	linear	equation	involving	the	transformed	
variable(s)	(with	an	R2	value),	and	second	in	terms	of	the	original	
measurement	variables.	

 Write	a	summary	of	the	results	of	the	entire	analysis,	as	might	be	
included	in	the	results	section	of	a	report	or	manuscript.		Refer	in	
your	summary	to	ANOVA	tables	and	figures	generated	during	the	
analysis	as	appropriate.	Include	in	your	results,	only	descriptions	of	
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any	clear	and	statistically	significant	trends,	but	do	not	at	this	stage	
attempt	to	explain	them.	

 Discuss	the	analysis	in	the	context	of	the	reasons	for	conducting	the	
study.		Refer	to	the	document	Butterfly	species	richness	patterns	in	
Canada:	energy,	heterogeneity,	and	the	potential	consequences	of	
climate	change,	which	is	available	for	download	at	
http://www.consecol.org/vol5/iss1/art10,	for	background	
information.			

Where have we come? 

In this Module, you have been introduced to simple linear regression 
first from a classical perspective then from the perspective of an 
Analysis of Variance. 

You should now see Analysis of Variance and Regression as two 
facets of a broader class of analyses, that of general linear models. 

This brings us to the end of the series of modules on statistical 
analysis for ecology and natural resource management. I hope that 
you have now a solid foundation for extending your knowledge of 
analysis options in your study and work. 

More advanced topics such as multiple regression, polynomial 
regression, analysis of covariance and more complex designs in 
ANOVA, should be within your reach. 

There are a very many excellent texts in these areas, and I wish you 
well in your future studies. 


