
Module 1
A Primer on SAS for Windows

(Version 9.1)

Biometry

 2 University of Canberra

Certificate in EnvlroStats (Non-Award)

This document is part of an online Certificate in EnviroStats (Non-Award) by the University of Canberra.
Course enquiries can be directed to the address below. Expressions of interest in the course can be
made online through:

http://aerg.canberra.edu.au/envirostats

Copies of this publication are available from:

The Institute for Applied Ecology
University of Canberra ACT 2601
Australia

Email: georges@aerg.canberra.edu.au

Copyright @ 2006 Arthur Georges [V 6.1]

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, including electronic, mechanical, photographic, or magnetic,
without the prior written permission of the author.

SAS is a proprietary product of SAS Institute, Cary NC, USA. It is available in Australia from the SAS
Institute, Sydney. SAS, SASIGRAF and SASISTAT are registered trademarks of the SAS Institute Inc.

Correct citation:

Georges, A. (2002). Biometry: Statistics for Ecology and Natural Resource Management. Module 1: A
Primer on SAS for Windows (Version 9.1). Flexible Delivery Development Unit, Centre for the
Enhancement of Learning, Teaching and Scholarship (CELTS), University of Canberra, ACT 2601,
Australia. ISBN: 1 740880269

SPONSORED BY:

Materials development team:

Author: Arthur Georges, 2002, 2006
Instructional designer: Peter Donnan, 2002
Editor: Loretta Barnard, 2002
Graphic Design: Peter Delgado, 2002
Desktop Publishing: Kristi McDonald, 2004 Sue Bebbington, 2004
FDDU Project Manager: Deborah Veness, 2002

Dynamic Web Page Design: TCNI Software Solutions
 PO Box 47
 LATHAM ACT 2615
 Australia

First prepared in January, 2002 for Semester 1, 2002.
Reprinted January 2003 for Semester 1, 2003.
Reprinted January 2004 for Semester 1, 2004.
Reprinted November 2004 for Semester 1, 2005.
Revised and reprinted, June 2006
Revised and reprinted, June 2007

Published by Technology & Educational Design Services

(TEDS)
University of Canberra
ACT 2601, AUSTRALIA

 Module 1 — A Primer on SAS for Windows

University of Canberra 3

Contents
A Primer on SAS for Windows (Version 9.1)
Lesson 1: Key Concepts .. 5

The SAS interface ...5
SAS as a programming language ...6
The raw data..7
The DATA step ..9
The PROC step ...11
Where have we come?..13

Lesson 2: Step-through Examples .. 15
Getting Started ..15
SAS windows...15
Creating a data file ..17
Creating a program..19
Executing a program ...20
When things go wrong...22
Writing SAS Programs...24

The DATA step ... 24
Assignment statements .. 25
PROC steps .. 27

Where have we come?..28
Lesson 3: Sample Statistical Analyses... 29

Getting Started ..29
Listing data ..30
Descriptive statistics ..31
Histograms, barcharts ...33
T-tests ..35
Scatterplots..36
Correlations ...39
Simple linear regression..40
Finishing up ...42

Lesson 4: More on SAS Operations .. 43
Sources of data ...43

Data in a separate file... 43
Data embedded in your program.. 44
Reading data from Excel spreadsheets ... 45

Arranging your data ...46
List directed input.. 46
Column directed input... 47
Format directed input.. 47

Adding comments to your programs ...48
Adding a descriptive title ...48
Labelling variables...49
Labelling values of a variable..50
Permanent SAS data sets ...52

What is a SAS data set?... 52
Creating a SAS data set ... 52
Using a SAS data set.. 53

Copying SAS data sets ...54
Selectively deleting variables ..55
Selectively deleting observations ..56
Recoding variables ..57
Where have we come?..58
References ..58

Biometry

 4 University of Canberra

 Module 1 — A Primer on SAS for Windows

University of Canberra 5

Lesson 1: Key Concepts

The SAS interface
When you first start SAS, five windows are created (Figure 1-1). These
windows are used to create and submit programs, to monitor the progress
of program execution, to view and navigate the results, and to view and edit
data files created during program execution.

Figure 1-1. SAS
as it appears

when it first
starts. Only the

EXPLORER and
EDITOR

windows are
visible. The

OUTPUT and
LOG windows

and the
RESULTS

NAVIGATOR are
minimised.

A SAS program is the set of instructions you write to specify the analysis.
Your program initially resides in the EDITOR window.

When a program is submitted for execution, SAS will:

 access the raw data set and read it into a temporary SAS workfile.

 report on the progress of program execution in the LOG window. This
information is used for diagnostics and debugging.

 direct the results of the analysis to the OUTPUT window or to a GRAPH
window.

The contents of any one of these windows can be re-directed to a printer or
stored on disk for a permanent record.

An EXPLORER window allows you to access your SAS workfiles, to view
and edit the data therein, to create new workfile libraries, and to delete
workfiles and libraries.

A RESULTS NAVIGATOR provides a means of quickly navigating through
completed analyses.

Biometry

 6 University of Canberra

SAS as a programming language
SAS is a computer package with the combined features of a statistical
package, a data entry and retrieval system, and a high level programming
language.

As with most computer languages, SAS comprises:

 a set of keywords that are combined by the programmer to form
statements or instructions to be executed.

 a clearly defined sequence in which these instructions are executed.

 a mechanism for branching, subject to some condition being met.

 a mechanism for looping, that is, repeating sequence of statements
while a condition is met until a condition is met, or some fixed number of
times.

You will need to become familiar with each of these concepts to use SAS to
its full capability. Fortunately, SAS is a high level programming language,
and relatively few programming instructions are required to undertake a set
task.

Figure 1-2.
A SAS

Program.
Keywords are
highlighted in

blue. The
program is

read in
sequence one
statement at a
time from the

top. Branching
is provided
with an IF

statement. The
DATA step is a

loop,
terminated by

the
DATALINES

statement, and
repeated in

sequence for
each line in the

raw data.

DATA FOREST;

 INPUT SPECIES $ DENSITY HEIGHT DIAMETER;

 IF SPECIES="radiata" THEN DO;

 YIELD=DENSITY*3.1416*DIAMETER*HEIGHT*0.85;

 END;

 ELSE DO;

 YIELD=DENSITY*3.1416*DIAMETER*HEIGHT*0.62;

 END;

DATALINES;

radiata 0.42 10.1 0.6

radiata 0.39 8.2 0.45

radiata 0.44 9.3 0.56

radiata 0.44 10.2 0.53

pinaster 0.52 10.6 0.6

pinaster 0.54 8.2 0.55

pinaster 0.49 6.7 0.32

;

 Module 1 — A Primer on SAS for Windows

University of Canberra 7

The raw data
When first using SAS, the data are best arranged as a rectangular block
made up of a series of rows (referred to as observations or entities) and
fields (referred to as variables or attributes). It makes matters much simpler
if the raw data are arranged in this form.

Figure 1-2.
The pig-nosed

turtle,
Carettochelys

insculpta, from
Pul Pul

billabong in
Kakadu

National Park
[Photo: John

Cann].

The data in Table 1-1 are from a study of the pig-nosed turtle Carettochelys
insculpta in Kakadu National Park (Figure 1-2) (Georges and Kennett,
1989).

The data are arranged so that each row contains data collected from an
individual turtle. The measurements for each turtle are lined up to form
columns of values.

The first variable contains the number of the tag attached to the turtle. The
second variable contains the sex of each individual, MALE for mature
males, FEMALE for mature females. Juvenile individuals cannot be reliably
sexed, so the missing value code, a period, is entered in place of the sex
code. The third variable contains shell lengths, the fourth variable contains
head widths and the last variable contains body weights.

One or more columns of blanks separate variables. SAS will assign
variable names to each field when the data are read.

In SAS terminology, each variable is said to occupy a field and the above
data are said to be in fixed field format because for any one variable, there
is a fixed field width. It is not necessary in SAS to arrange data in fixed field
format, but it enhances readability and ease of editing.

Biometry

 8 University of Canberra

Data usually are kept in a separate file on disk. There they can be readily
accessed by a variety of computer packages, including SAS. SAS
recognises the conventional drive:\path\filename.ext conventions of the
Windows environment, though it uses a different convention to refer to its
own workfiles (Refer to the section on Permanent SAS Data Sets later in
this Workbook).

SAS can access data directly from Microsoft Excel spreadsheets, which is
convenient for those familiar with that software.

Tag
Number

Sex Carapace
Length (cm)

Head Width
(cm)

Weight
(Kg)

10 MALE 41.0 7.15 7.60
11 FEMALE 46.4 8.18 11.00

2 . 24.3 4.42 1.65

15 . 28.7 4.89 2.18
16 . 32.0 5.37 3.00
3 FEMALE 42.8 7.32 8.60

4 MALE 40.0 6.60 6.50
5 FEMALE 45.0 8.05 10.90

12 FEMALE 44.0 7.55 8.90

13 . 28.0 4.85 1.97

6 FEMALE 40.0 6.53 6.20
8 . 32.0 5.35 2.90
9 MALE 35.0 5.74 3.90

17 FEMALE 35.1 6.04 4.50
19 MALE 42.3 6.77 7.80
22 FEMALE 48.1 8.55 12.80

105 MALE 44.0 7.10 9.00

14 MALE 43.0 6.60 7.20
7 FEMALE 48.0 8.67 13.50
1 . 29.2 5.10 2.38

Table 1-1.
Measurements of

the pig-nosed
turtle,

Carettochelys
insculpta.

104 MALE 44.0 7.35 9.00

 Module 1 — A Primer on SAS for Windows

University of Canberra 9

The DATA step
Having created the file containing the raw data, you must instruct SAS to
accept the data as a prelude to analysis. This is done by means of a
programming step called a DATA step.

In a nutshell, the DATA step reads the raw data and transfers a copy to a
temporary SAS workfile. In the process, SAS names are given to each of the
variables and SAS can be instructed to create new variables, delete unwanted
variables or observations, assign labels to values of a variable, etc.

Simple SAS programs contain only a single DATA step. Consider the following:
DATA TURTLE;

 INFILE "C:\MY DOCUMENTS\CARETTO.DAT";

 INPUT IDNO SEX $ LENGTH HDWIDTH WEIGHT;

 LGLENGTH=LOG10(LENGTH);

 LGWEIGHT=LOG10(WEIGHT);

RUN;

Note that the DATA step comprises a sequence of instructions or
statements, each terminated with a semi-colon, so that lengthy statements
may extend over many lines. Failure to include the semi-colon at the end of
a statement is the most common error made. The indenting is to enhance
readability, and is optional.

When this DATA step is submitted for execution, SAS goes to the source of
the data nominated in the INFILE statement (ie file CARETTO.DAT in the
directory C:\My Documents\) and reads one line of data.

Information is extracted from the line and stored in variables IDNO, SEX,
LENGTH, HDWIDTH and WEIGHT as nominated in the INPUT statement. The
names for these variables will be held with the data in a temporary SAS workfile.

Two new variables, LGLENGTH and LGWEIGHT, are created in
assignment statements by taking the logarithm to base 10 of LENGTH
and WEIGHT respectively. Note that these two new variables will be
created in the temporary SAS workfile and not in the raw data file
CARETTO.DAT.

It is not until the RUN statement is encountered that SAS actually writes the
data to the temporary SAS workfile, returns to the beginning of the DATA
step and processes the next line of data. The entire procedure is repeated
until all lines of data have been processed (Figure 1-3).

Concept
The DATA step should be viewed as a program loop, beginning with the DATA statement
and ending with the RUN statement, and executing all statements once for each line of
data in the raw data file.

In the absence of instructions to the contrary, all of the statements in a DATA step are
executed once before data are written to the temporary SAS workfile. Appreciation of this
point will save considerable confusion later.

Biometry

 10 University of Canberra

Figure 1-3.
Workflow for a
simple DATA

step. The
analysis is not
executed until

the RUN
statement is

encountered.

INFILE Statement
Identify the source of raw data

DATA Statement
Create a temporary SAS workfile,
assign it a name, start processing

INPUT Statement
Copy one record from the raw data

and assign names to variables

Data Manipulation
Assign labels to variables, recode and
transform existing variables, create

new variables, delete unwanted
variables, delete unwanted

observations

RUN Statement
Output the values of all variables to

the temporary work file

End of
Data?

STOP

Yes

No

 Module 1 — A Primer on SAS for Windows

University of Canberra 11

The PROC step

Once the data have been read from the raw data file into the SAS workfile,
analysis can begin in earnest. Statistical analysis is performed by means of
a programming code called a PROC step. Typically, a SAS program will
comprise a single DATA step followed by one or more PROC steps.

A PROC step takes the data in the temporary SAS workfile (not the raw
data), processes it and produces results in the form of output on the screen
or printer (Figure 1-4).

The following is an example of a SAS procedure:

PROC MEANS DATA=TURTLE;

 VAR LENGTH HDWIDTH WEIGHT;

 BY SEX;

RUN;

This will produce means and other summary statistics for the variables
LENGTH, HDWIDTH and WEIGHT, calculated separately for each value of
SEX. The results will appear in the OUTPUT window.

Concept
PROC steps do not access the raw data directly, but rather the temporary SAS work file.
The raw data file is only accessed in the initial DATA step, not by subsequent analysis.
Hence, changes that are made to the data as they are processed do not alter the raw
data in any way.

Biometry

 12 University of Canberra

Figure 1-4.
Workflow for a
simple PROC

step. The
analysis is not
executed until

the RUN
statement is

encountered.

CLASS Statement
Identify classificatory variables to be

used by the analysis

VAR Statement
Identify variables to be analysed

BY Statement

Identify subsets of the data to be
processed separately

WHERE Statement

Identify subsets of the data to be
analysed, remainder discarded

OUTPUT Statement

Identify a new workfile and select
results to be directed to it

PROC Statement
Specify the procedure to execute and
the workfile that contains the data to

be analysed

RUN Statement
Access the data and execute the

analysis

STOP

Instructions specific to the
analysis

Yes

No

Further
Instructions?

 Module 1 — A Primer on SAS for Windows

University of Canberra 13

Where have we come?

In summary, SAS first reads data into a temporary workfile according to the
instructions you give it in a DATA step, then analyses the data in this
temporary file according to the instructions you give it in one or more PROC
steps. With few exceptions, transformations, creation of new variables, and
general manipulations of the data must occur in the DATA step prior to
analysis, so some forethought is required.

A diagrammatic representation of the flow of information during the execution
of a simple DATA step and a simple PROC step is presented in Figure 1-5.

Figure 1-5.
Information flow

during the execution
of a simple DATA

step followed by one
or more PROC

steps. The DATA
step copies data

from the raw data
file, manipulates it,

and transfers it to a
SAS workfile,

analysing the DATA
therein to produce

textual and graphic
output, and selected

results stored in a
new workfile, if

required. The
progress of
statements

contributing to each
step are logged in
the LOG window.

Key take-home points are:

 SAS is a programming language.
 DATA steps are segments of programming code for reading and
manipulating data.

 DATA steps do not alter the raw data, but rather copy the data to a SAS
working file along with whatever manipulations you request.

 DATA steps are loops, executing once for each line of data.
 DATA steps transfer data to the SAS workfile on encountering the RUN
statement or DATALINES statement (or when explicitly requested to do
so with an OUTPUT statement).

 PROC steps are segments of programming code for analysing your data.
 A simple SAS program ypitically comprises one DATA step and several
PROC steps.

Biometry

 14 University of Canberra

 Module 1 — A Primer on SAS for Windows

University of Canberra 15

Lesson 2: Step-through Examples

Getting Started
If SAS is properly installed, you should then be able to run it by double-
clicking on the relevant icon on the desktop or in an Applications Group
window. Consult the computer systems officer at your institution for details
of how to invoke SAS.

Download the data for the course and place the files in the
directory C:\My Documents\, if you have not done so already

 Double-click on the SAS icon.

Note
If you have placed the data elsewhere on your hard disk, you will need to replace
C:\My Documents\ with the appropriate drive and sub-directory specifications (e.g.
C:\Temp\).

Throughout this module, your action is required only when you
encounter instructions inside an Activity Box like this one.

SAS windows
Once SAS has commenced running, the program will display five windows
(see Figure 1-1):

 the OUTPUT window,
 the LOG window,
 the EDITOR window,
 the EXPLORER window and
 the RESULTS window.

Both the LOG and OUTPUT windows are minimised, and the RESULTS
window is hidden behind the EXPLORER window for the time being.

The EDITOR window is used to create SAS programs and for entering data.
Several EDITOR windows can be open at once.

When you run a SAS program, the results of the analysis appear in the
OUTPUT window and a report of the progress of the program, including error
messages, appears in the LOG window.

Biometry

 16 University of Canberra

The RESULTS window provides a history of the overall analysis. The
EXPLORER window enables you to view and edit SAS workfiles.

You can move between the windows using the window bar at the bottom of
the SAS display –- RESULTS, EXPLORER, OUTPUT, LOG and EDITOR.
Each window has a number of useful icons on the tool bar at the top of the
screen (Figure 1-1).

Move to the EDITOR window. Familiarise yourself with the
functions of the icons on the tool bar by moving to each one in turn
with the mouse – this will display the function of the icon.

To demonstrate how this system of five windows operates, a SAS program
to perform a simple task has been provided. You must first read the
demonstration program into the EDITOR, so that you may peruse it and
ultimately submit it for execution.

Locate and select the file C:\My Documents\DEM01.SAS

Note that several lines of code, a SAS program, have appeared in the
EDITOR. Do not worry about what the lines mean at this stage.

A SAS program must be submitted before it is executed.

 Submit the demo program for execution.

Note that the LOG is displayed with a description of the progress on the
analysis. If there are no serious errors identified in the LOG (and there
should be none), move to the OUTPUT window to view the results of the
analysis. In this case, you should see a histogram, a statistical summary
and a listing of the data.

You can navigate around the OUTPUT window using the standard
keyboard arrow keys, or by using the RESULTS NAVIGATOR.

Move to the OUTPUT window. Use the RESULTS NAVIGATOR to
view the various elements of the output.

 Clear the contents of the OUTPUT and LOG windows.

 Module 1 — A Primer on SAS for Windows

University of Canberra 17

Creating a data file
You can create data files on your data disk before running SAS by using
your favourite editor, spreadsheet or word processor (in text only mode) if
you wish. Alternatively, data can be entered via the EDITOR window.

Recall that the data in Table 1-2 are from a study of the pig-nosed turtle,
Carettochelys insculpta, in Kakadu National Park (Georges and Kennett,
1989).

Tag
Number

Sex Carapace
Length (cm)

Head Width
(cm)

Weight
(Kg)

10 MALE 41.0 7.15 7.60
11 FEMALE 46.4 8.18 11.00
2 . 24.3 4.42 1.65

15 . 28.7 4.89 2.18
16 . 32.0 5.37 3.00
3 FEMALE 42.8 7.32 8.60
4 MALE 40.0 6.60 6.50
5 FEMALE 45.0 8.05 10.90

12 FEMALE 44.0 7.55 8.90
13 . 28.0 4.85 1.97
6 FEMALE 40.0 6.53 6.20
8 . 32.0 5.35 2.90
9 MALE 35.0 5.74 3.90

17 FEMALE 35.1 6.04 4.50
19 MALE 42.3 6.77 7.80
22 FEMALE 48.1 8.55 12.80

105 MALE 44.0 7.10 9.00
14 MALE 43.0 6.60 7.20
7 FEMALE 48.0 8.67 13.50
1 . 29.2 5.10 2.38

Table 1-2.
Measurements of

the pig-nosed
turtle,

Carettochelys
insculpta, from

Pul Pul billabong
in Kakadu

National Park.

104 MALE 44.0 7.35 9.00

The first variable contains the numbers printed on the tags issued to each
turtle. The second variable contains a code for the sex of each turtle, MALE
for males, FEMALE for females. Juveniles cannot be reliably sexed, so the
missing value code, a period, is entered in place of the sex code. SAS
recognises the period as a missing value. The third variable contains shell
lengths, the fourth variable contains head widths and the last variable
contains body weights.

Clear the contents of the EDITOR. Type in the data of Table
1-2. Use SPACES, not TABS to align data into columns.

Biometry

 18 University of Canberra

The data are lined up neatly in columns for ease of reading and editing.
SAS requires only that the numbers and character strings be separated
from each other by one or more blanks. Character strings cannot exceed
eight characters in total.

Once you have checked your typing and corrected any errors, you can
save the data in a disk file in the directory C:\My Documents, or wherever
you have chosen to store your files.

 Make sure that you are in the EDITOR window, then save the
contents to the file C:\My Documents\MYDATA.DAT

Note
You should follow the convention of using .DAT as the extension to all files containing raw
data.

 Clear the contents of the EDITOR.

 Module 1 — A Primer on SAS for Windows

University of Canberra 19

Creating a program
The usual way to create programs is in the EDITOR window.

Move to the EDITOR window and type in the following sample SAS
program.

DATA MYDATA;

 INFILE "C:\MY DOCUMENTS\MYDATA.DAT";

 INPUT IDNO SEX $ LENGTH HDWIDTH WEIGHT;

 LGLENGTH=LOG10(LENGTH);

 LGWEIGHT=LOG10(WEIGHT);

RUN;

PROC MEANS;

 VAR LENGTH HDWIDTH WEIGHT;

RUN;

Note
Be very careful to terminate each statement with a semi-colon. Failure to do this will lead
to confusion. It is the most common mistake made in SAS programming.

Be very careful to balance the quotes around the filename
C:\MY DOCUMENTS\MYDATA.DAT. Omission of one of the quotes will lead to an
obscure error message that will persist until the second quote is submitted.

Again, you don’t need to worry at all about what the program means at this
stage.

You can use your favourite editor, spreadsheet or word processor to create
a SAS program, provided that you can save it in text mode. You can then
open the file into the EDITOR window.

It is prudent to save a copy of your program on your data disk before
submitting the program to SAS for execution.

Make sure that you are in the EDITOR window, then save the
contents to the file C:\MY DOCUMENTS\MYPROG.SAS

Note
You should follow the convention of using .SAS as the extension to all disk files
containing SAS programs. It will save a great deal of confusion.

Biometry

 20 University of Canberra

Executing a program
A SAS program must be submitted for execution. After execution, it will
remain in the EDITOR window for editing and re-submission, if things go
awry.

 Submit the demo program for execution.

Quite a number of actions are taken when you submit a program for
execution. First, a log of the progress of the program will appear in the LOG
window. You should take note of any errors, shown in red text, as these
indicate a fatal problem with your program. Warnings should also be
heeded, as they indicate that the syntax is correct, but the analysis itself
may have problems.

Second, a library called WORK will contain a SAS workfile named, in this
case, MYDATA. This is the name that you provided in the data step. Under
SAS filename conventions, you can refer to this workfile explicitly as
WORK.MYDATA, but this is seldom necessary.

You can peruse the data at this point to see if it has been read as intended.

 Use the EXPLORER window to locate the SAS workfile
WORK.MYDATA and examine its contents.

Note that the variables created in the DATA step, LGLENGTH and
LGWEIGHT, appear in the workfile along with those you read from the raw
data file.

Third, the output of the analysis, if any, appears in the OUTPUT window
(Box 1-1).

Close the window containing the data table, move to the OUTPUT
window and peruse the output.

Box 1-1. Sample
output from a

SAS program as
it would appear
in the OUTPUT

window

 Module 1 — A Primer on SAS for Windows

University of Canberra 21

You can save the output to disk for later incorporation into word processing
documents or for printing.

 Make sure that you are in the OUTPUT window, then save the
contents to the file C:\MY DOCUMENTS\MYPROG.LST

Note
You should follow the convention of using .LST as the extension to all disk files containing
SAS output. It will save a great deal of confusion.

Finally, an entry pointing to the output of the analysis appears in the
RESULTS NAVIGATOR. This will assist you in moving back to the results
of the analysis later.

 Move to the RESULTS NAVIGATOR window and locate
the entry pointing to the current analysis.

Biometry

 22 University of Canberra

When things go wrong
There is a dreaded shadow that hangs over all who engage in computing
— SYNTAX. If you don't get it right, the program will not work. Finding out
why it will not work is not always easy but SAS assists by colour coding its
syntax in the EDITOR window. Many simple mistakes will be immediately
evident.

In the example you have just run, there should have been no errors. Had
there been, you would expand the LOG window and peruse its contents to
gain clues as to what went wrong. Once the problem is identified, you can
edit the program and re-submit it to SAS. Let's try running a program in
which there is a deliberate error.

Move to the EDITOR window.

Move the cursor to the semi-colon on the PROC MEANS line and
delete the semi-colon. A subtle colour change indicates the error.

 Re-submit the flawed program.

The program will no longer work so nothing should appear in the OUTPUT
window. The contents of the LOG window relating to the MEANS procedure
will read as follows:

56 PROC MEANS
57 VAR LENGTH HDWIDTH WEIGHT;
 ------ -------

 22 202

ERROR 22-322: Syntax error, expecting one of the following:
;, ALPHA, CHARTYPE, CLASSDATA, CLM, COMPLETETYPES, CSS, CV,
DATA, DESCEND, DESCENDING, DESCENDTYPES, EXCLNPWGT,
EXCLNPWGTS, EXCLUSIVE, FW, IDMIN, KURTOSIS, LCLM, MAX,
MAXDEC, MEAN, MEDIAN, MIN, MISSING, N, NDEC, NMISS, NONOBS,
NOPRINT, NOTHREADS, NOTRAP, NWAY, ORDER, P1, P10, P25, P5,
P50, P75, P90, P95, P99, PCTLDEF, PRINT, PRINTALL,
PRINTALLTYPES, PRINTIDS, PRINTIDVARS, PROBT, Q1, Q3,
QMARKERS, QMETHOD, QNTLDEF, QRANGE, RANGE, SKEWNESS,
STDDEV, STDERR, SUM, SUMSIZE, SUMWGT, T, THREADS, UCLM,
USS, VAR, VARDEF.

ERROR 202-322: The option or parameter is not recognized
and will be ignored.

58 RUN;

NOTE: The SAS System stopped processing this step because
of errors.
NOTE: PROCEDURE MEANS used (Total process time):
 real time 0.06 seconds
 cpu time 0.00 seconds
58 PROC MEANS

 Module 1 — A Primer on SAS for Windows

University of Canberra 23

Note
The SAS System stopped processing this step because of errors.

In this case, the omitted semi-colon led SAS to take the first statement in
the program to be:
PROC MEANS VAR LENGTH HDWIDTH WEIGHT;

and realised the error when it encountered the words LENGTH and
HDWIDTH. It underlined the offending words and printed out the
diagnostics to the LOG window.

Go to the EDITOR window again and correct the error.

 Re-submit the program once more to see that it’s working.

 Clear the contents of the EDITOR.

Biometry

 24 University of Canberra

Writing SAS Programs
You now know how to enter, edit and save data, to enter a SAS program, to
submit it for execution, and to modify and re-submit SAS programs if they
do not initially work. Your next step is to learn how to write sensible SAS
programs.

The DATA step
SAS programs consist of at least two steps—a DATA step followed by one
or more PROC steps. In the DATA step, you specify where the raw data
resides, the variable names to be assigned to each field in the data file, and
you perform any manipulations or transformations of the data before
analyses. Consider the DATA step you used in the section Program
Creation and Execution:

DATA MYDATA;

 INFILE "C:\MY DOCUMENTS\MYDATA.DAT";

 INPUT IDNO SEX $ LENGTH HDWIDTH WEIGHT;

 LGLENGTH=LOG10(LENGTH);

 LGWEIGHT=LOG10(WEIGHT);

RUN;

Note
Note that all statements within the data step must end with a semi-colon. This permits
statements to extend over more than one line, terminated only when SAS encounters a
semi-colon.

This particular DATA step will read five fields of raw data from the disk file
MYDATA.DAT in directory C:\MY DOCUMENTS\ into a temporary SAS
workfile called WORK.MYDATA.

The first field of the data will be called IDNO (remember, it contains the turtle
tag numbers), the second field will be called SEX, the third LENGTH and so
on. The dollar sign after the variable name SEX indicates to SAS that SEX is a
discrete variable containing characters, in this case the words MALE or
FEMALE. Variable names cannot exceed eight characters in length.

SAS will perform all subsequent analyses on the data contained in the
temporary SAS file WORK.MYDATA, until another SAS file is referred to in
a second DATA step or explicitly in a PROC step.

Lines 4 and 5 contain assignment statements, which create new variables
called LGLENGTH and LGWEIGHT. The column LGLENGTH will contain
the length values logged to base 10.

The last line in the DATA step is a RUN statement. SAS does not actually
execute any of the statements in the DATA step until it encounters the RUN
statement.

 Module 1 — A Primer on SAS for Windows

University of Canberra 25

Remember that you saved the above DATA step to disk earlier in this
tutorial. Read it back into SAS, remove the statements relating to the
MEANS procedure, and submit it once more, then peruse the log window in
case the program was adulterated when you were exploring what
happened when a semicolon was omitted.

 Move to the EDITOR window and read in the file
C:\MY DOCUMENTS\MYPROG.SAS

 Remove the PROC MEANS step, then submit the program for
execution.

Assignment statements
Assignment statements allow you to use any arithmetic expression to
create contents for an existing or new variable. For example, we might want
to convert our ablsolute measure of ground cover in 2 x 2 m plots to a
percentage ground cover:

PCOVER = COVER*100/4;

or to convert a variable measured in metres to cm

LENGTH = LENGTH/100;

Yield of wood from a tree might be calculated as a function of wood density,
basal diameter and tree height:

YIELD=0.85*DENSITY*3.1416*DIAMETER*HEIGHT;

Any number of such assignment statements can be included in a DATA step.
Some useful functions that can be included in assignment statements are:

ABS (exp) Take the absolute value of an expression (exp)

ARSIN (exp) Take the arcsin of an expression (answer in radians)

COS (exp) Take the cosine of an expression

EXP (exp) Raises e to the power of an expression

LOG (exp) Takes the natural log of an expression

LOG10 (exp) Takes the log to base 10 of an expression

SIN (exp) Takes the sine of an expression

SQRT (exp) Takes the square root of an expression

TAN (exp) Takes the tangent of an expression

A full list of SAS functions can be obtained using the SAS help facility (click

Biometry

 26 University of Canberra

on the HELP button and peruse the bookmarks). To exit from a help
screen, double-click on the box in the top left hand corner of the screen.

For example, transforming counts of macroinvertebrates using a standard
square root transformation is effected by

COUNT = SQRT(COUNT+0.5);

Any arithmetic expression using + (addition), – (subtraction), *
(multiplication), / (division) or **(exponentiation) can be used in an
assignment statement.

If fish size changes with time exponentially in accordance with the Von
Bertalanffy growth equation

L = 3.00 – 2.5e0.138t

we can easily code this in SAS as

LENGTH = 3.00 - 2.5*EXP(0.138*TIME);

More complicated equations are possible by splitting them over several
lines. For example, the Sharpe-DeMichele growth model relating embryonic
growth with temperature is given by

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−+−+

−

=

THTr
HH

TLTr
LH

Tr
AHT

RHO

dt

ds

11
 exp

11
 exp 1

1

15.298

1
 exp

15.29825

and can be coded in SAS as follows, using the temporary intermediary
variables C1, C2 and C3 which are subsequently discarded with a DROP
statement. Temperature is in degrees Kelvin, and r in the equation above is
the Gas Constant 1.987.

DEGK=TEMP+273.15;

C1=EXP((1/298.15-1/DEGK)*HA/1.987);

C2=EXP((1/TL-1/DEGK)*HL/1.987);

C3=EXP((1/TH-1/DEGK)*HH/1.987);

RATE=(RHO25*DEGK*C1/298.15)/(1+C2+C3);

DROP C1 C2 C3;

 Module 1 — A Primer on SAS for Windows

University of Canberra 27

PROC steps
SAS is interactive, so the DATA step can be written and submitted to SAS
separately from subsequent PROC steps. Indeed, each of the PROC steps
should be submitted individually to enable flexibility in decisions on the
direction that the analysis takes.

In a PROC step, you specify the statistical analyses to be performed on the
data read in with the DATA step. A typical SAS program consists of a single
DATA step followed by one or more PROC steps. It is important to
appreciate that you do not need to read in the data each time you perform
an analysis. This is a common mistake. Only read in the data once for a
particular session even if you plan to execute several PROC steps.

A PROC step consists of a PROC statement, various sub-statements and a
RUN statement. For example,

PROC REG DATA=MYDATA;

 MODEL WEIGHT=HDWIDTH;

RUN;

will perform a simple linear regression of body weight (WEIGHT) on head
width (HDWIDTH).

There are many procedures available in SAS and the following exercises
are designed as a painless introduction to some of them. As you have
executed a DATA step to read in the data for the pig-nosed turtle, the
following exercises analyse these data.

Biometry

 28 University of Canberra

Where have we come?

The objective of the step-through exercises we have just done was to
reinforce the key concepts introduced in lesson 1. In particular, you can
now appreciate more that

 SAS is a programming language.
 DATA steps are segments of programming code for reading and
manipulating data, including transforming, recoding and creating new
variables using assignment statements.

 PROC steps are segments of programming code for analysing your
data.

 A simple SAS program ypitically comprises one DATA step and several
PROC steps.

You have also learnt the value of the SAS Windows.

 The EDITOR Window can be used for creating data sets and for creating
your SAS programs.

 SAS programs need to be submitted for execturion.
 The results of the analysis appear in the OUTPUT Window.
 When things go wrong, the first port of call is the LOG Window.

Now let’s move on to the Lesson 3 to try a variety of PROC steps.

 Module 1 — A Primer on SAS for Windows

University of Canberra 29

Lesson 3: Sample Statistical Analyses
Getting Started

If you are not continuing directly from the previous lesson, you will need to
start SAS again by double-clicking on the relevant icon on the desktop or in
an Applications Group window.

 Double-click on the SAS icon.

If you are not continuing directlry from the previous lesson, you will need
also to refamiliarise SAS with the dataset. If you have the relevant DATA
step saved, read it into the EDITOR Window. Otherwise, you will need to
type it in again.

DATA MYDATA;

 INFILE "C:\MY DOCUMENTS\CARETTO.DAT";

 INPUT IDNO SEX $ LENGTH HDWIDTH WEIGHT;

 LGLENGTH=LOG10(LENGTH);

 LGWEIGHT=LOG10(WEIGHT);

RUN;

 Submit the above program for execution.

Biometry

 30 University of Canberra

Listing data
Having read the data into SAS and performed some transformations, you
might wish to list it to the screen to see that it was read in correctly. Use the
procedure PRINT.

Move to the EDITOR window and enter the following SAS program
immediately after your DATA step.

PROC PRINT DATA=MYDATA;

 VAR LENGTH HDWIDTH WEIGHT LGLENGTH

 LGWEIGHT SEX;

RUN;

 Check the syntax, correct any errors, highlight the PROC
PRINT step with the mouse and submit the program for
execution.

By highlighting the PROC PRINT step before submission, only that step is
executed. This avoids the problem of repeated submission of all the code
that went before, in this case the DATA step.

The output is shown in Box 1-2. PROC PRINT is a quick and easy way to
verify that your data has been read by SAS as intended.

Box 1-2. Output
from PROC

PRINT, a
procedure used

to display the
contents of a

SAS datafile in
the OUTPUT

window.

 Module 1 — A Primer on SAS for Windows

University of Canberra 31

Descriptive statistics
Descriptive statistics are a useful place to start an analysis. They can be
obtained by using the MEANS procedure as follows:

PROC MEANS DATA=MYDATA N MIN MAX

 MEAN STD STDERR CV;

 VAR LENGTH HDWIDTH WEIGHT;

RUN;

 Enter the PROC MEANS step above immediately after the
PROC PRINT step, highlight it with the mouse and submit it
for execution.

Remember, you don’t want to run the DATA step and PROC PRINT step
again. Highlighting the code you wish to execute avoids this problem.

The PROC MEANS step will calculate means, standard deviations,
standard errors, sample sizes, minimum and maximum values, and
coefficients of variation for each of the variables specified in the VAR
statement. The output is shown in Box 1-3.

Box 1-3. Sample
output from

PROC MEANS.

Alternatively, you might want descriptive statistics calculated separately for
each sex class, in which case the following steps would be needed:

PROC SORT DATA=MYDATA;

 BY SEX;

PROC MEANS N MIN MAX MEAN STD;

 VAR LENGTH HDWIDTH WEIGHT;

 BY SEX;

RUN;

You need to sort the data on SEX using PROC SORT before analysing it
with PROC MEANS applied separately to each SEX class with the BY
statement.

 Submit the above program for execution.

Biometry

 32 University of Canberra

The output is shown in Box 1-4. The first set of results is for the animals of
unspecified sex. The second and third sets are for females and males,
respectively.

Box 1-4. Sample
output from

PROC MEANS
with a BY

statement. The
statistics are

presented
separately for

each value of the
variable SEX.

More detailed statistical summaries can be provided by PROC
UNIVARIATE, which yields modes, medians, percentiles and diagnostic
statistics such as tests of normality in addition to what is provided by PROC
MEANS.

PROC UNIVARIATE DATA=MYDATA;

 VAR LENGTH HDWIDTH WEIGHT;

RUN;

 Submit the above program for execution.

The output is too voluminous to reproduce here.

 Module 1 — A Primer on SAS for Windows

University of Canberra 33

Histograms, barcharts
Size distributions are an important biological characteristic of populations of
animals with indeterminate growth, such as turtles. To obtain a size
distribution for the Kakadu population of pig-nosed turtles, the following
step is appropriate:

PROC GCHART DATA=MYDATA;

 VBAR LENGTH / TYPE=PCT SPACE=0

 MIDPOINTS = 20.0 TO 50.0 BY 5.0 FREQ;

RUN;

This step will produce a histogram of the variable LENGTH based on the
percentage (TYPE=PCT) of individuals falling in each of the intervals
specified by the MIDPOINTS option. Each interval will be 5.0 cm wide. The
raw counts of turtles in each interval will be given at the head of each
column (FREQ option).

 Submit the above program for execution.

The output appears in Figure 1-6. Note that your graph may differ from that
shown owing to differences in screen attributes.

Figure 1.6.
 Size distribution

for the population
of pig-nosed
turtles from

Kakadu National
Park. Length is in

cm. The graph
was produced with

PROC GCHART.

Biometry

 34 University of Canberra

Histograms are fine for continuous data, but for discrete data it is
customary to construct barcharts (the columns of a barchart are separated
by a space, Figure 1-7). In the turtle data set the variable SEX is discrete,
and the following program is appropriate:

PROC GCHART DATA=MYDATA;

 VBAR SEX / DISCRETE TYPE=PCT SPACE=10;

RUN;

 Submit the above program for execution.

Figure 1.7.
A barchart

showing the
relative frequency

of males and
females in a

population of pig-
nosed turtles from

Kakadu National
Park. The graph

was produced
using PROC

GCHART.

 Module 1 — A Primer on SAS for Windows

University of Canberra 35

T-tests
To perform a student's T-test with SAS, the data must be in the form of a
measurement variable occupying one data column and a breakdown
variable occupying another. The breakdown variable must have only two
values, not counting missing values.

In the example at hand, we might choose to compare the body weights of
males (SEX coded as MALE) with those of females (SEX coded as
FEMALE). Because juveniles were coded with the missing value code '.'
the TTEST procedure will ignore them. Here is the appropriate program:

PROC TTEST DATA=MYDATA;

 CLASS SEX;

 VAR LENGTH;

RUN;

 Submit the above program for execution.

The output is shown in Box 1-5. Those familiar with the T-test should note
that the bottom line is a two-tailed F-test of homogeneity of variances. In this
case, it fails to provide evidence of unequal population variances (probability
of obtaining the observed F, or one greater, by chance alone is 0.4388).

Details of two T-tests are given, one for when the population variances can
be considered equal (student's t = 1.17 with 13 df, non-significant) and one
for when the population variances cannot be considered equal
(Satterthwaite's t = 1.20 with 12.6 df, non-significant). In this case, on the
basis of the F-test, we would choose student's t.

Performing paired T-tests in SAS is not straightforward, and given that the
turtle data set does not provide the opportunity to perform a paired T-test, it
is left for Chapter 3: T-tests and Related Comparisons.

Box 1-5.
Comparison of

mean carapace
lengths of male
and female pig-

nosed turtles
from Kakadu

National Park.
Output is

produced using
PROC TTEST.

Biometry

 36 University of Canberra

Scatterplots
Moving on to the bi-variate procedures, scatterplots are an important
prelude to both correlation and regression analyses. Before performing a
linear regression or correlation analysis, it is important to be sure that the
relationship between the two variables under consideration is roughly
linear. Consider the relationship between LENGTH and WEIGHT:

GOPTIONS RESET=ALL;

SYMBOL1 C=RED V=DOT I=NONE;

AXIS1 LENGTH=50 PCT ORDER=20.0 TO 50.0 BY 10.0;

AXIS2 LENGTH=50 PCT ORDER=0.0 TO 15.0 BY 5.0;

PROC GPLOT DATA=MYDATA;

 PLOT WEIGHT*LENGTH /

 HAXIS=AXIS1

 VAXIS=AXIS2;

RUN;

Note
The PLOT statement extends over three lines, so there is no semi-colon at the end of the
first and second lines.

This step will produce the plot shown in Figure 1-8, with WEIGHT on the
vertical axis and LENGTH on the horizontal axis.

 Submit the above program for execution.

As expected, the relationship is not linear, weight being more of a function
of body volume than of body shell length. It is for this reason that the
transformations of length and weight were included in the initial DATA step.

 Module 1 — A Primer on SAS for Windows

University of Canberra 37

Figure 1-8.
Relationship

between body
weight and

carapace length
for the pig-nosed

turtle from
Kakadu National

Park. Length is
in cm and weight

is in kg. The
scatterplot was
produced with

PROC GPLOT.

The extent to which the transformations linearise the relationship between
body weight and length can be judged from the following analysis:
GOPTIONS RESET=ALL;

SYMBOL1 C=RED V=DOT I=NONE;

AXIS1 LENGTH=50 PCT ORDER=1.3 TO 1.7 BY 0.2;

AXIS2 LENGTH=50 PCT ORDER=0.0 TO 1.2 BY 0.4;

PROC GPLOT DATA=MYDATA;

 PLOT LGWEIGHT*LGLENGTH /

 HAXIS=AXIS1

 VAXIS=AXIS2;

RUN;

 Submit the above program for execution.

The output is shown in Figure 1-9. With the possible exception of the left-
most point, the relationship between logged shell length and logged body
weight appears linear.

Biometry

 38 University of Canberra

Figure 1-9. Log-
linear

relationship
between body

weight and
carapace length

for the pig-nosed
turtle from

Kakadu National
Park. Length is

in cm and weight
is in kg. Both

variables have
been

transformed by
logs to base 10.
The scatterplot
was produced

with PROC
GPLOT.

 Module 1 — A Primer on SAS for Windows

University of Canberra 39

Correlations
The next step might be to calculate a correlation matrix for all the
measurement variables, in particular the transformed variables:

PROC CORR DATA=MYDATA;

 VAR LENGTH HDWIDTH WEIGHT

 LGLENGTH LGWEIGHT;

RUN;

 Submit the above program for execution.

This step yields the output shown in Box 1-6.

Box 1-6. A
correlation
matrix for

measurements
taken from the

pig-nosed turtle
in Kakadu

National Park.
The output was

produced with
PROC CORR.

SAS provides some basic statistics on all variables listed in the VAR
statement and a Pearson correlation matrix for all pair-wise combinations of
those variables. The figure below each correlation coefficient is the
probability of obtaining the observed coefficient, or one further from zero,
by chance alone. Clearly the coefficients are all significant, as we would
expect for measurements of objects with a well defined shape (the turtles).

Biometry

 40 University of Canberra

Simple linear regression
As Aboriginal residents of Kakadu National Park regularly eat turtles, one
can often obtain shells of the species that are the remains of a meal. In
order to estimate the weight of a turtle from its shell length, a predictive
regression of weight on shell length is required.

Because of curvilinearity in the relationship between the two untransformed
variables, a linear regression of LGWEIGHT on LGLENGTH is appropriate:

PROC REG DATA=MYDATA;

 MODEL LGWEIGHT=LGLENGTH;

RUN;

 Submit the above program for execution.

The output is shown in Box 1-7.

Box 1-7.
Regression of

log weight
against log

carapace length
for the pig-nosed

turtle from
Kakadu National

Park. Output
was produced

using PROC
REG.

For simple linear regression, the last two lines of the output suffice for a
quick interpretation of the analysis. The predictive relationship is

LGWEIGHT = 3.2549*LGLENGTH – 4.39

The regression coefficient (slope) is significant (t = 33.298, p < 0.0001).

 Module 1 — A Primer on SAS for Windows

University of Canberra 41

A graph of the relationship can be produced using I=RL as an option on the
SYMBOL statement (I for Interpolate, RL for Regression Linear)(Figure 1-7).

GOPTIONS RESET=ALL;

SYMBOL1 C=RED V=DOT I=RL;

AXIS1 LENGTH=50 PCT ORDER=1.3 TO 1.7 BY 0.2;

AXIS2 LENGTH=50 PCT ORDER=0.0 TO 1.2 BY 0.4;

PROC GPLOT DATA=MYDATA;

 PLOT LGWEIGHT*LGLENGTH /

 HAXIS=AXIS1

 VAXIS=AXIS2;

RUN;

 Submit the above program for execution.

This step yields the output shown in Figure 1-10.

Figure 1-10.
Log-linear

relationship
between body

weight and
carapace length

for the pig-nosed
turtle from

Kakadu National
Park. Both

variables have
been

transformed by
logs to base 10.
The scatterplot

and least-
squares line was

produced with
PROC GPLOT

with the RL
option.

Biometry

 42 University of Canberra

Finishing up
The preceding analyses of the turtle data set have exposed you to SAS
procedures for some commonly used basic statistical techniques. Before
you instruct the computer to exit from SAS, you may wish to produce a
printout of your program.

Tidy up the program listing in the EDITOR window by ensuring
there are no elements remaining of the program that did not work.

 Print the contents, and then save the program to disk.

Before you leave SAS, it’s worthwhile to try the online help facility. Detailed
help is available on a wide range of SAS options. Try obtaining help on
topics that strike your interest.

Click on the HELP icon and peruse the help files.

The basic introduction to SAS is now complete, so exit from the SAS
environment:

Exit from SAS by choosing File_Exit from the Menu Bar.

 Module 1 — A Primer on SAS for Windows

University of Canberra 43

Lesson 4: More on SAS Operations
Now that you have completed the step-by-step demonstration of the
operation of SAS, it is appropriate to learn something more of how SAS
processes instructions and handles data.

The material that follows is meant to be read only. It is not hands-on.

Sources of data

Data in a separate file
A common approach to managing data is to keep it on disk in a file
separate from the program that analyses it. The advantage of this is that
the data can be accessed readily by a variety of programs other than SAS
— word processors, spreadsheets, databases, editors and the like.

Suppose that the following data in Table 1-3 are stored as the file
CAFISH.DAT in C:\MY DOCUMENTS\.

SPECIES COUNTY MODE COUNT TRIPS WEIGHT
ALBACORE SD 6 11817 57812 60978.5

ALBACORE SD 6 20663 59151 133409.0

ALBACORE VT 6 14114 5709 137985.3

ALBACORE LA 7 3846 61860 .

ALBACORE SD 7 5598 63012 29834.8

ALBACORE SD 7 12368 75473 81842.9

BANK_ROCKFISH LA 6 147 30183 95.2

BANK_ROCKFISH SD 6 147 53626 75.1

BANK_ROCKFISH SD 6 783 15312 432.3

BANK_ROCKFISH SB 6 951 3647 302.9

BANK_ROCKFISH VT 6 5191 22388 1774.8

BANK_ROCKFISH VT 6 293 10549 79.1

BANK_ROCKFISH SD 7 3706 67402 .

Table 1-3
Data from the

recreational fish
catch in South

California counties
during 1998.

Source: Marine
Recreational

Fisheries Statistics
Survey (MRFSS)

database.

BARRED_BASS LA 2 0 12452 0.0

The data are from the recreational fish catch in South California counties
during 1998. The data are lined up to form columns of values (referred to
as variables). The first variable contains the name of the species caught.
The second variable contains a code for the county in which it was caught,
the third variable contains a code for the mode of capture, the fourth
contains the count of fish caught, the fifth variable contains the number of
trips recorded as associated with the catch, and the sixth variable contains
the estimated weight of the fish caught (kg).

Biometry

 44 University of Canberra

A program to read data stored in the disk file CCAFISH.DAT might look like this:

DATA FISH;

 INFILE "C:\MY DOCUMENTS\CAFISH.DAT";

 LENGTH SPECIES $25;

 INPUT SPECIES $ COUNTY $ MODE COUNT TRIPS WT;

 F_PER_T = COUNT/TRIPS;

RUN;

The LENGTH statement specifies that the variable SPECIES contains text
that is greater in length than the default 8 characters. The fourth line of the
above code creates a new variable, F_PER_T, to be calculated as the
count of fish per trip, a useful statistic.

Data embedded in your program
If you prefer, the raw data can be included within the SAS program using
the DATALINES statement as follows:

DATA FISH;

 INFILE "C:\MY DOCUMENTS\CAFISH.DAT";

 LENGTH SPECIES $25;

 INPUT SPECIES $ COUNTY $ MODE COUNT TRIPS WT;

 F_PER_T = COUNT/TRIPS;

DATALINES;

ALBACORE LA 6 1576 49477 15284.4

ALBACORE SD 6 11817 57812 60978.5

ALBACORE SD 6 20663 59151 133409.0

ALBACORE VT 6 14114 5709 137985.3

ALBACORE LA 7 3846 61860 0.0

ALBACORE SD 7 5598 63012 29834.8

ALBACORE SD 7 12368 75473 81842.9

BANK_ROCKFISH LA 6 147 30183 95.2

BANK_ROCKFISH SD 6 147 53626 75.1

BANK_ROCKFISH SD 6 783 15312 432.3

BANK_ROCKFISH SB 6 951 3647 302.9

BANK_ROCKFISH VT 6 5191 22388 1774.8

BANK_ROCKFISH VT 6 293 10549 79.1

BANK_ROCKFISH SD 7 3706 67402 0.0

BARRED_SANDBASS LA 2 0 12452 0.0
;

A semi-colon must occupy the final line of the DATA step.

The data is still stored by SAS in a temporary workfile called WORK.FISH.

 Module 1 — A Primer on SAS for Windows

University of Canberra 45

Reading data from Excel spreadsheets

Many researchers use Microsoft Excel as a data management tool,
because of the great convenience of working with data in spreadsheets.
Reading data directly into SAS from and Excel spreadsheet is therefore
highly desirable.

There are many ways of doing this, but using the dynamic data exchange
facility of Windows is one of the most satisfactory.

FILENAME XLFILE DDE 'EXCEL|C:\My
 Documents\[CAFISH.XLS]SHEET1!R1C1:R15C6';
DATA FISH;
INFILE XLFILE;
LENGTH SPECIES $25;
INPUT SPECIES $ COUNTY $ MODE COUNT TRIPS WT;

RUN;

Note that you need to specify the data range in RowColumn format, that is,
R1C1:R15C6 specifies that the data lie in the block defined by Row 1
Column 1 to Row 15 Column 6.

Note also that the Excel application and Excel spreadsheet must be open
at the time the SAS code is executed.

This creates a SAS workfile called WORK.FISH that can be used in
subsequent analysis.

The big advantage of this approach is that as you make changes to the
data in the Excel spreadsheet, the changes are automatically incorporated
into the SAS analysis, provided of course that you re-run the DATA
step.

This brings to you the power and ease of use of Excel for manipulating your
data and undertaking exploratory analyses before drawing upon the grunt
of SAS.

Biometry

 46 University of Canberra

Arranging your data
There are three ways in SAS of specifying how the data are to be read in
the DATA step.

List directed input
List directed input is the simplest form and has been introduced in the
example above and the practical exercises. With list directed input, you
simply list the names of the variables in the order that they appear on each
data line in the data file (or datablock if you prefer the DATALINES option).
For example:

INPUT SPECIES $ COUNTY $ MODE COUNT TRIPS WT;

Note that names of variables that are expected to hold character data (such
as W or R) must be followed with a $ sign. With the single $ sign, you are
restricted to character strings of eight or fewer characters (unless modified
with a LENGTH statement) and must have no embedded blanks. This may
be too restrictive, and there are several options for handling strings of more
than eight characters. Consider the following lines of data:

ALBACORE LA 6 1576 49477 15284.4

ALBACORE SD 6 11817 57812 60978.5

ALBACORE SD 6 20663 59151 133409.0

ALBACORE VT 6 14114 5709 137985.3

ALBACORE LA 7 3846 61860 0.0

ALBACORE SD 7 5598 63012 29834.8

ALBACORE SD 7 12368 75473 81842.9

BANK_ROCKFISH LA 6 147 30183 95.2

BANK_ROCKFISH SD 6 147 53626 75.1

BANK_ROCKFISH SD 6 783 15312 432.3

BANK_ROCKFISH SB 6 951 3647 302.9

BANK_ROCKFISH VT 6 5191 22388 1774.8

BANK_ROCKFISH VT 6 293 10549 79.1

BANK_ROCKFISH SD 7 3706 67402 0.0

BARRED SANDBASS LA 2 0 12452 0.0

The input statement

INPUT SPECIES $ COUNTY $ MODE COUNT TRIPS WT;

will read the truncated value of BANK_ROC (eight characters) into variable
SPECIES. Even worse, when SAS comes to the data for BARRED
SANDBASS (embedded blank), it will read BARRED into the variable
SPECIES, SANDBASS into the variable COUNTY and the program will "fall
over" when it tries to read LA into a numeric variable MODE (character
values are unacceptable in a numeric field).

 Module 1 — A Primer on SAS for Windows

University of Canberra 47

To overcome this you can specify the number of characters to read into a
character variable as follows:

INPUT SPECIES $16. COUNTY $ MODE COUNT TRIPS WT;

This method will also cope with embedded blanks (eg BARRED
SANDBASS), but it requires that each value in the field SPECIES has a
constant width, in this case 16 characters.

With list directed input, a period must be used to indicate missing data so
that the sequence of values is maintained. For example:

ALBACORE LA 6 1576 49477 15284.4

ALBACORE SD 6 . 57812 60978.5

ALBACORE SD 6 20663 59151 133409.0

ALBACORE VT 6 14114 . 137985.3

ALBACORE LA 7 3846 61860 0.0

It is possible to arrange data such that there is more than one observation
per line as follows:

ALBACORE LA 6 1576 49477 15284.4 BANK_ROCKFISH LA 6 147 30183 95.2

ALBACORE SD 6 . 57812 60978.5 BANK_ROCKFISH SD 6 147 53626 75.1

ALBACORE SD 6 20663 59151 133409.0 BANK_ROCKFISH SD 6 783 15312 432.3

ALBACORE VT 6 14114 . 137985.3 BANK_ROCKFISH SB 6 951 3647 302.9

ALBACORE LA 7 3846 61860 0.0 BANK_ROCKFISH VT 6 5191 22388 1774.8

The data must then be read with the @@ option. The @@ signifies to SAS
that the variables are to be read repeatedly until no more data remain on
the line. For example:

INPUT SPECIES $16. COUNTY $ MODE COUNT TRIPS WT @@;

Column directed input
Column directed input is a second method for specifying how data are to be
read. This method requires that you follow each variable name with the
range of columns its values occupy in the data file. For example:

INPUT SPECIES $ 1-16 COUNTY $ 18-19 MODE 22-23

 COUNT 25-29 TRIPS 31-35 WT 37-45;

The advantages of column directed input are that you can easily skip
unwanted variables, and blank fields for numeric variables are considered
to be missing values.

Format directed input
Format directed input provides greater flexibility for data input, but the
syntax is beyond this introductory guide. If the greater sophistication is
required, refer to the SAS Language Guides for details.

Biometry

 48 University of Canberra

Adding comments to your programs

Comment lines can be added by beginning the text with an asterisk and
ending the comment with a semi-colon. For example:

* CALCULATE SUMMARY STATISTICS;

Alternatively, large blocks of text or code can be converted to comment by
preceding it with /* and terminating it with */. This is useful for temporarily
removing segments of your program from execution, while debugging the
remainder. For example,

DATA FISH;

INFILE "C:\MY DOCUMENTS\CAFISH.DAT";

LENGTH SPECIES $25;

INPUT SPECIES $ COUNTY $ MODE COUNT TRIPS WT;

F_PER_T = COUNT/TRIPS;

 RUN;
/*

PROC MEANS DATA=FISH;

 VAR WT;

RUN;

*/

PROC CORR DATA=FISH;

 VAR WT F_PER_T;

RUN;

will skip the PROC MEANS step, treating it as a comment.

Adding a descriptive title

A descriptive title can be added to SAS output using the TITLE statement.
For example, the statement

TITLE "Analysis of Recreational Fish Catch Data";

will result in all subsequent pages of output bearing that title. The title will
persist until another TITLE statement is given or until terminated by:

TITLE;

TITLE statements can appear anywhere in a SAS program.

 Module 1 — A Primer on SAS for Windows

University of Canberra 49

Labelling variables

With a limitation of eight characters for variable names, it is often necessary
to use rather cryptic names only to discover difficulties when perusing the
results of an analysis some months later.

Does the variable name LGWT imply that weight was log-transformed to
base e or to base 10?

Was the variable CL measured in mm or cm, and what does CL stand for
anyway?

The prudent SAS programmer will use LABEL statements in the DATA step
to enhance readability and understanding of the results of subsequent
analyses. For example, consider the following code:

DATA FISH;

 INFILE "C:\MY DOCUMENTS\CAFISH.DAT";

 LENGTH SPECIES $25;

 INPUT SPECIES $ COUNTY $ MODE COUNT TRIPS WT;

 F_PER_T = COUNT/TRIPS;

 LABEL COUNT = "Total Fish Count"

 TRIPS = "Reported number of fishing trips"

 WT = "Live Body Wt (kg)"

 F_PER_T = "Fish per trip";

RUN;

Each time statistics are produced for one of the labelled variables in a
PROC step, the descriptive label will accompany the variable name.

Labels can be up to 40 characters long, with blanks counting as characters.

Note that several variables can be given labels in a single LABEL
statement and that labels can be assigned to variables created in an
assignment statement (eg F_PER_T).

Biometry

 50 University of Canberra

Labelling values of a variable
The confusion that may arise with eight character variable names may also
arise through abbreviations used for values of a variable. In the example at
hand, you have used LA, SD, VT for the counties. In another study of an
animal species, you may choose to use SEX = 0 for missing data, 1 for
unsexed juveniles, 2 for juvenile males, 3 for juvenile females, 4 for mature
males and 5 for mature females, but will you remember these codes when
perusing output at a later date? If not, then descriptive labels can be
assigned to the variables COUNTY and SEX using the FORMAT
procedure. For example, consider the following code:

PROC FORMAT;

 VALUE $COUNTY

 "LA" = "LOS ANGELES"

 "SB" = "SANTA BARBARA"

 "OR" = "ORANGE"

 "SD" = "SAN DIEGO"

 "VT" = "VENTURA";

 VALUE MODE

 1 = "PIER"

 2 = "SHORE"

 3 = "CHARTER BOAT"

 4 = "PRIVATE BOAT";

RUN;

This procedure has produced two sets of value labels, called formats in the
SAS manuals. They can subsequently be referred to as:

$COUNTY. and MODE.

Note

The period following a SAS format is mandatory. The $ preceding the format containing
county names indicates that the values being assigned labels are characters.

To use the formats for enhancing output, a FORMAT statement can be
included in procedures. For example:

PROC MEANS DATA=FISH;

 VAR WT;

 BY COUNTY MODE;

 FORMAT COUNTY $COUNTY. MODE MODE.;

RUN;

 Module 1 — A Primer on SAS for Windows

University of Canberra 51

Alternatively, labels can be assigned to values of specific variables in the
DATA step for use in all subsequent procedures:

PROC FORMAT;

 VALUE $COUNTY

 "LA" = "LOS ANGELES"

 "SB" = "SANTA BARBARA"

 "OR" = "ORANGE"

 "SD" = "SAN DIEGO"

 "VT" = "VENTURA";

 VALUE MODE

 1 = "PIER"

 2 = "SHORE"

 3 = "CHARTER BOAT"

 4 = "PRIVATE BOAT";

RUN;
DATA FISH;

 INFILE "C:\MY DOCUMENTS\CAFISH.DAT";

 LENGTH SPECIES $25;

 INPUT SPECIES $ COUNTY $ MODE COUNT TRIPS WT;

 F_PER_T = COUNT/TRIPS;

 FORMAT COUNTY $COUNTY. MODE MODE.;

RUN;

The FORMAT line is then unnecessary in any subsequent PROC steps.

Biometry

 52 University of Canberra

Permanent SAS data sets

What is a SAS data set?
So far the only SAS data sets you have encountered have been temporary,
such as WORK.FISH, where SAS stores data temporarily in preparation for
analysis. Permanent SAS data sets are useful if you wish to repeatedly
access the one data set for analyses of various kinds in sessions spread
over days, weeks, months or years.

Permanent SAS data sets contain not only the data, but all variable labels,
derived variables, transformed or recoded variables, value labels, etc, so
that these do not have to be specified when the data are accessed in
future.

The first part of the name of a SAS data set is a variable that contains the
disk and sub-directory which contains the file, the second part is the DOS
filename. Hence, the SAS data set FLOPPY.FISH would refer to the file
FISH.sas7bdat on the disk and path stored in the variable FLOPPY.
SAS data set files have the extension SSD or similar.

Creating a SAS data set
To create a permanent SAS data set, you need to first define a 'path' telling
SAS where to store the data set on disk. This is done with the LIBNAME
statement.

LIBNAME FLOPPY "C:\MY DOCUMENTS\";

or
LIBNAME HARDISK "C:\DATA\";

The path name can be any name up to eight characters, so you are not
restricted to FLOPPY or HARDISK. Any eight character name will do, but
avoid using the word WORK.

The next step is to give the data set a double name in the first line of the
DATA step. The first part of the name is the LIBNAME and the second part
is a label up to eight characters that enables you to identify the data set.
For example:

LIBNAME FLOPPY "C:\MY DOCUMENTS\";

DATA FLOPPY.FISH;

 INFILE "C:\MY DOCUMENTS\CAFISH.DAT";

 LENGTH SPECIES $25;

 INPUT SPECIES $ COUNTY $ MODE COUNT TRIPS WT;

 F_PER_T = COUNT/TRIPS;

RUN;

The program will create a permanent data set called FISH.sas7bdat in
directory C:\MY DOCUMENTS\ containing the raw data and their variable
names and labels and the new variable F_PER_T.

 Module 1 — A Primer on SAS for Windows

University of Canberra 53

Using a SAS data set
Reading in and analysing the data at a later date is now a simple process.
No DATA step is required.

LIBNAME FLOPPY "C:\MY DOCUMENTS\";

PROC MEANS DATA=FLOPPY.FISH;

 VAR WT;

RUN;

Should you forget details of the contents of a SAS data set, you can view
its contents using the EXPLORER window.

SAS is capable of very sophisticated manipulations of data in the DATA
step prior to analysis. You have had some exposure to this already in the
form of assignment statements using both standard arithmetic operations
and specialised functions. It is also possible to selectively delete unwanted
records or variables to create a subset of the master data set, to selectively
apply assignment statements in order to recode data, to sort data, to join or
merge data sets and to do a suite of complex data manipulations that would
be expected of any high level programming language.

The following examples demonstrate some of these capabilities, and can
be equally applied to permanent SAS data sets, to the temporary SAS
workfile, or at the time of reading the raw data in the initial DATA step.

Biometry

 54 University of Canberra

Copying SAS data sets

The SAS data set FLOPPY.FISH can be copied into a new SAS data set
called FLOPPY.CALIFORNIA using the following code:

LIBNAME FLOPPY "C:\MY DOCUMENTS\";

DATA FLOPPY.CALIFORNIA;

 SET FLOPPY.FISH;

RUN;

Here the SET statement means essentially "read in the data from". A
similar program can be used to convert the SAS workfile WORK.FISH into
a permanent data set:

LIBNAME FLOPPY "C:\MY DOCUMENTS\";

DATA FLOPPY.CALIFORNIA;

 SET FISH;

RUN;

It is also possible to copy a SAS dataset onto itself, adding modifications on
the way. This is quite useful if you do not wish to go back to the initial DATA
step to make the modifications.

LIBNAME FLOPPY "C:\MY DOCUMENTS\";

DATA FLOPPY.FISH;

 SET FLOPPY.FISH;

 LOGWT = LOG10(WT + 1);

RUN;

The above code adds a new variable to the SAS dataset FLOPPY.FISH.

 Module 1 — A Primer on SAS for Windows

University of Canberra 55

Selectively deleting variables
It is unlikely that you will want to copy files with no modification. A more
common requirement is to create a subset of the original SAS data set. For
example, the master data set FLOPPY.FISH may contain the variables
SPECIES, COUNTY, MODE, WT, COUNT, TRIPS and F_PER_T, but once
the variable F_PER_T has been calculated, subsequent analyses may not
require the variables COUNT and TRIP. The unwanted variables may be
discarded with the DROP statement or the required variables may be
retained with the KEEP statement:

DATA FLOPPY.CALIFORNIA;

 SET FLOPPY.FISH;

 DROP COUNT TRIP;

RUN;

or equivalently:

DATA FLOPPY.CALIFORNIA;

 SET FLOPPY.FISH;

 KEEP SPECIES COUNTY MODE WT F_PER_T;

RUN;

To permanently drop the unwanted variables from the master data set
FLOPPY.FISH, that data set should be nominated in both the DATA
statement and the SET statement:

DATA FLOPPY.FISH;

 SET FLOPPY.FISH;

 KEEP SPECIES COUNTY MODE WT F_PER_T;

RUN;

The DROP and KEEP statements can also be used in the original DATA step.
Once you have created the new variable F_PER_T to represent relative catch,
there may be no need to retain the original fish and trip counts and they can be
discarded before data is output to the SAS workfile WORK.FISH.

DATA FISH;

 INFILE "C:\MY DOCUMENTS\CAFISH.DAT";

 INPUT SPECIES $ COUNTY $ MODE COUNT TRIPS WT;

 F_PER_T = COUNT*100/TRIPS;

 DROP COUNT TRIP;

RUN;

Biometry

 56 University of Canberra

Selectively deleting observations
Some analyses may require data excluding some observations. The IF-
THEN statement can be used to delete observations for Los Angeles (for
example):

LIBNAME FLOPPY "C:\MY DOCUMENTS\";

DATA FLOPPY.CALIFORNIA;

 SET FLOPPY.FISH;

 IF (COUNTY = "LOS ANGELES") THEN DELETE;

RUN;

The new SAS data set FLOPPY.CALIFORNIA will contain data excluding
Los Angeles.

The unwanted observations can be permanently removed from the master
data set FLOPPY.FISH by nominating FLOPPY.FISH in both the DATA
statement and the SET statement.

IF-THEN statements can also be used in the original DATA step to
eliminate unwanted observations when reading in the raw data.

As an alternative to selectively deleting observations with the DELETE
statement, one can selectively retain observations with the OUTPUT
statement.

LIBNAME FLOPPY "C:\MY DOCUMENTS\";

DATA FLOPPY.CALIFORNIA;

 SET FLOPPY.FISH;

 IF (COUNTY="ORANGE" OR COUNTY="SAN DIEGO")

 THEN OUTPUT;

RUN;

The OUTPUT statement is used to direct SAS explicitly to add an
observation to the SAS data set.

If you do not include an OUTPUT statement in a DATA step, SAS
automatically writes the current observation to the new data set when it
reaches the RUN statement or the end of the DATA step. When an
OUTPUT statement does appear in the DATA step, SAS no longer
automatically outputs the observation at the end of the DATA step. Instead,
the observation is added to the data set only when the OUTPUT statement
is executed.

 Module 1 — A Primer on SAS for Windows

University of Canberra 57

Earlier, I outlined that a feature of SAS was that all data manipulations were
to be undertaken in the DATA step, prior to analysis with a series of PROC
steps. There is an exception to this. It is possible to place a condition on the
observations analyzed by a PROC step by using a WHERE statement. For
example,

PROC MEANS DATA=MYDATA;

 VAR LENGTH;

 WHERE COUNTY="LOS ANGELES" AND MODE=1;

RUN;

This procedure will calculate statistics only for fish caught from piers in Los
Angeles. The WHERE statement is a useful addition to the SAS
commands.

Recoding variables
Values of a variable can be selectively recoded using IF-THEN statements:

LIBNAME FLOPPY "C:\MY DOCUMENTS\";

DATA FLOPPY.FISH;

 SET FLOPPY.FISH;

 IF (WT < 1000)

 THEN SIZE = "SMALL";

 IF (WT >= 1000)

 THEN SIZE = "LARGE";

RUN;

This DATA step creates a new variable SIZE that contains either LARGE or
SMALL and adds it to the master file FLOPPY.FISH.

Biometry

 58 University of Canberra

Where have we come?
Having completed this module, you have the basic knowledge and skills to
undertake simple statistical analyses in SAS. In particular, you will
appreciate that:

 SAS is a programming language that uses two primary constructs –- the
DATA step and the PROC step. A simple SAS program ypitically
comprises one DATA step and several PROC steps.

 SAS has a windows interface including an EDITOR window for creating
programs, OUTPUT and GRAPH windows for receiving results, a LOG
window for monitoring progress of the analysis and identifying errors
when they occur, an EXPLORER window for perusing SAS datasets,
and a NAVIGATOR window for navigating among output of the various
analyses.

 Data can be accessed from separate raw data file, from within the SAS
program itself, or from and Excel spreadsheet. DATA steps do not
modify the raw data, but rather make a copy for subsequent
manipulation and analysis. DATA steps are loops that execute once for
each line of data.

 Once the data are read into SAS, there are a very large number of
PROC steps for analysing those data.

 There are many statements for improving the appearance of your output
(for adding titles, descriptive labels to variables, descriptive labels to
values of a variable), for copying, renaming and modifying SAS datasets
(through creating new variables, deleting variables and observations,
recoding variables) and for permanently storing this information with the
data as a permanent SAS dataset.

It needs to be said that this module has introduced only a very small part of
the capability of SAS, and has been designed to be a minimal introduction,
to get you up to speed as quickly as possible.

Your capacity for using SAS will grow with use, and you need to keep a
good notebook to record new procedures and to share these with your
colleagues.

You should also refer to the SAS Applications Guide and in particular, the
chapters on Recoding Variables (Chapter 2), Reshaping your Data
(Chapter 3) and Merging Data Sets (Chapter 4).

References
Georges, A & Kennett, R (1989). Dry-season distribution and ecology of
Carettochelys insculpta (Chelonia: Carettochelydidae) in Kakadu National
Park, northern Australia. Australian Wildlife Research 16:323-335.

