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Workplan 

Objective 
The objective of this Workbook is to introduce the concept of statistical inference, and in 
particular the concepts of confidence limits and hypothesis testing.  

Modern science is about challenging contemporary understanding of how the world works 
with evidence, and evidence rests upon the measurement and the collection of data.  

Descriptive statistics have an important role to play in science, but the ability to condense 
data sets to a manageable form for communication is arguably not the most significant 
contribution of statistical analysis to science. The most significant contribution comes from 
statistical inference, and the ability to quantify the reliability of a result when all we have 
at hand is a subset of the system we are studying — a sample.  

Statistical inference, and in particular the setting of confidence limits and hypothesis 
testing are the subject of this Workbook. 

Plan of Action 
To gain the greatest benefit from this Workbook, you should: 

• Read the section on Key Concepts thoroughly. 

• Complete the Step-through Examples that follow. 

• Complete the set exercises. 

• Complete and submit the set assignment for marking and feedback. 

• Assess your understanding using the web-based multiple choice questions entitled (a) 
Statistical Inference, Confidence Limits (b) Hypothesis Testing and (c) F-tests, T-tests 
and Related Comparisons. 

• Give some feedback on your experiences with the Workbook and the exercises therein 
using the Discussion Forum.  

Keep a detailed notebook in which to record solutions to specific problems that may be of 
use later, and keep copies of your programs. Post questions or specific solutions to tricky 
problems on the discussion forum for your colleagues to share. This will accelerate the 
development of everyone's skills.  

Timeline 

It is anticipated that this workbook would be completed optimally two weeks from 
commencement to maintain satisfactory progress. 

Concepts to Focus On 

• The distinction between populations and samples, and the costs and benefits of 
studying representative samples drawn from populations rather than the populations in 
their entirety.  

• Sampling error, the Cental Limit Theorem and how to quantify sampling error in terms 
of confidence limits.  

• The foundation of hypothesis testing, the concept of null and alternative hypotheses, 
and levels of statistical significance.  

• The distinction between statistical significance and strength of result.  
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• Type I and Type II Errors, the power of a test to detect a given difference, and how to 
interpret a non-significant result.  

• Assumptions of an hypothesis test, and what is meant by the term robustness.  

• Acquiring the basic skills in the applying the t test for comparing two means and the  
F-test for comparing two variances.  

• The standard ways of reporting your results in a scientific paper or report.  

SAS Procedures 

PROC UNIVARIATE provides the data necessary to compute confidence limits for a 
mean. You need to combine the sample mean, standard error and tabulated value of t 
(from statistical tables) in a formula to yield the confidence limits. 

PROC GPLOT can be used to display the 95% and 99% confidence limits as box 
diagrams, if large samples have been collected.  

PROC TTEST performs a standard Student's t–test, for cases where the population 
variances can be considered equal, and an approximate t  test for cases where the 
population variances are unequal. An F–test of equality of variances enables you to select 
between the two.  

PROC NPAR1WAY provides the option to undertake a non-parametric alternative to the 
t–test, called the Wilcoxon Rank-Sum Test. It is sometimes called the Mann-Whitney U 
Test.  

PROC UNIVARIATE is used to undertake a paired t–test, that is, a test of whether the 
mean difference between paired values is significantly different from zero. Non-parametric 
alternatives, called the Wilcoxon Signed Ranks Test and the Sign Test, are also available 
using PROC UNIVARIATE.  

Comprehensive help on SAS procedures and operation is provided through a link on the 
menu bar of the Biometry page.  

Worked Examples 

Use SAS to step through the worked examples, paying particular attention to the steps 
involved in an analysis, what is being requested of SAS at each step, and what is produced 
in the way of output. Do not simply follow the instructions blindly.  

Example 3-1: Copper in Carp Tissue  

Two methods were considered suitable for the analysis of copper (Cu) in fish tissue -- 
Graphite Furnace Atomic Absorption Spectroscopy (AAS) and Flame AAS. Do the two 
techniques yield the same determinations at the same level of precision? Can we make a 
recommendation on which technique to employ for assay of copper in carp, taking into 
account accuracy, precision and cost? This is an example of a Student's T-Test applied 
where the population variances have been shown to be unequal.  

Example 3-2: Lowland Grassland Remnants  

Lowland grassland remnants are an endangered community in the Australian Capital 
Territory. Two sites were compared to see if the cover of dominant grass species were 
different. The data are scores, measured at the ordinal level. This is an example of a 
Wilcoxon Rank-Sum Test applied where the assumptions of the standard T-Test were 
thought to be untenable.  
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Example 3-3: Egg Weight Loss during Incubation  

Soft-shelled reptile eggs absorb water from the surrounding substratum during incubation, 
whereas the opposite is true of hard-shelled birds eggs. Australian freshwater tortoises lay 
hard-shelled eggs in a chamber excavated in soil adjacent to the water. Do the hard-
shelled eggs of Australian species of tortoise gain or lose weight during incubation? This is 
an example of a Paired T-test.  

Example 3-4: Habitat Complexity Scores  

Two scientists independently applied habitat complexity scoring to the same 17 quadrats 
to assess the scoring method's reproducibility. The score is a composite value calculated 
from ratings for five measures -- soil moisture content and percentage cover by tree 
canopy, shrub canopy, ground herbage and rocks/logs. Each of these attributes of a site 
are scored on an ordinal scale, and the resulting scores are summed for an overall habitat 
complexity score. This is an example of a Wlicoxon Signed-Rank Test.  

Exercises 

Once you have familiarized yourself with the theory, and practiced the analyses by 
following through the worked examples, you should be ready to take on some exercises. 
The exercises are designed to give you practical skills in the application of the theory 
presented in this manual.  

Submit your completed exercises through the Secure Portal  
for immediate feeback. 

The idea is that once you have given the Exercise your best shot, you submit it through 
the Secure Portal to get a sample answer back. We will not be looking at what you have 
submitted. It is a self-evaluation exercise. 
 
So do not try to get the exercise perfect, or hit your head against a brick wall for four 
hours. Give it your best shot, submit it, get the sample answer, look at what you might 
have done better, learn from it, and move on to the next exercise. 

A discussion thread will be set up for each exercise, and you can ask questions, suggest 
approaches, comment on outcomes of the analysis, etc, etc by posting to that thread. 
Again, we want to get into self-help mode here. Some exercises will be tricky. For some, 
there will be no single correct approach. Judgment will be needed. Opinions will need to be 
shared. The discussion forum is the way to get synergism in learning going, even though 
we are remote from each other. 

Exercise 3-1: Macro-invertebrate Abundance  

A limnologist is interested to know if densities of the benthic invertebrate Jappa sp. 
differed between two lakes, Allom and Deepwater on Fraser Island. The two lakes were in 
the same geographical area, but differed in physico-chemical characteristics and the 
amount and texture of particulate matter that overlaid the littoral substratum.  

Exercise 3-2: Monitoring Elephant Abundance  

Management of elephant populations relies on estimations of population sizes and growth 
rates. Techniques used to count elephants include helicopter aerial counts and intensive 
ground-based surveys providing total counts by means of registration of individually 
known animals. Evaluation of alternative techniques is crucial in order to assess the 

accuracy of results obtained.  
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Exercise 3-3: Mercury Levels in Bonnethead Sharks  

Florida's commercial and recreational shark landings represent a significant portion of the 
total U.S. Atlantic shark landings. Shark landings have increased significantly during the 
past decade because human consumption of shark meat has become increasingly 
acceptable, and especially in Asian markets where the demand for shark fins is very high -
- as are the prices paid for them. Here we look at mercury concentrations in shark tissue, 
and compare the two sexes.  

Exercise 3-4: Organochlorine and Parasite Load in Gulls  

Pesticide residues from organochlorines are thought to suppress immune function in birds 
and mammals, but there have been few assessments of this idea in the field. If 
establishment and survival of parasites is limited by host immunity, we would expect 
increased parasite intensities in animals with high organochlorine burdens. Kajetl Sagerup 
addressed this question in a study of Glaucous Gulls (Larus hyperboreus) on Bear Island in 
the western Barents Sea off the coast of Norway. However, before the analysis could 
proceed, Kajetl needed to determine if there were significant differences in any of the 
variables with respect to the birds' sexes or method of capture.  

Exercise 3-5: Does supplemental feeding deter sap-hungry bears? 

When black bears emerge from their winter dens, they forage ravenously to replenish their 
depleted body fat reserves often by clawing or biting away the outer bark to access the 
underlying sapwood.  Stephen Partridge from Washington State University studied whether 
it was possible to meet the needs of the bears in the spring by providing alternative food 
sources for hungry bears.  

Exercise 3-6: Should Whale Surveys be Stratified by Habitat Type?   

Sperm whales and beaked whales are deep-diving cetaceans that frequent shelf-edge and 
Gulf Stream waters of the northeast coast of the United States of America. Observers with 
binoculars can scan the surrounding waters to sight whales as their ship passes along a 
prescribed course at a set speed. Features of underwater bathymetry, such as the 
presence of underwater canyons, might influence relative sighting rates in such a way as 
to reduce the value of these surveys if the effect is not properly accommodated in the 
survey design.  

Exercise 3-7: PCBs and Kestrel Reproductive Behaviour 

Polychlorinated biphenyls (PCBs) bio-accumulate and biomagnify in the higher trophic 
levels of the food chain.  Carnivores such as birds of prey (raptors) are thus potentially 
susceptible to PCB residues. As reproductive behaviours are under hormonal control, and 
PCBs are potential endocrine disruptors, the alteration of breeding behaviour or timing 
may be one mechanism responsible for reproductive failure by raptors.  Sheri Fisher and 
her colleagues from the Avian Science and Conservation Centre at McGill University 
studied courtship behaviour of male and female American kestrels (Falco sparverius) after 
clinical exposure to PCBs.   

Exercise 3-8: Effect of coal ash on oral deformities of tadpoles 

Amphibians are increasingly viewed as bio-indicators of environmental stress, since there 
is widespread concern about population declines of frogs at a global scale.  A significant 
concern in all regards is the widespread source of pollutants.  Here we will consider an 
example involving the combustion of coal for generation of electricity, which produces fly 
ash and bottom ash, enriched in trace elements, by considering the non-lethal effects on 
bullfrog tadpoles.   

Exercise 3-9: Effect of Fishing on Yellow Perch Populations  

Exploitation can substantially alter fish population characteristics. Unexploited stocks 
typically have a high proportion of larger, older fish, which also may be in poorer body 
condition. Angling may alter population size structure and reduce abundance soon after a 
lake is open to angling. It may also influence growth rates and the maximum sizes 
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attained. We are asked here to compare the time taken to achieve a length of 25 cm (in 
years) and the estimated maximum size for exploited and unexploited populations of 
yellow perch.  

Exercise 3-10: Consumption Rates in Caribbean Fish  

Consumption rates by fish are required for the construction of food web (trophic) models. 
The consumption (Q) of fish species or groups is often expressed relative to their biomass 
(B) as the ratio Q/B. The Q/B ratio gives the number of times a fish population consumes 
its own weight in a year. We are asked to compare Q/B ratios calculated from 1989 data 
with Q/B ratios calculated from 1998 data to determine if there has been a change over 
the decade.  

Example 3-11: Movement of Purple-spotted Gudgeon  

Movement patterns and habitat preferences of the purple-spotted gudgeon (Morgurnda 
adspersa) were the subject of study in Pattersons Creek, a headwater stream in the 
rainforests of far north Queensland, Australia. The species has suffered from the 
introduction of exotic fish species and loss of habitat, particularly loss of aquatic 
macrophytes used as a substrate for depositing their eggs. Knowledge of its movements 
are important for guiding habitat restoration and other management initiatives. Here we 
compare the movements of male and female gudgeons.  

Assignments  

There is no assignment set for this workbook. 

Pre-requisite knowledge 

This Workbook is written on the assumption that you have some exposure to elementary 
statistics at tertiary level or that you will attempt it as part of a course where the key 
concepts of elementary statistics are dealt with in lectures.  

Satisfactory completion of Workbook 1 and 2 of this series is also assumed. 

Self-Assessment 

Assess your understanding and recall of the information presented in this module by 
running the assessments listed on the self-assessment web page.  
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Key Concepts 

The role of statistics in science 

In Workbook 2 (Univariate Descriptive Statistics), the focus of attention was on samples. 
Powerful statistical tools were introduced for condensing and summarising single samples 
to more easily convey the essential features of the data in what is said and written. While 
this is an important aspect of statistical endeavour, much of statistical theory is concerned 
with a second topic—statistical inference. 

When we study samples, we are seldom directly interested in them per se. We study them 
to learn something of the population from which the samples were drawn. We infer 
properties of the entire population, which we have not studied in its entirety, from our 
detailed knowledge of a sample of observations. The convenience of studying finite 
samples rather than the population as a whole comes at a cost. Samples, because they are 
finite and often relatively small, are somewhat akin to a fuzzy snapshot—the general 
impression of the population is evident, but the sample is an inexact representation. No 
matter how intensively we study the sample, there will be a level of uncertainty in what 
we discover, if we try to extrapolate our findings to the entire population. This uncertainty 
is often referred to as sampling error. 

Sampling error has important practical consequences namely: 

• Sample statistics will typically differ somewhat from the corresponding true values for 
the entire population. Estimating by how much they differ is a problem addressed 
under the heading of parameter estimation. 

• Any two samples, even if taken from identical populations, will differ typically in all of 
their statistics. Determining whether the observed difference in sample statistics is 
great enough to conclude that the true population values differ is a problem addressed 
under the heading of hypothesis testing. 

Because they deal with making inferences about population parameters on the basis of 
sample statistics, parameter estimation and hypothesis testing are grouped under the 
broader heading of statistical inference. 

Parameter estimation 

In the first category of analysis, parameter estimation, sample statistics are used to 
estimate the true values of the populations from which the samples are drawn. Say that 
we wish to know something of the heights of students on a university campus, for the sake 
of future planning or the design of lecture theatres and seating. Time or resources may not 
permit an examination of the entire student population, so we choose instead to select and 
examine a representative sample of say 100 students. We then measure their heights and 

calculate the average height of people in the sample to yield a sample mean, Y . 

If we obtained a figure of 170 cm for the mean of our sample, then provided our sample 
was reasonably large and provided we selected our sample at random to ensure it was 
representative of the entire population, we can be reasonably sure that the mean height of 
all students on campus, the true mean µ , is around the value calculated for the sample.  

But how sure, and how close is our estimate to the real figure? 

Statistical analysis provides a way of answering these questions. We might not know the 
value of the true population mean, but statistical analysis allows us to determine a range 
within which we can be 95% sure that it will lie. It allows us to use the statistics calculated 
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from a sample to place bounds, or confidence limits, on the true value for the population 
from which the sample was drawn. 

Hypothesis testing 

The most common application of statistics in biology is to test specific scientific 
hypotheses. Consider a hypothetical example, rather trivial because of the magnitude of 
the difference between the populations under study. Two forests are of the same age. One 
forest was treated with fertiliser in a fashion consistent with past practice, the other with a 
new fertiliser and a new procedure. The Forestry Department is interested in knowing if 
the new procedure has produced significant increases in yield. The forests were large and 
it was not feasible to measure every tree, so the forester selected two random samples, 
each of 100 trees, from each forest. A variable was then selected to measure tree girth, 
one that would give an indication of the size of trees in each forest and of subsequent 
yields. Frequency histograms were constructed for each sample, and perused for an 
indication of whether girths were different in the forest subjected to the new treatment 
(Figure 3–1). 

Figure 3–1. 
Frequency 

histograms for 
random samples 

of pine trees 
(n=100) selected 
from each of two 

forests of the 
same age. A: 

Traditional 
fertiliser 

treatment; B: 
New fertiliser 

treatment. 

 

A

  

 

B

 

You might conclude by simple inspection that the girths of the trees in the two forests are 
different. The samples are different most definitely, but when taking repeated samples 
even from the same population, one can expect them to differ to some degree just 
through chance.  

The samples are different, but how can you be sure the two populations are really 
different? 

An hypothesis test allows us to calculate the probability of obtaining two samples as 
divergent as the above two, on the assumption that they were drawn from two identical 
populations of trees. If this probability is very low, then the forests are probably actually 
different. If it is high, then the differences we observe may well have been nothing more 
than random fluctuations between samples, that is, sampling error. 

Clearly, by resolving the ambiguity that arises from sampling error, statistics in general, 
and hypothesis testing in particular, provide very important tools for science. 

To digress for a moment, a test you could use in this instance is the t-test, to compare two 
means. Applying the t-test to this example, we find that the probability of obtaining two 
samples as divergent as these two (or worse) from the one population is very small (less 
than 0.001). We therefore conclude that the two populations (the two forests) differ in 
reality and that the new fertiliser and procedure are superior. 

The case of the two forests was fairly clear-cut and one might argue that the use of 
statistics was not required to arrive at a sound conclusion. But there are many cases 
where a decision cannot easily be made without relying on statistical techniques. 
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In a series of eight trials, specimens of the bush rat, Rattus fuscipes, were provided with a 
choice of two baits to test the rats' preferences for one bait over the other. The results are 
shown in Table 3–1. In all but two cases, R. fuscipes chose bait A over bait B. Clearly the 
rats are showing preference for bait A—or are they?  
 

 Individual 

 1 2 3 4 5 6 7 8 
Bait A 1 1 2 1 1 1 2 1 

Table 3–1. Bait 
preference of 

Rattus fuscipes, in 
an experiment 
involving eight 

trials. 
Bait B 2 2 1 2 2 2 1 2 

Before we can come to a conclusion one way or the other, we need to know what 
probability there was of obtaining the above result had we used rats that were unable to 
distinguish between baits A and B.  

For interest only, the appropriate test to use in this case would be based on the binomial 
distribution. There are k = 8 trials, P{choose A} = 0.5, P{6 or more choices of A} = 
0.145. This test gives the probability of obtaining the observed result (or one more 
divergent from expectation), on the assumption that the rats have no preference for one 
bait over the other. The probability in this instance turns out to be 0.145 (= 14.5%). That 
is, if the entire experiment of eight trials was repeated 100 times, then a result at least as 
convincing as the one shown in Table 3–1 would be expected to occur about fourteen 
times—fourteen times out of 100 using rats unable to distinguish between baits A and B! 
Most would consider a probability of 14.5% too high to conclude that Rattus fuscipes 
prefers bait A over bait B. 

Summary 

In summary then, a fundamental raison d'être of statistics arises because any two 
samples, even if taken from the same population, typically will differ in all of their 
statistics. They will differ because of sampling error, that is, because finite samples will be 
inexact representations of the populations from which they are drawn. How then can a 
scientist evaluate the observed difference in means between two samples? They might 
differ by chance, because any two samples would be expected to differ, or they might 
differ because the populations from which they were drawn differ. Statistical tests provide 
a means for rationally deciding between these two possibilities. 

A fundamental problem for the scientist: Does an observed difference or trend for the 
samples reflect a true difference or trend for the populations from which the samples were 
drawn, or did the observed difference or trend occur by chance alone? 

Statistical analysis enables us to assign a measure of reliability to inferences made about 
the world around us from observations on finite samples. This is not true of science alone. 
We draw conclusions about the real world based on finite sets of observations throughout 
our lives. It is just that in science, we need to assign an objective measure of reliability, in 
the form of a probability statement, to the inferences we make. Such measures of 
reliability give us confidence in the conclusions we draw from our data, and provide a 
formal structure for conveying that confidence to others in what we write. 

Samples and populations 

The totality of observations with which we are concerned, whether finite or infinite, 
constitutes what we call a population. Once, the word population referred to observations 
on people, but today it applies to measurements of any entities of interest, whether it be 
people, animals, plants or objects. The number of entities that comprise the population is 
called the size of the population which, in many circumstances may be regarded as 
infinite. 

A sample is a subset of the population. A random sample is a sample taken in such a 
way that each element of the population has the same probability of being selected. We 
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take random samples to ensure that our samples are representative of the population from 
which they are taken, so that what we learn from the study of the samples will be more or 
less true of the populations themselves. 

Figure 3–2. 
A series of 

samples, of 
increasing size, of 
shoots of Banksia 
ericifolia from the 

Jervis Bay 
National Park. 

 

   

   

Samples should be considered fuzzy snapshots of the populations from which they are 
drawn, with the degree of fuzziness diminishing as the intensity of sampling or the sample 
size increases. Consider again the samples of Banksia shoots presented in Workbook 2. 
Figure 3-2 shows the frequency distributions for a series of samples taken from the Jervis 
Bay study site, increasing in sample size from 25 to 1000. Here we have a series of better 
and better approximations of the true but unknown frequency distribution for the 
population being sampled. 

The sample frequency distribution approximates the true but unknown distribution for the 
entire population, and the approximation becomes progressively better as the sample size 
increases. 

A parallel situation arises when we consider sample statistics. We could approach our 
study of Banksia ericifolia by measuring the lengths of each and every shoot in the study 
site, and then we might summarise the data by calculating the average or mean shoot 
length. 

In this case, we would be examining the entire population of shoots at the study site and 
the average that we calculate would be called the population mean, designated µ . Note 

that the population mean is a fixed figure characteristic of the population. It is not subject 
to variation—no matter who calculates such a mean or how many times it is calculated, 
barring mistakes, the same value will be obtained in each case. As such the population 
mean is called a parameter. 

Alternatively, time or resources may not permit an examination of the entire population of 
shoots, and we might choose instead to select and examine a random sample of say 100 
shoots. We could then measure their lengths and calculate the average length of shoots in 

the sample—the sample mean, usually designated X  or Y . The difference between the 

sample mean Y  and the population mean µ  is that the sample mean is subject to natural 

variation or, as it is called, sampling error. If we were to repeat our sampling procedure 

by selecting another 100 shoots, we would obtain a value for Y  that differed from the first 
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one, and if we repeated the procedure once more, a third value would most likely result. 
For this reason, the sample mean is called a statistic. 

The statistic Y  is said to estimate the population mean µ . 

In taking a sample of shoots and calculating their mean length, we have one object in 
mind. The sample itself is of little interest — we wish to learn something of the population. 
If we obtained a figure of 29.8 mm for the mean of our sample, then provided our sample 
was reasonably large and provided we selected our sample at random to ensure it was 
representative of the entire population, we can be reasonably sure that the mean length of 
all shoots at the study site is around the value calculated for the sample. 

Key Point
 

Statistics, calculated from samples, are estimates of true population 
parameters. The estimation improves as sample size increases. 

Sampling distributions 

Consider what happens if we replicate our sampling by taking, say, 30 samples of Banksia 
shoots each with a sample size of 50 shoots. For each sample, we can calculate a sample 
mean, and the values obtained will vary from one mean to another simply by chance, 
because of sampling error. It is not likely that any one of them will equal the true but 
unknown population mean, but with sample sizes of 50, they will be pretty close.  

It turns out that the means of replicated samples from a normally distributed population, 
such as the population of Banksia shoots, are themselves normally distributed regardless 
of the sample size. The true mean for this sampling distribution is equal to the mean for 
the parent population, µ . Its standard deviation is called the standard error, to distinguish 

it from the standard deviation of the parent population. The standard error of the 
distribution of replicated means, Yσ , and the standard deviation of the parent population, 

σ , are related by: 

A standard error is the standard deviation of a distribution for a sample statistic, 
such as the sample mean. 

What is even more remarkable is that means for replicated samples taken from 
populations with distributions of any shape will follow a normal distribution, provided 
sufficiently large samples are collected. This concept is usually presented in the form of 
the Central Limit Theorem, which states that: 

Sample means drawn repeatedly from a single population with mean µ  and 

standard deviation σ , will be normally distributed with mean µ  and standard 

error n
σ

, irrespective of the distribution of the population from which the 
samples are drawn, provided the size of the samples (n) is large. 

Consider a population with a uniform distribution, such as the population represented by 
wooden balls numbered from 1 to 10 in a bag from which we select balls at random with 
replacement. The distribution for this population is shown in Figure 3–3.  

nY

σσ =
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Figure 3–3. The 
distribution of 
means from a 

series of samples 
of increasing size 

taken from a 
population of 

numbered balls 
(top) each with an 

equal probability 
of selection. 

   

Entire Population 1000 samples of one 

 

1000 samples of two 1000 samples of five 

 

If we take samples of size 1, then the distribution of sample means will be uniform and 
very similar to that of the parent population (Figure 3–3), as each possible mean value, 1 
to 10, has an equal probability of 1/10 of occurring. 

If, however, we take samples of two, the probability of obtaining a mean of 1 will be 
substantially lowered, because to obtain such a mean, two successive ones will need to be 
drawn, with a probability of 1/100. Similarly, a mean rounding to 2 can occur with ball 
combinations 1-2, 2-1, 2-2, 1-3 and 3-1 with a probability of 5/100. The probabilities of 
means falling at the extremes of the range will be depressed while those centrally will be 
inflated (Figure 3–3). It is not difficult to convince yourself of the truth of the Central Limit 
Theorem, and come to understand how it comes about, by perusing the results of 
sampling from the uniform distribution shown in Figure 3–3.  

The central limit effect is even more spectacular when you consider repeated sampling 
from the bi-modal distribution of Figure 3–4. The central limit effect emerges from and 
eventually overwhelms the bimodal tendencies inherited from the parent distribution. 
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Figure 3–4. The 
distribution of 
sample means 
for samples of 

various sizes 
taken from a 

population (top) 
with a complex, 

non-normal 
distribution. 

Each distribution 
is based on 

1000 replicated 
samples. 

 

 

 

 

 

This knowledge is of great practical value. Because the sampling distribution of the mean 
is normally distributed under certain conditions, we are able to place objective measures of 
reliability on the inferences we make about the population mean. In particular, we can 
calculate confidence limits for the population mean, using the above knowledge of the 
distribution of the sample mean. 

SHELL LENGTH
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Confidence limits 

If a sample is selected from a normal population or, failing this, if the sample is sufficiently 
large, say n > 30, we can establish a confidence interval for the population mean by 

considering the sampling distribution of Y . Because the sampling distribution of Y  will be 

approximately normally distributed with mean µ  and standard error 
n
σ

, we have: 

95.096.196.1Pr =⎥
⎦

⎤
⎢
⎣

⎡
+<<−

n
Y

n
σµσµ  

All we are doing here is using knowledge of the normal distribution to say that 95% of 
sample means will lie between the true population mean and + 1.96 times the standard 
error. 

This equation can be rearranged to yield one that is much more useful. By subtracting Y  
and µ  from each term and multiplying each term by -1, we have: 

95.096.196.1Pr =⎥
⎦

⎤
⎢
⎣

⎡
+<<−

n
Y

n
Y σµσ

 

So now, although the true population mean µ is unknown, we can at least define an 
interval within which we can be 95% sure it will lie. The catch is that the equation for the 
interval still contains an unknown, the population standard deviation σ . 

If σ  is known, the distribution of sample means about the true population mean will be 
normal, but if σ  is only available as an estimate we must call upon another distribution 
worked out by statisticians — the t–distribution (Figure 3–5). 

Figure 3–5.  
The t-distribution. Normal = t [    ] 

              t [1] 

              t [2] 
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The t–distribution has the following properties: 

• The area under the curve = 1, as is the case for all continuous probability distributions. 

• It is bell-shaped, symmetrical about the mean, median and mode, which are all of 
equal value. 

• It has a complex formula defined uniquely by three parameters, the mean µ , the 

standard deviation σ  and the sample size n. Note that the shape of the t–distribution 
depends on the sample size (Figure 3–5), unlike that of the normal distribution. 

• It approximates normality as ∞→n . The approximation is reasonably good for n > 30 
and can be regarded as exact for n > 120. 

The boundaries of the interval within which 95% of values lie, vary according to sample 
size, but have been tabulated for the t  distribution by statisticians. These tabulated values 
replace 1.96 in the equation for the 95% confidence interval. 

[ ] [ ] 95.0Pr ,2,05.0,2,05.0 =⎥
⎦

⎤
⎢
⎣

⎡
+<<−

n
StY

n
StY νν µ  

where t[0.05,2,ν] marks the boundary of the region within which 95% of t values would be 
expected to lie (5% spread over the two tails). 

At last we have a formula that can be used. If our sample is selected from a normal 
population or, failing this, if our sample is sufficiently large, then we can use attributes 
from our sample (sample mean, standard deviation and sample size) to determine the 
interval within which we can be 95% sure the true population mean lies.  

This is an immense step forward, given that previously all we could do was make vague 
unsupported statements to the effect that the population mean was somewhere near our 
sample mean. 

Key Point
 

Confidence limits provide bounds within which you can be 95% sure, say, that 
a true population parameter lies. 

Hypothesis testing 

Rationale 

It is worth repeating a fundamental dilemma faced by scientists in a wide range of 
disciplines. Any two samples, even if taken from the same population, typically will differ 
in all of their statistics. How then can a scientist evaluate the observed difference in means 
between samples taken from two populations? The samples might differ by chance, 
because any two samples would be expected to differ, or they might differ because the 
populations from which they were drawn differ. 

This dilemma is resolved through the decision-making process of hypothesis testing. 

Hypothesis tests rely on a perverse form of logic, pioneered by Euclid in his proof that 2  
is irrational. Recall that an irrational number is one that cannot be expressed as a 
conventional fraction p/q, where p and q are whole numbers. Euclid must have been a 
lateral thinker, because he approached the problem in an odd way. He began by assuming 

what he set out to disprove, that is, he began by assuming that 2  was a rational 
number. He put: 
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q
p

=2  

where p and q have no common divisor. It is possible to do this for all rational numbers. 
By simple rearrangement this gives: 

22 2qp =  

and so p2 must be even, as it is equal to a number that is a multiple of 2. If p2 is even, 
then p must be even. If p is even, it can be written as being equal to 2k, giving: 

( ) 22 22 qk =  

 or: 

222 qk =  

so q2 and q must be both even.  

If p and q are both even, this is a contradiction of the initial assumption that 2  was 
expressed as a fraction of two whole numbers with no common divisor. Hence the initial 

assumption of the rationality of 2  must be false. 

What has Euclid done? 

• He wished to prove what he suspected—that 2  is irrational (not in Euclid's words of 
course). 

• He began by assuming the opposite—that 2  is rational. 

• A chain of logical reasoning resting upon this assumption led Euclid to an impossibility. 

• Euclid was thus forced to reject his initial assumption and to accept the alternative. 

I ask you to hold in your mind for a few minutes, Euclid's lateral approach to a 
mathematical proof. 

Consider for the moment that you are part of a large class of students undertaking a 
subject in elementary statistics. The lecturer puts a proposition to the class. He has a coin 
that he will toss repeatedly, and admits that the coin may be double-headed. He offers a 
small prize, a bag of marshmallows, to the first student to claim that the coin is indeed 
double-headed, provided they are correct in their assertion. However if they are incorrect, 
they must pay a penalty of $300 to their favourite charity. 

• The coin is tossed, and it comes up heads. No one hazards a guess, because the cost 
of being wrong is high ($300) and the prize is of relatively low value ($1.65). After all, 
the probability of getting a head if the coin has heads on one side, tails on the other, is 
50:50 or 0.5.  

• The coin is tossed again. Heads! No response from anyone in the class. The evidence 
for bias in the coin is still too weak, because even with an unbiased coin, two heads 
may be thrown by chance. There is a 1 in 4 probability of this. 

• Again—heads! Suspicions are aroused, but still, three heads in succession occurs with a 
probability of 0.53 or 12.5%. Enough to risk losing $300 in the hope of gaining a packet 
of marshmallows? I think not. 

• Another toss, and another head. There may be someone in the audience willing to take 
a punt on 0.54 or 6.3%, but certainly when a fifth head is thrown, the hands begin to 
rise. Five heads in a row from an unbiased coin would be expected to occur only 0.55 or 
3.1% of experiments of this nature. 
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How is this process related to the proof of Euclid? When confronted with the need to 
conclude that the coin was double-headed, we automatically work on the assumption that 
the reverse is true. We ask, if the coin is unbiased, what would be the probability of 
obtaining the observed results. It is only when the probability is low enough, that we 
decide that our assumption of no bias is poorly founded and conclude that the coin is 
double-headed.  

Like Euclid, we assume what we hope to disprove, and rely on mathematics to lead us to 
an unacceptable result. The difference is that Euclid made his decision when he arrived at 
an impossible result (a contradiction), whereas we make our decision when we arrive at an 
improbable result. 

This is the foundation of hypothesis testing. We begin by making an assumption, called the 
null hypothesis (the coin is unbiased). We then take the observed result and use 
mathematical theory to determine the probability of obtaining that result by chance alone, 
if the null hypothesis is true. If this probability is low, then we have some foundation for 
deciding that the initial assumption, the null hypothesis, is false.  

How small this probability must be before we are willing to reject the null hypothesis will 
depend on the costs of a decision to reject the null hypothesis when it is true ($300) 
relative to the benefits gained by a correct decision (one packet of marshmallows valued 
at $1.65). If the penalty had been $3000, then few hands would have risen on the fifth 
head in a row. By convention, in general science at least, the probability required to justify 
a decision to reject the null hypothesis is 0.05 or less. 

Formal procedure 

Let us now apply this rationale in a more serious vein. A statistical hypothesis is an 
assumption or statement, which may or may not be true, about one or more populations. 
If we have taken two independent samples, one from each of two populations, and we 
wish to know if the means of these two populations differ, we should begin by assuming 
that they are the same. Such an assumption, or null hypothesis, is written: 

210 : µµ =H  

It is the hypothesis that we would often hope to reject, provided there is sufficient 
evidence to do so. A corresponding alternative hypothesis might be: 

211 : µµ ≠H  

Next we ask how sample estimates of these population means might be expected to differ, 
if the null hypothesis is true?  

Each null hypothesis has a test statistic associated with it. Clearly, if the null hypothesis is 
true, then we would expect the sample means of our two samples to be about the same 

and in fact, on average, we would expect the test statistic ( )21 YY −  to be equal to zero 

(Figure 3–6). Of course in practice, it will hardly ever be exactly equal to zero because of 
sampling error. Repeated measures of this statistic will vary around the value zero. 
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Figure 3–6. 
A diagram 

showing how a 
theoretical 

distribution, based 
on the assumption 

that the null 
hypothesis is true, 

is used to decide 
the validity of that 

assumption (see 
text). 

A
p = 0.02  B 

p = 0.27  

21 YY −21 YY −
 

Provided you know the mathematical relationship that describes the distribution of the test 
statistic, you can make informed statements about whether an observed value for the test 
statistic is probable or improbable, if the null hypothesis is true. This provides us with the 
foundation for making a decision. 

If you find the probability of obtaining the observed value for the test statistic or a more 
extreme value is very low (< 0.05), then you have a sound basis for rejecting the null 
hypothesis. In Figure 3–6A, the probability of obtaining a value for the test statistic, or a 
more extreme value, is 0.02, shown by the shaded area, and the null hypothesis is 
rejected. If on the other hand, the probability is very high, our observed value of the test 
statistic may well have occurred by chance, and we have no firm evidence for rejecting the 
null hypothesis. In Figure 3–6B, the probability of obtaining a value for the test statistic or 
a more extreme value is 0.27, shown by the shaded area, and we have insufficient 
evidence to reject the null hypothesis. 

Key Point
 

The end product of an hypothesis test is a value, p, which is the probability of 
obtaining the observed value of the test statistic by chance alone, if the null 
hypothesis is true. Small values of p, say p < 0.05, provide a sound basis for 
rejecting the null hypothesis. Large values, say p > 0.05, provide insufficient 
evidence to reject the null hypothesis. 

If the value of p indicates that the observed value of the test statistic could not have 
reasonably occurred by chance (say p < 0.05), you reject the null hypothesis. If, on the 
other hand, the value of p indicates that the value of the test statistic might well have 
occurred by chance alone, you have insufficient evidence to reject the null hypothesis. You 
do not accept the null hypothesis because failure to reject it is ambiguous—the null 
hypothesis might be true, or you may have insufficient data at hand to reject it. 

One-tailed and two-tailed tests 

Usually when a test is performed, the null hypothesis is an hypothesis of no difference or 
no trend, for example: 

210 : µµ =H  

The alternative hypothesis proposes that there is a difference, for example: 

211 : µµ ≠H  

Occasionally, we may have evidence, quite independent of the data we have collected, to 
believe that a difference in the true population means, if any, is in one direction only. Note 
that we must have extrinsic evidence that the true population parameters differ in one 
direction only. A one tailed test is not appropriate simply because the difference between 
the samples is clearly in one direction or the other. 
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The alternative hypothesis then takes the form: 

211 : µµ <H   or  211 : µµ >H  

Tests involving such alternative hypotheses are referred to as one-tailed tests. The 
probability of obtaining a particular value of the test statistic, or one more extreme, in a 
one-tailed test is only half the probability that would have been obtained in a two-tailed 
test (Figure 3–7). Hence, the one-tailed test is more powerful and a priori knowledge of 
the direction of the true difference in population means should be used if available. In the 
example of Figure 3–7, a significant result is obtained for the one-tailed test whereas the 
two-tailed test applied to the same data yielded a non-significant result. 

Figure 3–7.  
A comparison of 
the probabilities 

arising from (A) a 
two-tailed test 

( 210 : µµ ≠H ) and 

(B) a one-tailed 
test ( 211 : µµ <H ).  

 

Both tests are comparing the test statistic –2.7 with the critical values at the 95% level of 
significance. The two-tailed test yields a non-significant result; the one-tailed test yields a 
significant result. This illustrates the advantage of using a one-tailed test when extrinsic 
information on the direction of the difference permits it.  

Statistical significance 

In hypothesis testing, deciding whether to reject the null hypothesis depends upon a prior 
decision on what level of significance or alpha level to use in the test. We might choose, 
for example, to reject the null hypothesis if the probability of obtaining the observed 
results by chance alone is less than 5% or 05.0=α . The level set for α  depends upon 
what chance you are willing to take in being wrong when you decide to reject the null 
hypothesis. In science, we typically set α  at 0.05 or 5%, and so are willing to be wrong in 
rejecting the null hypothesis in 5 of every 100 tests we choose to apply. If the costs of 
wrongly rejecting a null hypothesis are particularly high, then 01.0=α  or a 1% level of 
significance may be more appropriate. If, however, you are conducting studies where the 
consequences of falsely rejecting the null hypothesis are not quite so severe, then a 
significance level of 10.0=α may be appropriate. There is no hard and fast rule on the 
appropriate level of significance. It depends very much on contemporary practice in your 
particular discipline. 

Key Point
 

When the null hypothesis is rejected, we say that the result is statistically significant 

For example, we may state that there is a significant difference between two means. This 
is shorthand for the statement that the observed difference between sample means is 
unlikely to have occurred by chance alone, at the accepted level of significance, if the 
population means are the same. 
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Type I and Type II errors 

You will have gathered from the above discussion that hypothesis testing does not enable 
the researcher to make a cut and dried decision. A significant result at the 5% level of 
significance will lead to the decision that the true population means are different. When 
you make such a decision, you do so in the knowledge that there is a 5% probability that 
you are incorrect. Nothing is certain.  

When a significant result is obtained at the 5% level, there are two possible scenarios. The 
null hypothesis may be true, and by virtue of the test result and the level of significance 
set, this is the most probable scenario. The null hypothesis may not be true, despite the 
outcome of the test, and you will have achieved a false positive result. The experimenter 
controls the probability of such an adverse outcome, usually at 5%. Your decision is to 
reject the null hypothesis is sound, on the balance of probabilities, but you may be wrong 
in doing so. 

A Type I error  (false positive) is made when we reject the null hypothesis when it is 
true. We might, for example, declare two population means to be different when, in fact, 
they are not (Table 3–2). Equally, we may err in the other direction, that is, we may 
accept a null hypothesis when it is false. We might, for example, fail to detect a difference 
between two population means when, in fact, they are different (Table 3–2). In so doing, 
we make a Type II error (false negative).  

 DECISION 
 H0 rejected H0 accepted 

 
H0 is false 

 
Correct decision 

False Negative 
Type II Error  
( β=p usually unknown) 

Table 3–2. 
Outcomes of an 
hypothesis test. 

Two outcomes 
are satisfactory, 

the other two 
are undesirable. 

 
H0 is true 

False Positive 
Type I Error  
( α=p usually 0.05) 

 
Correct decision 
 

Type I and Type II errors have the following properties: 

• The probability of a Type I error is specified independently of the experiment, by 
convention. In the sciences generally, it is typically set at 05.0=α . In medicine, where 
the costs of rejecting a true null hypothesis are higher, it may be set higher, say at 

01.0=α .  

• The probability of committing a Type II error, β , cannot be calculated without detailed 

knowledge of the alternative hypothesis, that is the hypothesis we accept when we 
reject the null hypothesis.  

• If for a fixed sample size, we choose to reduce α  from 0.05 to 0.01 to increase our 
confidence in a significant result, we will be increasing the value of β . This occurs 

because the more stringent we make our conditions for rejecting the null hypothesis, 
the more likely it is that we will not reject a null hypothesis when it is false. 

• Increasing the sample size does not affect the probability of a Type I error, but will 
progressively reduce the probability of a Type II error as the power of the test 
progressively increases. 

Power of the test 

Ideally, a test of significance should reject the null hypothesis when it is false. Power is the 
probability of getting a significant result when the null hypothesis is false. Power is 
defined as β−1 , where β  is the probability of a false negative, accepting the null 

hypothesis when it is false.  

A test becomes more powerful as the data available increases, so power is usually 
presented as a curve plotted against sample size, a power curve. A more powerful test for 
a given sample size is sometimes called a more sensitive test or a less conservative test. 
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Importance or strength of result 

The observation that the power of a test to detect a true difference increases with sample 
size has an important practical consequence. Minuscule differences between parameters, 
while of no practical consequence, can be eventually detected as significant by a statistical 
test, provided we have a large enough sample size. So if we have very large samples, a 
highly significant difference may be so small in magnitude as to be of no biological 
importance. 

Imagine that we are comparing male and female body depth for the introduced carp. Over 
a period of many years, data accumulates until we have approximately 7000 fish of each 
sex, and a t-test demonstrates that the difference in body depth of 0.1 mm between males 
and females is highly significant (p < 0.0001). What are we to conclude? The difference is 
real, but is it likely to be of any biological consequence to the fish? 

Hence there are two considerations in hypothesis testing. The first is the probability that 
the result occurred by chance, that is, whether or not the result is significant in the 
statistical sense (usually written as p < 0.05 or 0.01 or 0.005 etc). The second is the 
strength of the result, which enables us to gauge whether or not the result is of biological 
importance. We cannot uncritically accept a result that is highly statistically significant at 
the 0.001 or 0.00001 level as being an important finding. We must also check the 
magnitude of the difference or trend, and assess whether it is substantial enough to 
warrant further attention. 

Planning of experiments 

The likelihood of obtaining useful results in both parameter estimation and hypothesis 
testing is greatly influenced by sample sizes. When estimating parameters, sample sizes 
need to be adequate to ensure that the estimates are sufficiently precise to be useful. In 
hypothesis testing, sample sizes need to be adequate to be reasonably certain of detecting 
an important difference when it exists. At the same time, sample sizes should not be so 
large that the cost of the study becomes excessive, nor is there much value in having 
weak, unimportant differences becoming highly significant. Planning the intensity of 
sampling is important in the design of experimental and observational studies. 

Optimal sample size for a t-test will be affected by: 

• The size of the smallest difference that it is important to detect. The smaller the 
difference, the larger will be the sample size required to detect it, all other things being 
constant. 

• The variability of the data. The more variable the data within samples, the more 
difficult it will be to demonstrate a given difference between samples against the 
backdrop of that variability. 

• The acceptable probability of detection. The more certain you want to be of 
detecting a difference of a given size, the larger will be the samples required to give 
you that greater certainty. 

• The level of significance of the test. It will take larger samples to be reasonably 
sure of detecting a given difference at the 1% level of significance than at the 5% level 
of significance. 

These elements are encapsulated in the formula for the optimal sample size for a t-test. To 
be 80% sure ( 8.01 =−= βP ) of detecting a given difference between two means ( δ ) at 
the 5% level of significance ( 05.0=α ), you will require a sample size of: 

[ ] ( )[ ]( )212

2

2 νναδ
σ

Pttn −+⎟
⎠
⎞

⎜
⎝
⎛≥  

where n is the required size of each sample, σ is the true parametric standard deviation, 

121 −+= nnν  degrees of freedom, P is the intended power of the test, [ ]ναt  is the value 

from a two-tailed t-table with ν degrees of freedom and level of significance α  and 

[ ]νβ )1(2 −t  is the value from a two-tailed t-table with ν degrees of freedom and level of 

significance ( )P−12 . 
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You might have noticed also that n is on both sides of the equation, since ν  is a function 
of n. This means that the equation must be used in iterative fashion, in the same way that 
Robinson Crusoe made his wheelbarrow. He fashioned a crude wheel with which he made 
a crude lathe. He used the lathe to make a better wheel, and from there a better lathe to 
make a still better wheel and so on, until he had a very good wheel for his wheelbarrow. 
In the formula above, we guess a value of n and use the formula to obtain a better 
estimate of n, which we again feed into the formula, and so on, until n does not change 
from iteration to subsequent iteration. 

To use this formula, you need also to make some hard decisions. First, you need to decide 
on what is the smallest difference  ( δ ) upon which you will place some importance. You 
must decide that differences smaller than that value are of little or no consequence. 
Second, you need to estimate the parametric standard deviation, σ , and this must be 
estimated before you collect the data. You can use a ball-park figure based on experience, 
or you can undertake a pilot study to estimate σ  and then the desired sample size before 
expending resources on the major optimised study. You may find the ratio of δ  to σ  
easier to estimate.  

Finally, you need to decide on the risk you are willing to take ( β−= 1P ) in not finding an 

important difference when it actually exists. There us no general agreement on the value 
of P . The value of 0.80 seems to have currency in the same way as 0.05 has currency for 
α . Some would argue for higher values of 0.90 and 0.95, but ultimately it comes down to 
how important to you it is to detect a true difference of δ if it exists. What risk are you 
willing to take of missing it? 

Regardless of the problems of its computation, the cost savings of this approach can be 
considerable, either through minimising the risk of undertaking the study only to find that 
no difference can be demonstrated (when it exists) or by avoiding the expense of 
collecting more data than is required for success. 

The above analysis is sometimes called prospective power analysis. 

Interpretation of non-significant results 

Nothing is certain in statistics. A significant result is ambiguous—the result could be real, 
or it could be a Type I error—but the risk of an error is quantified. At the 5% level of 
significance, rejecting the null hypothesis carries with it a 5% chance of being incorrect in 
making that decision. 

There is also ambiguity in a non-significant result—there may well be no difference 
between samples, or the sample sizes may not be large enough to detect a difference that 
is there (you make a Type II error). The risk of this type of error cannot usually be 
quantified, unless the alternative hypothesis H1 is known (see above). A non-significant 
result, therefore, is very difficult to interpret. 

Strictly speaking, you would interpret a non-significant result as having failed to 
demonstrate a difference. Occam’s razor rules in favour of the status quo. You cannot 
firmly conclude that no difference exists, as inadequate sample size might be the villain. 

The way out of this dilemma, should you wish to draw inference from a non-significant 
result, is a retrospective power analysis.  

In a retrospective power analysis, you ask, given your sample sizes, what might be the 
smallest difference  ( δ ) you could be reasonably confident of detecting ( 80.01 =−= βP ). 

Using S as an estimate of σ , the formula for the smallest difference likely to be detected 
by a t-test with sample sizes of n, is: 

[ ] ( )[ ]( )
n
Stt P

2
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If δ̂  is so small as to be of no consequence, then your interpretation of the negative result 
is acceptable. If, on the other hand, even a large difference would often go undetected 
with your sample sizes, you have nothing to report except your embarrassment at not 
having collected more data. 

Retrospective power analysis is a controversial area, and the analyses have not adequately 
been incorporated into statistical packages. Many power analysis algorithms give you the 
optimal sample size to be reasonably sure of detecting the difference you observed in your 
analysis, which is about as useful as teats on a bull. What you need is the probability of 
detecting the smallest important difference, given the current design and sample sizes. 
Only then can you judge whether a non-significant result derived from inadequate design, 
or absence of a true effect. 

Controversial also is the value chosen for the probability of detecting the difference if it 
exists. It has been argued that just as a small α  (Type I Error) is required to declare a 
difference to be nonzero, so too a small β (Type II Error) should be required to declare a 

difference to be zero. We have chosen 80.01 =−= βP  above, which is developing similar 

currency as 05.0=α , the defacto standard for the Type I Error. Cogent arguments can be 
made for 0.84, 0.90 and 0.95 and corresponding values for β . 

Robustness 

All tests are derived from statistical theories based on various assumptions. For example, 
the t-test is based on the assumption that the populations from which the samples are 
drawn are normally distributed with equal variances and that there has been randomness 
and independence in sampling. But in the end all we are concerned with is an objective 
basis for making a decision. The possibility exists that the results of a statistical test may 
be little affected by moderate violations of the theoretical assumptions. A statistical test is 
said to be robust with respect to one or more of its assumptions if its predictions are little 
affected by moderate violations of its assumptions. 

Degrees of freedom 

The concept of degrees of freedom is important in hypothesis testing, primarily because 
many of the theoretical distributions used to obtain a p value depend on the number of 
degrees of freedom. It is a difficult concept to grasp without a full appreciation of the 
mathematical basis of statistics. For a particular test statistic, the number of degrees of 
freedom is equal to: 

λ−= ndf  

where n is the number of measurements making up the sample and λ  is the number of 
parameter estimates calculated from the sample and used to calculate the value of the 
test statistic. The standard deviation 

( )
1

2

−
−

=
n

YYS  

has n-1 degrees of freedom because there are n values from which we subtract 1 for the 
sample mean which appears in the formula.  

Essentially, ten independent values comprise ten independent pieces of information, 
because knowledge of one value provides no information per se on any other value. 
Knowledge of the sample mean uses up one piece of information, because if you know the 
mean and nine of the sample values, then the tenth sample value is uniquely determined 
(you have 10 equations in ten unknowns). Similarly, once you specify nine deviations from 
the sample mean, the tenth is uniquely determined, since the sum of deviations about the 
mean must be zero. Only nine of the ten deviations are free to vary, that is there are nine 
degrees of freedom. 
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Significance, power, strength – putting it all together 

A general approach to hypothesis testing is as follows. 

• Formulate the research question as a statistical null hypothesis. This is the proposition 
that you wish to accept or reject. It is your initial assumption. 

• Use statistical theory to carry that initial assumption forward to yield a p value. The p 
value is the probability of getting the observed data if the null hypothesis is true. 
Additional assumptions are generally necessary to move from the initial null hypothesis 
to a p value. 

• Convince yourself that the additional assumptions made in arriving at the p value are 
upheld, or take measures to ensure that they are upheld, such as transformation. 

If the p value suggests that our observed results are improbable (assuming the null 
hypothesis is true), then we reject the null hypothesis. We state that we have 
demonstrated a statistically significant result. 

If the p value suggests that our observed results are quite probable, even if the null 
hypothesis is true, then we are unable to reject the null hypothesis. We state that our 
observed difference is not statistically significant. 

If a result is statistically significant, there are three possible scenarios: 

• The populations really are different, so the outcome of the test is correct. The 
difference is large enough to be of biological or practical importance and so is 
scientifically interesting. We accept the result of the test and interpret the difference 
as an important finding. 

• The populations really are different, so the outcome of the test is correct. However, the 
difference is tiny, not large enough to be of any biological or practical importance. We 
accept the result of the test but do not proceed to interpret the difference as if it 
were important. 

• The populations are identical, so there really is no difference. By chance, we have 
obtained larger values in one sample and smaller values in the other. At the 95% level 
of significance, such a spurious significant result will occur in 5% of experiments where 
there really is no difference. Of course we cannot know that our result is spurious, and 
we accept the result of the test. In doing so, we have made a Type I error. 

If a result is not significant, then there are two possible scenarios: 

• The populations are identical, so the outcome of the test is correct. 

• The populations really are different, but we have been unable to demonstrate it. Our 
samples are too small to yield a reasonable probability of detecting an important true 
difference.  

In practice, we are unable to draw a firm conclusion from a non-significant result without a 
retrospective power analysis. A power analysis will yield one of two outcomes: 

• There is a reasonable probability of detecting an important difference if it exists, given 
our sample sizes. We have failed to detect such a difference, so we accept the 
negative result of the test. We conclude that there is no difference between the 
populations and interpret this result accordingly. In so doing, we run a calculable risk 
of making a Type II error.  

• Even a substantial difference is unlikely to be detected, given our sample sizes. We 
cannot make a decision one way or the other. We conclude that we have insufficient 
evidence to detect a difference, should one exist. We can place no interpretation on the 
lack of significance from the test. 

Of course, all this is contingent on the assumptions of our test being met, or at least not 
violated to an extent that would invalidate the outcome of the test. 
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The F-test 

Let us see how this general approach of hypothesis testing applies in a specific case, 
where we wish to know if the difference in two sample variances is sufficient evidence to 
conclude that two population variances differ. The F-test is appropriate for this sort of 
problem. 

Consider an experiment on a species of native waterfowl involving birds both in the wild 
and in captivity. We wish to determine if the number of eggs produced per clutch is more 
or less variable among birds held in captivity than for birds in the wild. Wild birds were 
sampled at random from within the known range of the species, and captive birds were 
selected at random from within available breeding colonies. Relevant data were collected 
with the statistics shown in Table 3–3. 
 

   Captive birds      Wild birds 
Mean  9.9  10.0 
Variance  0.4762  3.3333 

Table 3–3. 
Summary 

statistics for 
clutch size in 

captive and wild 
waterfowl. 

Sample Size  7  10 

The variance in clutch size differs between our samples of wild and captive birds, but then 
one would expect the variances of any two samples to differ, even if drawn from the same 
population. Our problem is to decide whether the observed difference in sample variances 
occurred simply through chance, or whether it reflects a true difference in the variability of 
clutch sizes between captive and wild birds. We must conduct an hypothesis test by 
drawing upon statistical theory, which allows us to estimate the probability of obtaining 
our observed pair of sample variances by chance alone. 

Such theory predicts that: 

If 2
1S  and 2

2S  are the variances of independent, random samples of sizes n1 and n2 taken 

from normal populations with an unknown but common variance 2σ , then the statistic 

2
2

2
1

S
S

F =  

will follow an F distribution with (n1 - 1) and (n2 - 1) degrees of freedom. 

Here we have assumed: 

• Randomness: items in each sample were selected from their respective populations at 
random, that is, each entity in a population had an equal likelihood of selection. 

• Independence: each item in a sample was independent of the other items. In 
sampling a broader population, birds taken from a single flock are unlikely to be 
independent in any measurement, as they may be closely related. Measuring yields of 
a crop from adjacent plots in a field may lead to problems of dependence. 

• Normality: the populations from which the samples are drawn are normally 
distributed. 

We have also assumed that the variances in the clutch sizes for wild and captive birds are 
the same. This latter assumption is the null hypothesis:  

2
2

2
10 : σσ =H  

It is the assertion that we hope either to accept or reject having performed the F–test. The 
alternative hypothesis is that the variances are unequal. 
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2
2

2
11 : σσ ≠H  

Under the null hypothesis, the ratio of sample variances will follow an F distribution, 
which has the following properties: 

• The area under the curve = 1, as for all continuous probability distributions. 

• It is strongly skewed to the right (Figure 3–8). 

• The F variable ranges from zero to ∞ . 

• It has a complex formula but is uniquely defined by two parameters, ν1 and ν2, the 
degrees of freedom associated with each of the two samples. 

• The mean is approximately 1, but more exactly ( ) ( )31 22 −− nn . 

Figure 3–8. 
 The F distribution 
for various values 

of 1ν , the 
degrees of 

freedom for the 
sample with the 
larger variance, 

and 2ν , the 
degrees of 

freedom for the 
sample with the 

smaller variance. 
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By convention, F is calculated by placing the larger sample variance over the smaller 
sample variance, when the alternative hypothesis is that the variances are unequal. 

The F ratio for our data is given by:  

0.7
4762.0
3333.3

2
2

2
1 ===

S
SF  

with 9 and 6 degrees of freedom respectively. 

SAS uses the F distribution with 9 and 6 degrees of freedom to calculate the probability of 
obtaining an F ratio of 7.0 if the null hypothesis is true (Figure 3–9). This probability is low 
at 0.0279, certainly less than 0.05. In fact, we could expect variance ratios of 7.0 or 
greater to occur by chance in only 2.79% of experiments of this nature. So we conclude 
that there is a significant difference between the true variances in clutch size of wild and 
captive birds. The clutches of wild birds are more variable than those of captive birds. 
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Figure 3–9. 
A diagram 

showing how the F 
distribution is 

used to determine 
the probability of 

obtaining a 
sample F statistic 

of 7.0 or one 
more extreme. 

F[9,6]

P = 0.0279

7.0 

 

The rationale of the F-test is shown diagrammatically in Figure 3–10. 

Figure 3–10. 
Rationale of the 

 F-test. 

 



Biometry G 
 

3-32 University of Canberra 

 

We would summarise the results of the analysis as follows: 

The difference in variability in clutch size of wild and captive birds was 
significant (F = 7.0; df = 9,6; p < 0.05). Clutches of wild birds were more 
variable than those of captive birds of the same species. 

Now that we have established that the difference in variances is probably a true reflection 
of reality, we might ask why? The captive birds were almost certainly subject to less 
variable environmental conditions than wild birds. The availability of food and shelter 
would have been more constant in captivity and captive birds would have been isolated 
from predators and other potential sources of injury. Hence, for birds in captivity, one 
would expect the allocation of energy to reproduction to have been much more constant 
than for wild birds whose energy must be spent in responding to conditions in a much 
more variable environment. 

The t-test 

A student's t-test is used to decide whether two population means can be considered 
different on the basis of their respective sample means. Consider an example. 

In a study of the bearded dragon, Pogona barbatus, a herpetologist was interested to 
know if the mean calorific content of eggs differed between first and second clutches of the 
season. Lizards found nesting were returned to the laboratory and examined with a 
laparoscope to determine whether the clutch was the first or second of the season, and the 
nest was robbed of one egg. Data on calorific content, in calories per egg, are shown for 
several clutches (Table 3–4). 

 

 First clutch Second clutch 
Mean 643.0 623.6 
Variance 1990.05 5532.70 
Sample Size 6 13 

Table 3–4. 
Summary 

statistics for mean 
calorific content of 

yolks of eggs of 
the lizard Pogona 

barbatus. The 
data are for first 

and second 
clutches, but are 

not paired. 

   

The mean calorific content of eggs from first and second clutches certainly differ in the 
samples, by some 19.4 calories. But any two sample means, even for samples taken from 
the same population, can be expected to differ, perhaps by as much as 19.4 calories. 
Perusal of the sample means per se does not permit us to make a decision. We need to 
apply an hypothesis test—the t-test—to obtain the probability of obtaining a difference of 
19.4 calories by chance alone. Let us make the following assumptions: 

Randomness: items in each sample were selected from their respective populations at 
random, that is, each entity in a population had an equal likelihood of selection. 

Independence: each item in a sample was independent of the other items. 

Equality of variances: the variances of the two populations are equal. Of course the 
sample variances may differ through sampling error. 

Normality: the populations from which the samples are drawn are normally distributed, at 
least when the samples are small (df). 

Let us also assume the null hypothesis:  
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210 : µµ =H  

Consider the test statistic: 
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where 2
pS  is a pooled sample estimate of the common population variance, given by: 
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Statistical theory predicts that the observed t will follow a standard t distribution with a 
mean of zero, a standard error of about 1 and n1 + n2 -2 degrees of freedom. 

The characteristics of the t distribution have been described earlier when we dealt with 
confidence limits. 

The t value from our data is: 

( ) ( )
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SAS uses the t distribution with 17 degrees of freedom to calculate the probability of 
obtaining a t value of 0.5883 if the null hypothesis is true (Figure 3–11). This probability of 
0.5641 is very high, much greater than 0.05. In fact, we could expect differences in 
magnitude of 19.4 calories or greater to occur by chance in 56.4% of experiments of this 
nature, if Ho is true. We have no evidence to suggest that the null hypothesis is false. 

Figure 3–11. 
 A diagram 

showing how the t  
distribution is 

used to determine 
the probability of 

obtaining a 
sample t value of 

0.5883. 

t

p = 0.5641  

t = 0.5883  

 

We report that we are unable to demonstrate a significant difference in calorific content of 
eggs between first and second clutches of Pogona barbatus (t = 0.59, df = 17, p = 
0.5641). 

A diagrammatic representation of the rationale of the t-test is presented in Figure 3–12. 
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Figure 3–12. 
Rationale of the 

 t-test. 

 
 

Other analysis options 

Wilcoxon rank-sum test 
When at least ordinal measurement has been achieved, the Wilcoxon rank-sum test may 
be used to test whether two independent samples have been drawn from the same 
population. It is an alternative to the t-test, and does not have the restrictive assumptions 
of normality and homogeneity of variances, though it should be realised that the Wilcoxon 
rank-sum test is not a test of means. Instead it tests whether two independent samples 
have been drawn from identical populations. The test assumes randomness and 
independence in sampling. 

The test is applied by combining the two samples and then ranking the measurements in 
order of increasing magnitude. If the populations from which the samples are drawn are 
identical, we would expect the values of both samples to be randomly spread through the 
combined sample. However, if Population 2 has larger values than Population 1, we would 
expect a tendency for the Sample 2 values to be better represented among the higher 
ranks of the combined sample. The Wilcoxon rank-sum test measures this tendency, and 
yields a probability of it occurring by chance alone. 

The use of the Wilcoxon rank-sum test is not restricted to non-normal populations. It can 
be used in place of the t-test when the populations are normal, although it is not as 
powerful as the t-test for detecting a true difference between populations. The Wilcoxon 
rank-sum test is typically superior to the t-test for non-normal populations. 
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Paired t-test 

The standard t-test requires that samples are completely independent, that is that 
knowledge of one sample value provides no information on the value taken by a second 
value in either sample, with respect to their sample means. The paired t-test is designed 
to compare samples that are pairwise dependent. We might wish to compare growth rates 
of an aquatic plant Vallisneria sp. before and after administration of a substrate nutrient. A 
pair of growth measurements is taken from each plant, one measurement before, and one 
after, administration of the nutrient. The growth of some plants may be more rapid than 
for others, quite irrespective of our manipulations, and so the before-after measurements 
will depend, jointly, on which plant is considered. 

Alternatively, total filterable phosphorus might be measured at each of ten randomly 
selected sites in a lake, in two seasons. We might want to know if there are seasonal 
differences in the levels of total filterable phosphorus. If the same sites are visited in each 
season, this is a paired experiment with two measurements per site. If on the other hand, 
the sites were chosen randomly on each sampling occasion, the experiment would not be 
paired. 

With paired samples, the procedure is to calculate the difference between members of 
each pair, and then to test whether the mean of these differences (as opposed to the 
difference in means used by the standard t-test) is significantly different from zero. 

The paired t-test assumes that: 

• The entities selected for repeated measurement are independent and selected at 
random from a large pool of possible choices. In the above case, we assume that the 
Vallisneria plants are selected at random from a large population of individual plants. 

• The differences between repeated measurements are normally distributed, or if not, 
the sample size is large. 

The Wilcoxon signed-ranks test 

The Wilcoxon signed-ranks test is a non-parametric alternative to the paired t-test. As 
with the paired t-test, it relies on calculating the differences between the paired values in 
the sample, but rather than calculating the mean difference, the differences are first 
ranked from smallest to largest without regard to sign. The sign of the original difference 
(+ or -) is attached to each rank, and the positive and negative ranks are separately 
summed. 

If there is no difference between our two populations, the differences observed between 
pairs would occur by chance alone. Some of the larger ranked differences would be 
positive and some negative, and the sum of the positive ranks should approximately equal 
the sum of the negative ranks. However, if there is a true difference between pairs, these 
two sums will be quite divergent. The Wilcoxon signed-ranks test determines the 
probability of obtaining the observed difference in summed ranks by chance alone, and so 
provides a basis for decision. 

The Wilcoxon signed-ranks test is considered to be an excellent alternative to the paired t-
test because it is almost as powerful in rejecting a false null hypothesis, when the 
assumptions of the t-test are satisfied. When the assumption of normality is violated, it is 
usually more powerful than the paired t-test. 
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Application Notes 

Standard deviation or standard error? 

Means reported in scientific papers are often followed by a + and a second value. It is not 
always clear what this second value represents. Some authors report means with the 
standard deviation, others with the standard error. Which is correct? 

There is no simple answer to this question, as it depends upon the context in which the 
statistics are reported. If the author is describing a sample, with no implication regarding 
the population from which the sample was drawn, then the mean plus or minus the 
standard deviation provides the reader with an indication of the average value for the 
sample and the spread of values about that average. The focus of attention is on the 
sample itself, not the population from which it was drawn. In presenting a mean and 
standard deviation, it is implied that the population is normally distributed, for otherwise 
the standard deviation provides limited information on the spread of values in the sample. 

If, on the other hand, the authors are reporting the mean with the implication that it is 
approximately true of the population from which the sample was drawn, then the mean 
plus or minus the standard error is appropriate. This provides the reader with an indication 
of precision of the mean, that is, a range within which he or she can be 67% sure the true 
population mean lies. If we are simply describing the sample in terms of means and 
standard deviations, then data yielding 

30.4 + 0.2 mm 

are as informative as data yielding 

30.4 + 9.6 mm. 

If the above data were means and standard errors, then the first set would be far more 
informative than the second set. In the first instance, we can be 99% sure that the true 
population mean lies in the range 29.8–31.0 mm (mean + 3 SE). In the second instance, 
the corresponding range is 1.6–59.2 mm, and not very useful.  

When reporting means and standard errors in this way, it is assumed that the sampling 
distribution of the mean is normal. The samples must be large, or if they are small, the 
population from which the samples were drawn must be normally distributed. 

Some authors present the sample mean plus or minus the 95% confidence limits for the 
population mean, and others use the mean plus or minus two standard errors as a large 
sample approximation to the 95% confidence limits. This last approach should be generally 
avoided. 

You should always clearly specify whether you are reporting the standard error, standard 
deviation or confidence limits with means, usually in the Materials and Methods section of 
the manuscript. Always report the sample size to enable the reader to convert from one 
form to the other, and the range is also useful. For example: 

30.4 + 0.2 mm (range = 27.1 — 37.1 mm, n = 74) 
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Confidence limits or the T-test 

A common graphical technique for comparing two samples is to construct figures depicting 
the sample ranges, means and 95% confidence limits (Dice and Leraas, 1936). If the 
confidence limits do not overlap, then we conclude that the population means are 
different. If they do overlap, then we have insufficient evidence to support such a 
conclusion. Unfortunately, the use of confidence limits in this way for comparing two 
means is extraordinarily conservative, as the example in Table 3–5 shows. 

Note that the 95% confidence limits just meet, so our decision on whether the data 
support a difference in population means is borderline.  

On the other hand, applying a t-test to the data yields a sample t of -3.014 with a 
probability of occurring by chance alone of only 0.0052. The result is highly significant, 
and demonstrates that the t-test is a far more powerful approach to demonstrating 
differences between means. 

 

 Sample A Sample B 
Mean 9.74 14.0 
Standard deviation 4.00 4.00 

Standard error 1.00 1.00 
Sample size 16 16 

Range 1.0 – 15.0 4.0 – 21.0 
Confidence limits (95%) 7.61 – 11.87 11.67 – 16.13 

Table 3–5.  
Data for two 

samples. The 95% 
confidence limits 

just overlap, 
whereas the t-test 

demonstrates a 
clear difference 

between 
population means 

(p = 0.0052). 
   

If a graphical presentation showing the statistical significance of the difference between 
means is necessary, then a graph of the confidence interval of the difference between 
means is appropriate, as it has similar power to the t-test. 

Choosing a statistical test  

Students and researchers alike are often confused by the array of statistical tests that 
might be used to address a specific hypothesis. We need some rational basis for choosing 
among them. We need to ask: 

• Is the test appropriate for the hypothesis being tested? 

• Are the data measured at a level appropriate to the test and the statistics manipulated 
by that test? 

• Are the assumptions of the test tenable? If not, is the test robust to the violations of 
the assumptions? 

• Is the test the most powerful appropriate to the problem and the data at hand? 

Level of measurement 

Level of measurement has a profound influence on the selection of appropriate descriptive 
statistics (Workbook 2). Since hypothesis tests are conducted on statistics, level of 
measurement is equally important for choosing an appropriate hypothesis test. 
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Table 3–6 provides recommendations on the test appropriate to the data at hand. Not all 
of these tests are covered in this Workbook. 

 Independent Samples Dependent Samples 
Nominal 2χ Test of association 

 
Fisher exact test 

McNemar test 

Ordinal Wilcoxon rank-sum test* Sign test* 

Table 3–6. 
 Recommended 

tests for different 
levels of 

measurement. 
Only those tests 
marked with an 

asterisk*  are 
covered in this 

Workbook. 
 

Interval and Ratio Student’s t-test * 
 
Satterthwaite’s approximate  
t-test * 

Paired t-test * 
 
Wilcoxon signed-ranks test* 

Note that because data at a higher level of measurement can always be converted to a 
lower level, albeit with some loss of information, tests that apply at the nominal and 
ordinal levels of measurement can also be applied to data measured at the interval and 
ratio levels. Hence the Wilcoxon rank-sum test can be applied in place of the student's t-
test and the Wilcoxon signed-ranks test may be used in place of the paired t-test, but in 
so doing the measurements or intermediate values must be converted to ranks. 

Are the assumptions tenable? 

The assumptions of the t-test are quite restrictive, and the difficulty for the student and 
researcher is summed up quite nicely by Boneau (1960). He writes: 

Psychological [and biological] data too frequently have an exasperating tendency to 
manifest themselves in a form which violates one or more of the assumptions underlying 
the usual statistical tests of significance. Faced with the problem of analysing such data, 
the researcher usually attempts to transform them in such a way that the assumptions are 
tenable, or he may look elsewhere [among the non-parametric alternatives] for a 
statistical test. 

A further difficulty faced by a researcher proposing to do a two-sample comparison is that 
there are generally insufficient data at hand for a rigorous test of the assumptions of the 
chosen test. The irony of this is brought home most clearly when we consider the 
assumption of normality. 

Normality 

Several tests of normality are available, such as the probability plots and Shapiro-Wilk's 
tests introduced in Module 2. The Catch-22 is that reasonably large samples are required 
to be sure of accepting the null hypothesis of normality, when the data are normal, but 
when you have large samples, the assumption of normality is not at issue because of the 
central limit effect. Normality is important when the samples are small, but when they are 
small, tests for deviation from normality are very weak. Often, decisions on whether the 
assumption of normality is tenable depend on experience with the type of data at hand. 
Alternatively, the judgment may be based on more extensive studies reported in the 
literature. 

Homogeneity of variances 

The assumption of equality of variances can be tested with the two-tailed F-test described 
earlier. Many researchers routinely apply an F-test of variances before a t-test on means, 
and this is the approach adopted by the SAS TTEST procedure. Use of the F-test in this 
way has been criticised because it is quite sensitive to violations of the assumption of 
normality, much more sensitive than the t-test is to either the assumption of normality or 
the assumption of equality of variances. Applying an F-test before a t-test has been 
likened to testing the mood of the sea in a rowboat before setting sail in an ocean liner. 
There are however few alternatives to its use when there are two samples in total. 
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Randomness and independence 

Randomness and independence in sampling are essential if the samples are to be 
representative of the populations from which they are drawn. There are tests available (eg 
the runs test) but again, these are useful only if sufficient data are at hand to enable 
confidence in the decision to accept the null hypothesis of randomness or independence. 
Both are best ensured by careful experimental and sampling design. If these assumptions 
are violated, then one has little choice but to discard the data then redesign and repeat 
the experiment. 

How can violations be overcome? 

There are several options for responding to perceived violations of the assumptions of 
normality and homogeneity of variances. You can attempt to manipulate the data in 
various ways by screening outliers or by transformation so that the assumptions are met. 
You can trust that the test is robust enough to be little affected, in a practical sense, by 
the violations. You can choose alternative approximate procedures developed to cater for 
known violations of the assumptions of the test. Or you can seek other tests in the domain 
of non-parametric or distribution-free tests, that do not have such restrictive assumptions, 
though these non-parametric procedures may be less powerful. 

Transformation 

Transformations are applied to either render the populations from which the samples are 
drawn normal, or to break a relationship between the mean and variance in order to 
comply with the assumption of homogeneity of variances. Very often both of these 
departures from the assumptions of the t-test are simultaneously cured by the same 
transformation. 

The following transformations are routinely used in the biological sciences. 

The log transformation:  

( )1log' 10 += YY  

is applied in cases where the standard deviation is proportional to the mean, or when the 
distribution of the parent population is skewed to the right. Counts of organisms that are 
aggregated in the environment are notoriously non-normal in their distribution and the log 
transformation is used to rectify this problem. Similarly, stream discharge, which is 
affected by rain events, has a distribution skewed to the right and a log transformation 
may convert the discharge values to a scale more useful in parametric hypothesis testing. 
The term 1 is included to cater for data that includes zero values (the log of 0 is infinite in 
the negative direction). 

The square root transformation:  

5.0' += YY  

is applied when the data are counts of organisms that are randomly distributed in the 
environment, for which a Poisson distribution is a satisfactory model, and when the mean 
count is less than 10. 

The arcsine transformation or angular transformation where p is a proportion:  

( )pSINY 1−=   
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This transformation is appropriate for percentages and proportions. A normal distribution 
is seldom a satisfactory model for data of this sort if values occur outside the range 30% 
to 70%. There is no need to apply the transformation if all values fall within this range. 

There are other more sophisticated transformations, but they are beyond the scope of this 
text. Refer to Sokal and Rohlf (1994, Chapter 13, section 6) for further information. 

While common sense would dictate that you check the effectiveness of a transformation in 
making an assumption more tenable, in practice there are generally insufficient data 
available to allow it. In two-sample comparisons, transformations are often applied as 
routine practice, as outlined above. 

Satterthwaite's approximate t-test 

If, following the F-test, the variances of the two populations under investigation cannot be 
assumed equal, then an approximate procedure is available that is less affected by 
differences in population variances. The formula for t in Satterthwaite's approximate test is 
little different from that of student's t. 
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The result of this equation is rounded down to the nearest integer. 

The TTEST procedure in SAS computes the appropriate statistics for the F-test, the 
student's t-test and Satterthwaite's approximate t-test. The result of the F-test is used to 
decide which t-test is appropriate. 

Relying upon the robustness of the t-test 

Many researchers perform t-tests routinely provided there are no gross and obvious 
violations of the assumptions, and trust that the t-test is sufficiently robust to withstand 
any minor violations of the assumptions. Fortunately, several empirical studies have 
shown that the t-test is robust enough to withstand considerable violations of its 
theoretical assumptions (eg Lindquist, 1953; Srivastava, 1958; Boneau, 1960). The study 
of Boneau is worth reading to see how such an empirical study is conducted. 

These empirical studies have established the following points: 

• If the sample sizes are equal or nearly so, then the t-test is remarkably robust, and  

• the larger the samples, the more robust the test.  
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The latter point is supported by both theory (read around the Central Limit Theorem) and 
the empirical studies. As a rule of thumb, equal sample sizes of 30 or more are sufficient 
to overcome all but gross deviations from normality and homogeneity of variances. If, in 
addition, the parent distributions are symmetrical, much smaller sample sizes are 
acceptable (say as low as 15). If the variances of those symmetrical populations are equal, 
then sample sizes as small as five will suffice. 

• A combination of unequal sample sizes and unequal variances invalidates the standard 
student's t-test. 

If the larger sample is taken from the population with the larger variance, then the 
student's t-test will be too conservative. If the larger sample is taken from the population 
with the smaller variance, then the standard t-test will be too liberal. In either case, 
Satterthwaite's approximate t-test should be used (Satterthwaite, 1946; Steel and Torrie, 
1980). 

• One-tailed tests are seriously affected by samples drawn from skewed populations, 
whether or not the sample sizes are equal. 

Despite these results, many researchers remain unmoved and choose to routinely apply 
one of the non-parametric procedures discussed below. The choice is yours. 

Turning to non-parametric tests 

Tests at the nominal or ordinal level of measurement, such as the Wilcoxon rank-sum test 
and the Wilcoxon signed rank test, have fewer assumptions than the ‘parametric’ F and t-
tests. 

Any test that is appropriate at the nominal or ordinal level can be applied at the interval or 
ratio level, and because of their fewer assumptions, many researchers prefer to routinely 
apply non-parametric tests in place of the F- and t-tests. But what are the pros and cons 
involved in making this decision? 

Probability statements obtained from most non-parametric tests are exact probabilities 
(except in the case of large samples where very good approximations are used), 
regardless of the shape of the distribution for the population from which the samples are 
drawn. These exact probabilities apply even for very small samples. In contrast, many 
parametric tests such as the t-test become more robust only as sample size increases, and 
if applied to very small samples, they are valid only if the nature of the population 
distribution is known exactly. 

So with fewer assumptions, exact probabilities and a broader range of data types 
acceptable to the non-parametric tests, why persevere with parametric tests at all? For 
many, the answer lies in a consideration of power.  

There is a trade-off when one decides to use a non-parametric test as an alternative to the 
t-test. Non-parametric tests such as the Wilcoxon rank-sum test (see Siegel and Castellan, 
1988) are generally less powerful than their parametric counterparts. That is, non-
parametric alternatives to the t-test will be less likely to detect a true difference between 
populations than the t-test, in situations where the assumptions of the t-test are upheld. 
Thus if you play it by the book, select a non-parametric test when you are unsure of the 
validity of the assumptions of the t-test, and then get a non-significant result, you find 
yourself plagued by the nagging doubt that the result might have been significant if a t-
test could have been applied. 

The difference in power between parametric and non-parametric tests is sometimes over-
emphasised. For example, if the Wilcoxon rank-sum test is applied to data that might be 
properly analysed by the more powerful t-test, its power efficiency approaches 95.5% as 
sample size increases and is close to 95% even for samples of moderate size. It is 
therefore an excellent alternative to the t-test and does not have the restrictive 
assumptions of the t-test. The power of the Wilcoxon signed-ranks test compares equally 
well with that of the paired t-test. 
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Caveats for paired comparisons 

The paired t-test has three assumptions—first, that the entities selected for repeated 
measurement are independent; second, that they are selected at random from a large 
pool of possible choices; and third, that the differences between paired measurements are 
normally distributed.  

Often the paired t-test is applied without recognition of these constraints, as when 
environmental scientists ‘replicate in time’ to avoid the additional costs of true replication. 
For example, in a study of the effects of sewage on the abundance of various species of 
benthic macro-invertebrate, a biologist collected data on the numbers of the mayfly Baetis 
sp. caught in drift nets at various times of the day and night, upstream and downstream of 
a sewage outlet on a small stream. The data, after a log transformation, are shown in 
Table 3–7. 

Time Upstream Downstream 
14:00 3.33 3.52 
16:00 3.22 3.02 

18:00 3.07 2.26 
20:00 3.31 3.22 

22:00 4.20 3.91 
Midnight 4.12 4.07 

02:00 4.18 4.18 
04:00 4.31 3.57 

06:00 3.76 3.04 
08:00 3.46 3.12 

10:00 3.16 3.04 

Table 3–7. Counts 
of mayfly nymphs 

(Baetis sp.) 
caught in drift 

nets at various 
times of the day 

and night, 
upstream and 

downstream of a 
sewage outlet on 

a small stream. 
 

12:00 3.03 3.04 

As the observations are paired, one pair per time period, a paired t-test might seem 
appropriate. However, the times selected for repeated measurement were systematically, 
not randomly, chosen. This can present some difficulties. 

There is the possibility of a systematic trend in time in the counts of drifting invertebrates. 
This in itself is not a problem, as the differences between upstream and downstream 
members of each pair may still behave like random and independent measurements. If 
however there is a trend in time, and the magnitude or direction of the trend differs 
between the upstream and downstream sites, then the differences between sites will no 
longer be independent. A systematic component to the differences, brought about by 
differing trends through time at the upstream and downstream sites, will also destroy any 
likelihood of normality of the differences. 

Hence, the paired t-test is effective where we have "replication through time" only if any 
trend through time is the same for both upstream and downstream localities. The true 
abundance of drifting invertebrates at upstream and downstream localities must differ by a 
constant magnitude across the times. This is unlikely to be true in general for studies of 
this kind.  

Compensating trends through time for the upstream and downstream sites will severely 
reduce the power of the paired t-test for detecting an impact, to the delight of those 
responsible for the discharge. Carried to extreme, we can imagine that there is a steady 
linear increase in abundance of drifting invertebrates with time at the upstream site, and a 
reverse but compensating trend at the downstream site. The mean difference between 
upstream and downstream will be zero, and non-significant. Yet at any one time, there is 
typically a substantial difference between upstream and downstream sites, and a clear 
impact of the discharge. 

In summary, if we cannot consider the entities to be randomly selected from a large pool 
of possibilities (we might have two localities sampled at fixed times), then we must 
assume that any trend across the entities is of an identical nature. If there is any true 
difference between first and final measurements, then it must be one of constant 
magnitude only. So-called ‘replication through time’ should be avoided in studies of the 
type described above. 
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Reporting the results of a test 

Having deliberated over the correct procedure to apply, and having performed all the 
calculations and interpreted the outcome of the tests, you would be forgiven for feeling 
obliged to make your labours apparent to the reader by including full details of the 
workings involved. You must resist this temptation. In reporting the results of a test, such 
as a t-test, in a manuscript or report, all that is required is a statement to the effect: 

The difference of 1.2 g between mean weights of male and female hatchlings was 
significant (t = 2.74, d.f. = 29, p < 0.05). The male hatchlings were heaviest. 

The p value refers to the probability that the sample t value occurred by chance alone. 
Had the result been significant at the 1% level, then the statement p < 0.01 would have 
been used. It is customary to report significant results by rounding the exact probability to 
the next highest value in the set 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001 etc. Exact 
probabilities are reported when the result is not significant (ie p = 0.34). 

A description of the statistical procedures used should appear in the Materials and Methods 
section of the report. For example: 

Means were compared using a standard Student's t-test, unless population variances could 
not be assumed equal, in which case a modified procedure (Snedecor and Cochran 
1980:96-98) was employed. Population variances were compared with an F-test. Means 
are presented with their standard errors, unless otherwise specified. 

Summary 

You should by now have acquired some important tools for your statistical arsenal. It is 
possible to: 

• construct confidence limits on the true population mean using statistics calculated from 
a single sample. 

• determine the probability that two samples have been drawn from the same population 
using a variety of procedures depending on whether the samples are independent or 
pairwise dependent, on the level of measurement chosen when collecting the data, and 
on whether various assumptions of the tests available are tenable. 

You should be aware of key concepts, such as: 

• the difference between samples and populations; statistics and parameters. 

• the meanings of the terms null hypothesis and alternative hypothesis. 

• the meaning of statistical significance and how it is distinct from the strength of the 
result. 

• the distinction between Type I and Type II errors. 

• the power of a test, how to estimate an appropriate sample size and when to rely on a 
negative result. 

• the robustness of a test. 

It is now appropriate to put this knowledge to use via worked examples and exercises.  
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Step-through Examples 

Example 3-1: Copper in Carp Tissue 

This is an example of a t–test applied where the population variances have been shown to 
be unequal. 

The problem 

After reports of people becoming ill on eating European carp, a laboratory decided to 
formalise procedures for routinely analysing metals in fish tissue. Two methods were 
considered suitable for the analysis of copper (Cu) in fish tissue — Graphite Furnace 
Atomic Absorption Spectroscopy (AAS) and Flame AAS.  

The trade-offs are that Graphite Furnace AAS has a lower through-put rate and is 
therefore costly, and replicated measurements obtained by this technique are inherently 
more variable than Flame AAS. Graphite Furnace AAS is more sensitive however, and can 
measure lower concentrations of copper than can Flame AAS. 

With the anticipated greater variability of the Graphite Furnace measurements in mind, the 
environmental chemist chose to perform more measurements by this technique than by 
Flame AAS to balance precision of the estimates of the mean copper determination for the 
two techniques, regardless of cost. 

 

The foundation for this decision lies in an understanding that the precision of the mean, 
represented by the standard error, is directly proportional to the standard deviation and 
inversely proportional to the [root] sample size. 

n
SDSE =  

Hence, we wish to analyse the data to determine first whether the Graphite Furnace 
technique produces more variable results than the Flame technique, as anticipated. 
Second, we wish to determine whether the two techniques yield the same determinations. 
Finally, we need to make a recommendation on which technique to employ for assay of 
copper in carp, taking into account precision and cost. 
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The data 

The data shown in Table 3-8 are concentrations of copper in the flesh of carp expressed in 
µg/l. 

FLAME GRAPHITE FURNACE 
25 23 
24 18 

25 22 
26 18 

 17 
 25 

 19 

Table 3-8. 
Concentrations 

of copper in the 
flesh of carp 

extracted by two 
methods of 

Atomic 
Absorption 

Spectroscopy. 

 16 

SAS expects the data in the form of pairs of values. The first is a discrete character 
variable indicating to which sample the measurement belongs, and the second is the 
measurement itself. Note that the sample sizes are unequal. PROC TTEST can cope with 
this possibility. 

The data in this case are held in a disk file called C:\MY DOCUMENTS\CARP.DAT, and look 
like this: 

FLAME        25 
 
FLAME        24 
 
FLAME        25 
 
FLAME        26 
 
GRAPHITE  23 
 
GRAPHITE  18 
 
GRAPHITE  22 
 
GRAPHITE  28 
 
GRAPHITE  17 
 
GRAPHITE  25 
 
GRAPHITE  19 
 
GRAPHITE  16 
 
The first field in the data, containing the character strings FLAME or GRAPHITE, is called a 
classification or class variable in the SAS manuals, but may be variously called a 
factor, treatment, breakdown variable, dummy variable or indicator variable 
depending on which textbook you read. I prefer the term factor to distinguish discrete 
variables measured on the nominal scale from continuous variables. The second field in 
the data, containing the measurements of copper concentration, is referred to as the 
response variable. 
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The Analysis  

 Place the data C:\My Documents\ or equivalent and double click on the SAS 
icon 

 

 

 Confirm that the data in CARP.DAT is as shown above by reading it into the 
EDITOR, then clear the window. 

A program needs to be written to read the data in to SAS and to perform the t–test. 

DATA CONC;  

 INFILE "C:\MY DOCUMENTS\CARP.DAT"; 

 INPUT METHOD $ CONCENT; 

RUN;  

PROC TTEST; 

 CLASS METHOD; 

 VAR CONCENT;  

RUN; 

In the TTEST procedure, you need to distinguish between the factor METHOD and the 
response variable CONCENT. This is done with the CLASS and VAR statements in the 
TTEST step. 

 Move to the first line of the EDITOR and type in the above program. 
Submit it for execution. 

The output is shown in Box 3-1. 

Box 3-1 
Output of PROC 

TEST for 
determination of 

copper on fish 
tissue using two 

analytical 
techniques. 

Sample sizes, means, standard deviations and standard errors are given for each sample. 
Results for both Student's t-test (variances equal) and Satterthwaite's approximate t-test 
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(variances unequal) are given together with the probability of obtaining the observed t 
values (or more extreme values) by chance alone if the null hypothesis is true. This saves 
you looking up tables. If this probability is less than 0.05, the result is significant. For a 
one-tailed test the cut-off value for significance is 0.10. 
To decide which t value is appropriate, refer to the last line of output where the results of 
an F–test of homogeneity of variances are given.  An F value and the probability of 
obtaining that F (or a more extreme value) are given to enable you to judge whether or 
not the result is significant. 

Results 

In this particular case, we have F = 26.57 with 7 and 3 degrees of freedom.  The 
probability of obtaining this result by chance alone if the population variances are equal 
(Ho true) is only 0.0212, somewhat less than 0.05. We conclude that there is good 
evidence of a difference in the population variances, and cannot therefore perform a 
Student's t-test. Look instead to the results of Satterthwaite's approximate t-test. We 
have t = 2.5923 with 8 degrees of freedom. The probability of obtaining this value by 
chance alone if the population means are equal (Ho true) is only 0.0320, less than 0.05. 
We conclude that there is a true difference in the mean concentration of the chemical as 
determined by the two methods.  
The results section of the report would include: 

Graphite Furnace AAS systematically under-estimates by an average of 4 µg/l the 
concentration of copper when compared to Flame AAS (t = 2.59, d.f. = 8, p << 0.05).  
Graphite Furnace AAS yields a larger variance in the determinations and as such is less 
precise than Flame AAS (F = 26.57; d.f. = 7,3; p <<  0.05).  

Discussion 

As anticipated from prior knowledge of the two techniques, the results from the Graphic 
Furnace AAS yielded more variable determinations than those of the Flame AAS. Given 
that the Graphic Furnace technique costs approximately $6.00 per determination 
compared with $0.50 for Flame AAS, and that for concentrations of 16 to 26 µg/l 
sensitivity is not an issue, the cheaper, more precise Flame AAS is to be preferred. The 
observation that the two techniques differed in their mean estimates is of some concern, 
and the procedures followed in performing both analyses should be examined for potential 
sources of error. 
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Example 3-2: Lowland Grassland Remnants 

This is an example of a Wilcoxon Rank-Sum test applied where the assumptions of the 
standard t-test are thought to be untenable. 

The problem 

In a study of lowland grassland remnants in the Australian Capital Territory, a subsidiary 
objective was to ascertain if the cover of dominant grass species were different at two 
grassland sites, Tharwa Road and Dudley Street, Canberra. The dominant grass species 
under consideration were Danthonia spp., Stipa bigeniculata and Bothriocloa macra. 
Combined percentage cover was estimated for each of 20 quadrats in the two grassland 
remnants. Because the data were in the form of percentages, often close to the extreme 
percentage of 100%, Sarah Sharp suspected that the data would not be normally 
distributed, and chose to do a non-parametric analysis. 
Turning to a non-parametric alternative to the t-test is common practice when faced with 
suspected failure of the assumptions of normality and homogeneity of variances. The SAS 
manuals provide for this option in the form of the Wilcoxon Rank-Sum Test. This test 
has few assumptions, namely that sampling is random and the measurements are 
independent.  
If the test is used to compare central tendencies only (equality of medians), then there is 
the additional assumption that the two distributions have the same shape. The procedure 
NPAR1WAY with the WILCOXON option is the appropriate procedure. 

The data 

Sarah's data are shown in Table 3-9 and have been converted to a form suitable for SAS 
and stored in disk file GRASS.DAT as follows. 

SITE 1 
Tharwa Road Grassland 

SITE 2 
Dudley Street Grassland 

Table 3-9. 
Percentage 

cover, combined 
for the three 

dominant grass 
species, in 20 

quadrats in each 
of two grassland 

remnants. 

 40  61  55  55  55 
 50  60  36  40  40 
 30  55  25  20  45 
 20  46  35  54 100 

 95  74  95  90  32 
 64    .  95  75 100 
 75  80  60  85  90 
 85  80  60  57  60  

 

THARWA 40 THARWA 61 THARWA 55   
THARWA 55 THARWA 55 THARWA 50   
THARWA 60 THARWA 36 THARWA 40   
THARWA 40 THARWA 30 THARWA 55   
THARWA 25 THARWA 20 THARWA 45   
THARWA 20 THARWA 46 THARWA 35   
THARWA 54 THARWA 100 DUDLEY 95   
DUDLEY 74 DUDLEY 95 DUDLEY 90   
DUDLEY 32 DUDLEY 64 DUDLEY . 
DUDLEY 95 DUDLEY 75 DUDLEY 100   
DUDLEY 75 DUDLEY 80 DUDLEY 60   
DUDLEY 85 DUDLEY 90 DUDLEY 85   
DUDLEY 80 DUDLEY 60 DUDLEY 57   
DUDLEY 60     
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The analysis 

 Place the data C:\My Documents\ or equivalent and double click on the SAS 
icon 

 Confirm that the data in GRASS.DAT is as shown above by reading it into 
the EDITOR, then clear the window. 

The following SAS code is required to read the data in and perform the test. 

DATA SARAH; 

 INFILE "C:\MY DOCUMENTS\GRASS.DAT"; 

 INPUT SITE $ PERCENT @@; 

RUN; 

 

PROC SORT; BY SITE; 

PROC UNIVARIATE; 

 VAR PERCENT; 

 BY SITE; 

RUN; 

 

PROC NPAR1WAY WILCOXON; 

 CLASS SITE; 

 VAR PERCENT; 

RUN; 
 

 Move to the first line of the EDITOR and type in the above program. 
Submit it for execution. 

 

PROC UNIVARIATE yields summary statistics such as means and medians useful for 
summarising the results. The output of PROC NPAR1WAY should be as given in Box 3-2. 

The part of the printout of greatest interest is the Z score and the probability value 
associated with Z (Prob >> |Z|). This is the probability of obtaining the observed 
difference in summed ranks by chance alone. If it is less than 0.05, then there is a 
significant difference between the two samples. In this case, there is a highly significant 
difference between the two methods (Z = 4.21, p = 0.0001). 

In addition to whether the result is significant, SAS gives the sample size for each sample, 
the actual sum of scores for each sample, the sum of scores expected if the null 
hypothesis is true, the expected standard deviation of the sum of scores and the mean 
score for each sample. To get the scores used in these calculations, SAS arranges all of 
the values in both samples combined in order and assigns each value a rank, with the 
lowest value receiving a rank of 1. 
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Box 3-2 
Output of PROC 

NPAR1WAY used 
to perform a 

Wilcoxon Rank – 
Sums Test to 

compare percent 
cover at two 

grassland sites. 

 

Results 

Sarah summarised her results as follows: 

Combined percentage cover of the three dominant native grass species, ranged from 20 to 
100 for the Tharwa Road grassland remnant (mean 46.1 , n = 20) compared to a range of 
32 to 100 for the Dudley Street grassland remnant (mean 76.4, n = 19). The greater 
percentage cover at Dudley Street compared to that of Tharwa Road was statistically 
significant (Wilcoxon Rank-Sum Test, Z= 4.21, p << 0.0005). 
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Example 3-3: Weight loss during incubation 
This is an example of a paired t-test. 

The problem 

It has long been known that soft-shelled reptile eggs absorb water from the surrounding 
substratum during incubation, whereas the opposite is true of hard-shelled birds’ eggs. 
Australian freshwater tortoises lay hard-shelled eggs in a chamber excavated in soil 
adjacent to the water in which the adults live. An experiment was designed to determine 
whether the hard-shelled eggs of an Australian species of tortoise gained or lost weight 
during incubation.  

The data 

One egg was chosen at random from each of ten clutches, then weighed and placed on 
moist vermiculite in constant environment chambers. The water potential of the 
substratum, the humidity and the temperature were all monitored and held constant 
throughout the experiment. After 14 days, each egg was again weighed. The data are 
shown in Table 3-10. 

EGG # INITIAL WEIGHT FINAL WEIGHT DIFFERENCE Table 3-10. 
Change in 

weight of eggs 
(grams) of the 

Australian 
tortoise 

Chelodina 
longicollis during 
incubation under 

controlled but 
moist conditions. 

1  
2  
3  
4  
5  
6  
7  
8  
9  
10 

6.21 
6.12 
6.61 
6.26 
6.44 
6.35 
6.44 
6.52 
6.12 
6.57 

6.39 
6.30 
6.48 
6.48 
6.39 
6.57 
6.71 
6.75 
6.39 
6.66 

+0.18 
+0.18 
-0.13 
+0.22 
-0.05 
+0.22 
+0.27 
+0.23 
+0.27 
+0.09 

To test the hypothesis of a change in egg weight over time we need to perform a paired t-
test, because the measurements on each egg are repeated. Although the eggs have been 
selected at random, we do not have true replication within samples. Observations are 
matched as pairs. 

The TTEST procedure is unable to perform paired t-tests. Instead, a less direct procedure 
using the MEANS procedure is recommended. SAS expects the data in the form of pairs of 
values representing the initial and final weights respectively.  The values are held in a disk 
file EGGS.DAT as follows: 

6.21       6.39 

6.12       6.30 

6.61       6.48 

6.26       6.48 

6.44       6.39 

6.35       6.57 

6.44       6.71 

6.52       6.75 

6.12       6.39 

6.57       6.66 

 Place the data C:\My Documents\ or equivalent and double click on the SAS 
icon 
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 Confirm that the data in EGGS.DAT is as shown above by reading it into the 
EDITOR, then clear the window. 

The analysis 

The analysis is based on the knowledge that a paired t-test is essentially the same as 
testing whether the mean difference in initial and final weights of +0.158 is significantly 
different from zero.  We first calculate this difference in the DATA step and then use the 
MEANS procedure with the T and PRT options to test if the mean difference is significantly 
different from zero. 

DATA EGGWTS; 

 INFILE "C:\MY DOCUMENTS\EGGS.DAT"; 

 INPUT INITIAL FINAL; 

 DIFF=FINAL-INITIAL; 

RUN; 

 

PROC MEANS DATA=EGGWTS MEAN STDERR T   PROBT; 

 VAR DIFF; 

RUN; 

 Move to the first line of the EDITOR and type in the above program. 
Submit it for execution. 

The output is shown in Box 3-3. 

 

Box 3-3. Output 
of the PROC 

MEANS 
procedure for 

egg weights of 
Chelodina 

expansa 
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Results 

The results can be summarised as follows. 

There was a significant difference between initial and final egg weights for eggs of 
Chelodina longicollis incubated under constant moist conditions for 14 days (Paired T = 
3.42, d.f. = 9, p << 0.01). Egg weight increased on average by 0.148 + 0.043 g (range -
0.13 to 0.27 g). It appears that hard-shelled freshwater turtle eggs, like the soft-shelled 
eggs of turtles of the northern hemisphere, take up water during incubation. 

Just for interest, consider what result we would have obtained if the data had been 
analysed inappropriately as a Students t-test (Box 3-4). 

 

Box 3-4. Output 
of PROC TTEST 
comparing the 
initial and final 

weights of turtle 
eggs, without 
due regard to 

repeated 
measurement 

 

In contrast to the results of the paired t–test, the Student’s test for independent samples 
reveals no significant difference in the average weights of eggs before and after 14 days of 
incubation (p = 0.0642). The problem for the Student’s t-test in this case is that high 
variability in the initial weights of eggs is obscuring any differences there might be 
between initial and final weights, taken pairwise. This problem could be overcome by 
selecting eggs all with the same initial weight for our experiments, but this would be 
extremely wasteful of data (many eggs would be rejected), or perhaps impossible. 
Instead, with the paired t-test, variability in initial weights is eliminated by considering 
only weight change. 
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Example 3-4: Habitat complexity scores 

This is an example of a Wilcoxon Signed-Ranks test. 

The problem 

The Student's t-test has a non-parametric alternative in the Wilcoxon Rank-Sum test. 
Similarly, the paired t-test can be replaced by the Wilcoxon Signed-Ranks test, available 
through PROCUNIVARIATE. In the following example, two scientists independently applied 
Newsome's and Catling's (1979) habitat complexity scoring to the same 17 quadrats to 
assess the scoring method's reproducibility.  Newsome's and Catling's score is a composite 
value calculated from ratings for five measures — soil moisture content and percentage 
cover by tree canopy, shrub canopy, ground herbage and rocks/logs. Each of these 
attributes of a site are scored on an ordinal scale, and the resulting scores are summed for 
an overall habitat complexity score. 

In this analysis, we wish to determine if two trained scientists can reproduce each other’s 
scoring. 

The data and analysis 

A Wilcoxon Signed-Ranks test is used to determine if the two scientists obtained 
significantly different scores, as follows: 

DATA NEWCAT; 

 INPUT SITE $ JOHN RALPH @@;  

 DIFF = JOHN - RALPH; 

DATALINES;  

A 5 3   B 4 3   C 6 4   D 6 5    

E 3 3   F 2 3   G 5 2   H 3 3    

I 1 2   J 4 3   K 5 2   L 4 2    

M 4 5   N 7 2   O 5 5   P 5 3    

Q 5 1 

; 

PROC UNIVARIATE DATA=NEWCAT; 

 VAR DIFF; 

RUN; 

 

 Place the data C:\My Documents\ or equivalent and double click on the SAS 
icon 

 Move to the first line of the EDITOR and type in the above program. 
Submit it for execution. 

The relevant component of the rather volumous output is contained in the block with 
heading "Tests for Location" (Box 3-5). The results of the Wilcoxon Signed-Rank test are 
on the line labelled "Signed Rank". 
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Box 3-5. Ouput 
from PROC 

UNIVARIATE, 
used to perform 

a Wilcoxon Sign-
Rank test on 

habitat scores 

 

Results 

"There was a significant difference in the habitat complexity scores recorded by the two 
scientists for the same 17 quadrats (S = 42, p << 0.01). Clearly greater effort must be 
made to ensure comparability between the two before any habitat surveys get underway". 

Source 

Newsome, A, & Catling, P. (1979). Habitat preferences of mammals inhabiting heathlands 
of warm temperate coastal, montane and alpine regions of south-eastern Australia  
pp. 310–316, in Ecosystems of the World,Volume 9A, Specht, R. (ed), Amsterdam: 
Elsevier Publishing. 
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Exercises 

Exercise 3-1: Macro-invertebrate Abundance 

A limnologist was interested to know if densities of the benthic invertebrate Jappa sp. 
(Ephemeroptera: Leptophlebiidae) differed between two lakes, Allom and Deepwater.  The 
two lakes were in the same geographical area, but differed in physico-chemical 
characteristics and the amount and texture of particulate matter that overlaid the littoral 
substratum.  Lake Allom is a perched dune lake, that is, it resides well above the regional 
water table. Material of terrestrial origin accumulates in perched lakes, driving production. 
Deepwater Lake is a window lake, that is, it is formed when the lie of the land drops below 
the regional water table. Production tends to be lower in window lakes. 

Ten replicate collections were taken from random locations in each lake using a column 
sampler, and the animals were returned alive to the field station for sorting and 
identification.  Unfortunately, five collections from Lake Deepwater were destroyed in 
transit.  The data are raw counts of Jappa sp.  

 

Lake Allom Deepwater Lake 
4 . 
5 2 
36 . 
15 . 
14 4 
8 . 
14 12 
28 5 
19 7 

Table 3-11. 
Counts of benthic 

mayfly larvae in 
two dune lakes on 

Fraser Island, 
Queensland. 

Missing values 
are shown as 

periods 

15 . 

We wish to know it the "standing crop" of Jappa sp. differs for the two lakes.  You will 
need to appreciate that counts of benthic invertebrates are notoriously skewed to the 
right, because the animals tend to aggregate in the environment.  Hence some form of 
transformation will be required to normalize the data prior to application of a parametric 
test.  Select an appropriate transformation and apply it before performing the test. 

(a)  Perform a T-Test to compare the standing crop of mayfly larvae in the two lakes, and 
provide a brief report using the proforma supplied. 

(b)  Briefly discuss the assumptions you have made and why they are likely or not likely to 
be true. 

(c)  Name the transformation you have chosen and briefly justify your choice. 

(d)  State clearly the null hypothesis you are testing. 

(e)  Present the results of the analysis, in the form of an abbreviated printout. 

(f)  Summarise your statistical conclusions in a concisely worded paragraph, suitable for 
inclusion in the Results section of a publication or report. 

(g)  Discuss your results in a biological context, as you might when writing the Discussion 
section of a publication or report. 
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Exercise 3-2: Elephant population counts 

Management of elephant populations, and particularly those in enclosed areas, relies on 
estimations of population sizes and growth rates (Whitehouse et al., 2001). Techniques 
used to count elephants include aerial total counts and sample surveys, direct counts from 
the ground using line-transect sampling and stratification, faecal counts, and intensive 
ground-based surveys providing total counts by means of registration of individually 
known animals. Evaluation of alternative techniques is crucial in order to assess the 
accuracy of results obtained. 

Whitehouse et al. (2001) used two methods to count the elephant (Loxodonta africana 
africana) population within the Addo Elephant National Park over a 20 year period. 
Helicopter surveys provided aerial total counts and intensive ground-based studies 
provided registration counts, based on individual recognition of the elephants.  

Addo Elephant National Park is 60 km from Port Elizabeth in the Eastern Cape Province of 
South Africa. The elephants are restricted to a fenced area of 103 km2, although the 
entire park currently covers approximately 700 km2. 

Intensive population monitoring from the ground should, intrinsically, provide a more 
reliable method of estimating total population size than aerial counts, particularly in small, 
confined populations. The researchers were interested in comparing the two methods to 
determine whether the less labour intensive aerial survey method produced adequate 
results. 

YEAR AERIAL COUNT REGISTRATION 
COUNT 

   
May-78 92 96 
Jun-79 102 102 
May-81 108 108 
May-83 116 116 
Apr-85 120 131 
May-86 118 138 
May-87 121 145 
Oct-87 135 148 
Apr-88 140 152 
Apr-89 151 163 
Dec-89 162 170 
May-90 161 174 
Jun-91 173 185 
Jun-92 175 195 
Jun-93 183 200 
Oct-93 194 202 
Mar-94 195 208 
Apr-94 193 210 
Mar-95 212 220 
May-95 208 221 
Oct-95 209 229 

Table 3-12. 
Ground and aerial 

counts of the 
African Elephant 

Loxodonta 
Africana from 

Addo Elephant 
National Park. 

Mar-96 218 236 

(a)  Enter the data into a file suitable for analysis.  

(b)  Analyse the data using a Wilcoxon Signed-Ranks Test to determine if there is a 
significant difference between the two methods of population determination. Show the 
relevant section of the output of your analysis here. 

(c)  What do you conclude from the comparison? Provide a concise summary of the 
results, such as might appear in the results section of a manuscript or report.  
Remember to distinguish between the magnitude of the result and its statistical 
significance. 

(d)  What are the management implications of your results? 
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Exercise 3-3: Mercury levels in Bonnethead Sharks 

Florida’s commercial and recreational shark landings represent a significant portion of the 
total U.S. Atlantic shark landings.  Shark landings have increased significantly during the 
past decade because human consumption of shark meat has become increasingly 
acceptable, and especially in Asian markets where the demand for shark fins is very high -
- as are the prices paid for them. 

Mercury is a toxic metallic element that bioaccumulates in fish tissue, and can therefore 
represent a major dietary source of mercury in humans.  Elevated mercury concentrations 
in fish have been a growing concern among resource management agencies.  Apex 
predators, particularly long-lived species such as billfishes, tunas, mackerels, and sharks 
are reported to accumulate relatively high levels of mercury. 

The Florida Department of Health and Rehabilitative Services released a Health Advisory 
Note in 1991 urging limited consumption of all shark species from Florida waters.  
However, the Health Advisory Note was derived from a limited number of samples taken 
from retail sources and from studies that lacked important information regarding species, 
capture location, sex, and size of the sharks examined.   

A more detailed study to rectify these shortcomings was later undertaken by Adams and 
McMichael (1999) who published a detailed analysis on total mercury on four sharks 
species -- bull shark (Carcharhinus leucas); blacktip shark (C. limbatus); Atlantic 
sharpnose shark (Rhizoprionodon terraenovae); and the bonnethead shark (Sphyrna 
tiburo).  All are from the east-central coast of Florida.  The data analysed by Adams and 
McMichael (1999) were augmented as new specimens were collected and tested for 
mercury 

The juvenile/adult bonnethead shark data are provided in the file BONNY.DAT.  The first 
variable in the data file is SEX, taking on the values M for male and F for female. The 
second variable contains the precaudal lengths (PCL) in mm and the third variable contains 
mercury concentrations (HG) in parts-per-million. 

We are asked to reanalyse their bonnethead data set, with the additional specimens, to answer several 
questions. 

(a)  Read the dataset (BONNY.DAT) into a workfile suitable for analysis.  Undertake an 
analysis to determine the proportion of sharks with mercury concentrations greater 
than 0.5 ppm Hg.  

(b)  Construct histograms for precaudal length and mercury separately for each sex. What 
do you conclude? If you were to proceed with a t-test, without transformation, what 
would be your justification?  

(c)  Analyse the data using appropriate two-sample tests to determine if there are 
significant differences in precaudal length (PCL) or total mercury level (Hg) between 
the sexes. Show the relevant sections of the output of your analyses here.  

(d) What do you conclude from the comparisons? Provide a concise summary of the 
results, such as might appear in the results section of a manuscript or report.  
Remember to distinguish between the magnitude of the result and its statistical 
significance. 

(e) What are the management implications of these results? Feel free to conduct further 
analyses. 
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Exercise 3-4: Organochlorine and Parasite Load in Gulls 

Pesticide resides from organochlorines are thought to suppress immune function in birds 
and mammals, but there have been few assessments of this idea in the field.  If 
establishment and survival of parasites is limited by host immunity, we would expect 
increased parasite intensities in animals with high organochlorine burdens.   

Kajetl Sagerup addressed this question in a study of Glaucous Gulls (Larus hyperboreus) 
on Bear Island in the western Barents Sea off the coast of Norway.  Forty gulls of similar 
size and age were collected by trapping or shooting and a liver sample was taken from 
each bird for analysis of nine selected polychlorinated biphenyls and four chlorinated 
pesticides.  The digestive tracts were removed for counts of 12 species of intestinal 
parasite. The birds were weighed using a spring balance.  

Before the analysis could proceed, Kajetl needed to determine if there were significant 
differences in any of the variables with respect to the birds' sexes or method of capture. 
Kahetl was keen to pool the data across capture method and sex in order to increase 
sample sizes and the power of subsequent analyses. 

The data file gull.dat contains, in this order, the sex of the bird (male or female), its 
weight in grams, the method of capture (trapped or shot) and concentrations of the 
following organochlorines (ng/g wet weight): 

 

Chlorinated pesticides: hexachloriobenzene, oxychlrodane, p,p'DDT, 
Mirex 

Polychlorinated biphenyls: Total concentration of PCBs 28, 52,99, 
101,118, 138, 153, 170, and 180. 

Remaining columns of the data file are: 

Number of tapeworms  (Cestoda) 

Number of roundworms  (Nematoda) 

Number of flukes  (Digenea) 

Number of thorny-headed worms  (Acanthocephala) 

Counts for each species:  Cryptocotyle lingua, Anomotaenia micracantha, Alcataenia 
dominicana, Paricterotaenia porosa, Microsomacanthus 
ductilis, Aploparaksis larina, Tetrabothrius erostris, 
Anisakis simplex, Contracaecum osculatum, Paracuaria 
adunca, Stegophorus stellaepolaris, Corynosoma 
strumosum (12 species). 

Use appropriate analyses to determine: 

•  if male and female gulls of similar age differed significantly in load of any of the 
organochlorine pollutants, or in parasite load for any of the major parasite categories. 

•  if gulls caught by shooting versus trapping differed significantly body weight or in load 
of any of the organochlorine pollutants, or in parasite load for any of the major 
parasite categories. 

You will need to pay particular attention to the assumptions of normality and 
heterogeneity of variances in selecting an appropriate test as the sample sizes are 
moderate and unequal. 

(a)  Construct histograms and probability plots for each of the organochloride variables, 
each of the summary variables on parasite loads (cestode, nematode, etc) and for the 
variable weight. If they are not normally distributed, try a range of transformations. 
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Give a summary of the outcome of this analysis below, and if transformation is not 
successful on one or more of them, explain why.  

(b) Analyse the data using appropriate two-sample tests to determine if there are 
significant differences between the two methods of capture or the two sexes as per 
the objectives outlined above. Treat the tests as independent. Show the relevant 
sections of the output of your analyses here. 

(c) What do you conclude from the comparisons? Provide a concise summary of the 
results, such as might appear in the results section of a manuscript or report.  
Remember to distinguish between the magnitude of the result and its statistical 
significance. 

(d) What advice would you give Kajetl on pooling the data for capture methods or for sex 
prior to more advanced analysis? 
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Exercise 3-5: Does supplemental feeding deter sap-
hungry bears? 

When black bears emerge from their winter dens, they forage ravenously to replenish their 
depleted body fat reserves.   Bears forage then on the new sapwood growth which they 
harvest by clawing or biting away the outer bark to access the underlying sapwood (xylem 
and phloem).  Damage is concentrated in 15-25 year old stands of managed conifer trees. 
Stand damage within the affected stands may be extensive because a single bear may 
peel bark from 50-70 trees a day.  Peeling results in partial or complete girdling of the 
tree, causing death or reduced growth.  Stand damage generally declines as summer 
foods, such as berries, become available. 

Stephen Partridge from Washington State University studied whether it was possible to 
meet the needs of the bears in the spring by providing alternative food sources for hungry 
bears. They set out feeders that dispensed pelleted food ad libitum for the duration of bear 
activity in spring until natural foods were available in summer.   The feeders were 
established in a timber stand owned by a commercial timer company and control areas 
were on adjacent lands of a state natural resources agency, in similar habitat and 
vegetation types.  Bears were live-trapped, anesthetized, and weighed.  Body condition 
was determined by techniques of bioelectrical impedance analysis and isotopic water 
dilution.  Bears were recaptured later and remeasured so that gains or losses in mass or 
fat could be determined. 

 

Sex Age TRT 
Mass 

Change(g/d) 
Fat Change 

(g/d) 
     

Male Sub Control -23.08 . 
Female 2 Control -28.26 -17.71 
Female 4 Control -1.85 -1.56 
Female 4 Control -78.05 -51.66 
Female Adult Control 190.63 86.37 
Male 2 Treatment 145.45 16.65 
Male 1 Treatment 197.83 29.32 
Male Sub Treatment 14.58 3.95 
Male (1-2) Treatment 127.27 . 
Male 4 Treatment 153.52 30.18 

Female 3 Treatment 86.76 20.38 
Female 2 Treatment 90.91 12.18 
Female 2 Treatment 129.79 29.26 
Female 14 Treatment 395.24 142.61 
Female 11 Treatment 358.21 114.03 
Female 11 Treatment 224.19 48.42 
Female (10-14) Treatment -76.19 -49.77 
Female 9 Treatment 108.57 54.08 
Female Adult Treatment 111.11 24.81 

Table 3-13. Body 
mass and 

condition for 
Black Bears with 
and without the 

benefits of 
supplementary 

feeding. 

Female Adult Treatment 226.32 108.84 

You are asked to analyse the data to determine whether there were differences in mass 
change (g/day) or fat change (g/day) for bears from the control and treatment areas.  

(a)  Analyse the data using appropriate two-sample tests to determine if there are 
significant differences in mass gain/loss and fat gain/loss between the control and 
treatment two feeding regimes. Show the relevant sections of the output of your 
analyses here. Pay attention to the assumptions of your tests. 

(b)  What do you conclude from the comparisons? Provide a concise summary of the 
results, such as might appear in the results section of a manuscript or report.  
Remember to distinguish between the magnitude of the result and its statistical 
significance. 

(c)  What do you conclude from the analysis. Is it worthwhile proceeding to gather data on 
impact on the conifer forest directly? Do you have any reservations about combining 
the data across sex or size classes in this analysis? 
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Exercise 3-6: Should whale surveys be stratified by 
habitat type? 

Sperm whales (Physeter macrocephalus) and beaked whales (Mesoplodon spp. and Ziphius 
cavirostris) are deep-diving cetaceans that frequent shelf-edge and Gulf Stream waters of 
the northeast coast of the United States of America.  Observers with binoculars can scan 
the surrounding waters to sight whales as their ship passes along a prescribed course at a 
set speed.    

Gordon Waring from New Mexico State University and his colleagues summarised the 
number of whale sightings per km of survey during seven summer shipboard surveys 
(1990, 1991, 1993, and 1995-1998). They then used GIS to determine habitat use based 
on bathymetric and oceanographic features.   

The beaked whales were concentrated at the colder shelf edge, whereas sperm whales 
were associated with warmer off-shelf water.  Sperm whales and beaked whales do not 
associate closely (insofar as they are not found in mixed social groups), so the data can be 
analysed separately for each type of whale. 

Gordon hypothesised that features of underwater bathymetry, such as the presence of 
underwater canyons, might influence relative sighting rates.   

The data are found in the file WHALE.DAT and comprise variables giving the trip identity, 
the month of observation, the number of beaked whales sighed per km in canyon habitat 
and in non-canyon habitat, followed by similar data for sperm whales. 

 

(a)  Construct histograms and probability plots for the sighting data near canyon and non-
canyon habitat for sperm whales and for beaked whales. What would you anticipate as 
an outcome of a comparison of canyon and non-canyon counts for each species?  

(b)  Analyse the data using appropriate two-sample test to determine if there are 
significant differences between the two habitat types (for each type of whale). Treat 
the tests for each whale species group as separate and independent. Show the 
relevant sections of the output of your analyses here. 

(c)  What do you conclude from the comparisons? Provide a concise summary of the 
results, such as might appear in the results section of a manuscript or report.  
Remember to distinguish between the magnitude of the result and its statistical 
significance. 

(d)  Discuss what the outcome of the analysis means for future surveys of whales.  
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Exercise 3-7: PCBs and Kestrel Reproductive Behaviour 

Polychlorinated biphenyls (PCBs) bio-accumulate and biomagnify in the higher trophic 
levels of the food chain.  Carnivores such as birds of prey (raptors) are thus potentially 
susceptible to PCB residues. As reproductive behaviours are under hormonal control, and 
PCBs are potential endocrine disruptors, the alteration of breeding behaviour or timing 
may be one mechanism responsible for reproductive failure by raptors.  Documented 
examples of such aberrant behavior includes egg-destroying behavior, decreases in nest 
defense and nest attentiveness, and modifications of courtship behavior.  

Sheri Fisher and her colleagues from the Avian Science and Conservation Centre at McGill 
University studied courtship behaviour of male and female American kestrels (Falco 
sparverius) after clinical exposure to PCBs.  Captive male and female kestrels were 
randomly assigned to a PCB-exposed group (25 birds of each sex) or control group (25 
birds of each sex). Care was taken to ensure that the diets of the contol and treatment 
birds followed a common standard protocol, apart from the addition of PCBs to the diets of 
the treatment birds. The treatement birds were fed dead day-old cockerels that had 
previously been injected with an aliquot of 100 µl of PCB mixture dissolved in safflower oil 
(4.85 mg PCB/g of oil). Control birds were fed cockerels that had been injected with 
safflower oil only. After a month on their prescribed diets, the kestrels were paired.  All 
birds were experienced breeders, and none were related. 

Birds were introduced and allowed to settle in for two days before formal observation.  
Pairs of birds were chosen randomly and observed in random order. Observation were 
repeated on a two day cycle.  Each observation period was for 10 minutes and the number 
of behaviours performed by each kestrel per period was recorded.  

The data reside in the file KESTREL.DAT and comprise of a breakdown variable with the 
values PCB and CONTROL, the pen in which the animals were kept, the repeat in the cycle 
of observation, and three response variables. The first response variable is the number of 
sexual displays, the second response variable is the number of flight behaviours and the 
third response variable is the number of  inactive behaviours (sleeping, resting). The 
response variables are expressed in number of behaviours per minute. 

(a)  Construct histograms and probability plots for each of the behavioural variables. If 
they are not normally distributed, try a range of transformations. Give a summary of 
the outcome of this analysis below, and if transformation is not successful on one or 
more of them, explain why.  

(b) Analyse the data using appropriate two-sample tests to determine if there are 
significant differences between the treatment and control groups as per the objectives 
outlined above. Treat the tests as independent of each other. Show the relevant 
sections of the output of your analyses here. 

(c) What do you conclude from the comparisons? Provide a concise summary of the 
results, such as might appear in the results section of a manuscript or report.  
Remember to distinguish between the magnitude of the result and its statistical 
significance. 

(d) What do you see as the major outcomes of this study? 
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Exercise 3-8: Effect of coal ash on oral deformities of 
tadpoles 

Many studies in toxicology focus on identifying lethal limits of a particular compound or 
group of compounds in severely stressed habitats.  There is no doubt that mortality of 
organisms can indicate that a habitat is severely polluted.  However one cannot assume 
that a moderately polluted habitat that still hosts an apparently viable populations is 
necessarily benign.   Organisms may be impacted in a sublethal manner if pollutants result 
in changes to physiology, morphology, or behavior.  If such alterations impact an 
organism’s growth or reproduction, then non-lethal levels of pollution might have long-
term effects at a population level, by way of effects on the energetics of individuals. 

Amphibians are increasingly viewed as bioindicators of environmental stress, since there is 
widespread concern about population declines of frogs at a global scale.  A significant 
concern in all regards is the widespread source of pollutants.  We will consider an example 
involving the combustion of coal for generation of electricity, which produces fly ash and 
bottom ash, enriched in trace elements.  Ash is disposed of by burial in landfills or more 
commonly by pumping the slurried waste into open-water settling basins.  Frogs from a 
surrounding wetland often colonise a settling basin, despite the presence of potentially 
toxic compounds.   

The presence and abundance of tadpoles or recently metamorphosed juveniles indicates 
that conditions within settling basins are not severe enough to result in widespread  
mortality for developing larvae.  However, it is unknown if tadpoles in a basin or wetland 
experience sublethal effects that could ultimately influence growth, metamorphosis and 
subsequently reproduction.  Rowe et al. (1996) investigated the oral deformities that 
occurred in bullfrog tadpoles (Rana catesbeiana) in ash basins.  A working hypothesis was 
that oral deformities could feasibly inhibit the ability of tadpoles to feed upon periphyton 
(algal scum) and thereby impact their growth. 

Tadpoles have multiple rows of teeth (which appear as comblike structures) and feed by 
scraping off and ingesting algae.  Rowe et al. (1996) used a dissecting microscope to 
count the number of teeth on the two rows nearest the mouth (anterior row and posterior 
row) of 100 tadpoles.  Fifty tadpoles were collected from an Ash Basin (ASH) and fifty 
were from a control pond Off-Site (OS).    

The data reside in the file tadpole.dat, and comprise four columns. The first two columns 
are counts of teeth in the anterior and posterior tooth rows, respectively, for Ash Basin. 
The third and fourth columns are counts of teeth in the anterior and posterior tooth rows, 
respectively, for the control pond. 

Analyse data for the anterior and posterior rows separately. Based on the number of teeth 
in the anterior row or the posterior row, are tadpoles different at the two sites?   

(a)  Read the dataset (tadpole.dat) into a SAS workfile in a form suitable for analysis.  
Calculate summary statistics for each variable broken down on location of collection. 
What is the likely outcome of the analysis, based on your perusal of means and 
standard errors? 

(b) Analyse the data using appropriate two-sample tests to determine if there are 
significant differences in mass gain/loss and fat gain/loss between the control and 
treatment two feeding regimes. Show the relevant sections of the output of your 
analyses here. Pay attention to the assumptions of your tests. 

(c) What do you conclude from the comparison? Provide a concise summary of the results, 
such as might appear in the results section of a manuscript or report.  Remember to 
distinguish between the magnitude of the result and its statistical significance. 

(d) What are the management implications of these results? 

 



Biometry G 
 

3-66 University of Canberra 

 

Exercise 3-9: Effect of fishing on perch populations 

Exploitation can substantially alter fish population characteristics.  Unexploited stocks 
typically have a high proportion of larger, older fish, which also may be in poorer body 
condition.  In the absence of angling, growth and mortality are regulated by density-
dependent and abiotic factors.  Unexploited populations can provide valuable insights for 
biologists regarding potential size and age structure for that species. Angling may alter 
population size structure and reduce abundance soon after a lake is open to angling.   

Paukert and Willis (2001) studied the effects of sport angler exploitation on yellow perch 
populations in 29 Nebraska Sandhills lakes.  They investigated relation ships between 
exploitation and fish size structure, abundance, condition and growth. In this analysis, we 
compare growth rate and maximum size between exploited and unexploited populations. 
There were only three unexploited populations out of the 29 populations available, and the 
authors were uncomfortable with applying a parametric test such as the standard t-test. 
They chose instead to apply the Wilcoxon Rank-Sum Test. We would like you to follow 
their lead on this.  

The data contain four variables. The first is the lake name, the second indicates whether 
the lake is subject to angling (YES) or not (NO), the third is the estimated age of fish at 25 
cm in length, and the fourth is the estimated maximum size. Periods represent missing 
data. 
LAKE STATUS AGE 

 (25 CM) 
L∞  LAKE STATUS AGE 

 (25 CM) 
L∞ 

Lackaff NO 4.8 312  Home-Valley YES 4.4 381 

Marsh-
Valentine 

NO 3.5 365  Island YES 6.4 314 

Round NO 4.3 336  Marsh-
Private 

YES 4.7 304 

Alkali YES 3.5 340  Medicine YES 4.6 336 

Big-Alkali YES . .  Pelican YES 8.5 276 

Cameron YES 4.9 334  Rosebery YES 11.1 258 

Clear-Brown YES . .  Schoolhouse YES 3.8 322 

Clear-
Valentine 

YES 6.4 279  Shell YES 9.7 338 

Cottonwood YES . 231  Tower YES . . 

Cozad YES . 223  Twin YES . . 

Dewey YES 4.9 338  Watts YES 6.5 300 

Duck YES 3.8 288  Wheelock YES 3.5 347 

Goose YES 5.6 299  Willow YES . . 

Hackberry YES 7.5 289  West-Long YES 4.3 310 

Table 3-14. 
Growth 

parameters for 
Yellow Perch in 
29 lakes from 
the Nebraska 

Sandhills. 

Hagen YES 6.8 321      

We are asked to compare the time taken to achieve a length of 25 cm (in years) and the 
estimated maximum size for exploited and unexploited lakes. The authors hypothesized 
that growth and condition of yellow perch would not be different in exploited and 
unexploited population because there no evidence that growth or condition is density-
dependent in these lakes.  What do you conclude? 

(a)  Type the data into a file suitable for analysis and prepare a DATA step for its input to 
SAS. Use the EXPLORER Window to verify that the data have been input to the 
workfile as expected. 

(b) Undertake a suitable nonparametric test to determine if the response variables "age at 
25 cm" and "maximum size" differ between exploited and unexploited sites.  

(c) What do you conclude from the comparison? Provide a concise summary of the results, 
such as might appear in the results section of a manuscript or report.  Remember to 
distinguish between the magnitude of the result and its statistical significance. 

(d) Discus the results in the context of the hypothesis put by the authors regarding their 
presumed absence of density dependence. 
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Example 3-10: Consumption by Caribbean fish 

Consumption rates by fish are required for the construction of food web (trophic) models.  
The consumption (Q) of fish species or groups is often expressed relative to their biomass 
(B) as the ratio Q/B.  The Q/B ratio gives the number of times a fish population consumes 
its own weight in a year.   

García and Duarte (2002) compiled Q/B estimates for 116 fish stocks caught in the Gulf of 
Salamanca, Columbia. We are asked to compare Q/B ratios calculated from 1989 data with 
Q/B ratios calculated from 1998 data to determine if there has been a change over the 
decade. Are fish consuming more or less relative to their own weight, in 1998 compared to 
1989? Do emerging concerns about ‘fishing down’ the marine food chain have any basis?  
As Q/B ratios were calculated for the same Families in both years, estimates are paired. 
The appropriate analysis is a paired t-test. 

The dataset contains only data for the 72 families for which there are data for both years. 
A portion of the data from QBRATIOS.DAT are shown in Table 3-16. 

 

Family QB89 QB98 Table 3-15. 
Change in Q/B 
ratios for fish 

families in the 
Caribbean 

ACANTHURIDAE   
BATRACHOIDIDAE 
ENGRAULIDAE    
HAEMULIDAE     
SCORPAENIDAE   
etc. 

29.7 
 8.0      
73.3  
10.0   
 5.9      
    

33.5 
12.5 
85.8 
11.6 
 8.1 
 

 

(a)  Type the data into a file suitable for analysis and prepare a DATA step for its input to 
SAS. Use the EXPLORER Window to verify that the data have been input to the 
workfile as expected. 

(b)  Analyse the data using an appropriate two-sample test to determine if there are 
significant change in Q/B ratio over time. Show the relevant sections of the output of 
your analyses here.  

(c)  What do you conclude from the comparison? Provide a concise summary of the 
results, such as might appear in the results section of a manuscript or report.  
Remember to distinguish between the magnitude of the result and its statistical 
significance. 

(d)  Discus the results in the context of the hypothesis put by the authors. 
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Example 3-11: Movements of purple-spotted gudgeon 

Boxall et al. (2002) studied the movement patterns and habitat preferences of the purple-
spotted gudgeon (Morgurnda adspersa) in Pattersons Creek, a headwater stream in the 
rainforests of far north Queensland, Australia.  The species has suffered from the 
introduction of exotic fish species and loss of habitat, particularly loss of aquatic 
macrophytes used as a substrate for depositing their eggs. 

Gudgeons were collected in baited traps.  Individuals were measured, sexed and marked 
by fin clipping before return to the pool of capture.  The number of pools moved per day 
was recorded for each individual fish. These data were not expected to be Normally 
distributed because many gudgeon display site fidelity and did not move at all. Hence, 
there would be many zero values in the dataset, leading to a pronounced skew that could 
not be resolved by transformation. The authors chose to do a non-parametric analysis. 
Turning to a non-parametric alternative to the t-test is common practice when faced with 
suspected failure of the assumptions of normality and homogeneity of variances.  

 
FEMALE 
Pools moved 

MALE 
Pools moved 

Table 3-16. 
Movement data 

for male and 
female purple-

spotted gudgeon 
in pools of a 

tropical 
headwater 

stream. 

0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 
0.0 0.2 0.3 0.4 0.5 
0.6 0.9 1.0 1.0 1.2 
1.7  

0.0 0.0 0.0 0.2 0.3  
0.3 0.5 0.5 0.6 0.7 
0.7 0.8 0.9 1.0 1.0  
1.5 2.0 17.0 

 

(a)  Type the data into a file suitable for analysis and prepare a DATA step for its input to 
SAS. Use the EXPLORER Window to verify that the data have been input to the 
workfile as expected. 

(b)  Analyse the data using an appropriate two-sample test to determine if there are 
significant differences in the number of pools moved between male and female 
gudgeons. Show the relevant sections of the output of your analyses here.  

(c)  What do you conclude from the comparison? Provide a concise summary of the 
results, such as might appear in the results section of a manuscript or report.  
Remember to distinguish between the magnitude of the result and its statistical 
significance. 

(d)  Discus the results in the context of the hypothesis put by the authors. 
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Assessing your knowledge 
Each Workbook in this series is linked to a set of multiple choice questions to test your 
recall of the information provided and your understanding of concepts. 

A link to this Workbook's questions can be found at  

http://aerg.canberra.edu.au/envirostats/bm/selftest.htm 
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