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Session 1: Basic Population Assignment 

Overview 

Background 
Early population assignment methods in genetics were developed in the 1990s with 
the advent of highly polymorphic markers like microsatellites. One of the first 
individual-based assignment methods was introduced by Paetkau et al. (1995) who 
used multilocus microsatellite genotypes to successfully assign Canadian polar 
bears to their region of origin. Theirs was a likelihood-based approach used to 
compute the probability of an individual’s genotype in each candidate population 
using observed allele frequencies, assigning the individual to the population where 
this likelihood was highest. Rannala and Mountain (1997) developed a Bayesian 
refinement that treated allele frequencies as random variables with prior 
distributions (e.g. Dirichlet priors) to account for sampling uncertainty. Their 
method could identify first-generation migrants by flagging individuals whose 
genotypes were much more probable in a population other than the one where 
they were sampled (Rannala & Mountain, 1997). These studies laid the groundwork 
for modern assignment techniques. 

Some early assignment approaches used distance-based metrics (Degen et al. 
2017). For instance, one can compute a genetic distance (e.g. Nei’s distance or 
Euclidean distance in allele frequency space) between an individual’s genotype and 
each population and assign to the nearest population. However, likelihood-based 
methods, especially Bayesian approaches, consistently outperformed distance-
based methods across various simulation scenarios (Cornuet et al. 1999).  

Assignment tests gained popularity in population genetics for addressing diverse 
questions from measuring population connectivity to detecting dispersal and 
migration events (Manel et al., 2005; Wilson & Rannala, 2003). The development 
of model-based clustering algorithms like STRUCTURE (Pritchard et al., 2000), while 
primarily designed to infer population structure, could also probabilistically assign 
individuals to inferred populations. Note however that STRUCTURE has been shown 
to provide erroneous results if population sample sizes are unbalanced 
(Puechmaille, 2016; Wang, 2016). 

Manel et al. (2005) emphasized choosing appropriate assignment techniques for 
different biological questions. 

Allele Frequency Methods 
Allele frequency assignment methods rely directly on the observed allele 
frequencies in putative source populations to assign individuals. The classic 
implementation is to calculate the likelihood of an individual’s multilocus genotype 
arising from each candidate population, assuming Hardy–Weinberg equilibrium 
and linkage equilibrium within populations (Paetkau et al., 1995; Cornuet et al., 
1999). The individual is then assigned to the population with the highest likelihood 
(or sometimes highest posterior probability if assuming equal priors for 
populations). A small fudge factor is required to handle alleles present in the 
individual to be assigned but not in the putative source population.  

In Atlantic salmon management, extensive SNP datasets have enabled assignment 
of individual fish to river of origin with high confidence using frequency-based 

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.12897#mee312897-bib-0033
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.12897#mee312897-bib-0042
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methods, assisting the regulation of harvests (Beacham et al., 2018). In 
conservation, frequency-based assignment has helped identify source populations 
of confiscated or captive animals by comparing genotypes to reference databases 
(Ogden & Linacre, 2015). These methods are relatively easy to interpret and 
implement, but they assume reference populations are well characterized. 
Accuracy diminishes if sampling of putative source populations is incomplete or if 
once cannot be confident that the focal individual comes from one of the sampled 
putative source populations. 

Bayesian Assignment Approaches 
Bayesian approaches to population assignment extend the likelihood framework by 
incorporating prior information and treating the allele frequencies of the unknown 
focal individual as random variables. In the Bayesian assignment test, allele 
frequencies in each population are assumed to follow a Dirichlet distribution (a 
conjugate prior to the multinomial sampling of alleles) (Rannala and Mountain, 
1997). This approach adds a prior pseudo-count to each allele, overcoming the issue 
with the frequency-based methods outlined above, and improving assignment 
accuracy when sample sizes are small. The assignment of an individual is based on 
the posterior probabilities that it originates from each putative source population, 
given its genotype. An individual can be assigned to the population with the highest 
posterior probability, or considered a migrant if none of the posterior probabilities 
(including for the population where it was found) are high enough. Empirical and 
simulation studies showed that this Bayesian method tends to outperform the 
simple frequency method, particularly in challenging scenarios of low 
differentiation (Cornuet et al., 1999). 

Bayesian approaches remain a cornerstone of assignment testing, particularly 
when integrating additional uncertainty or needing probability-based 
interpretations of assignment (e.g., “assignment probability” or “posterior 
assignment odds” for each individual). 

Machine Learning Approaches 
Machine learning using supervised classifiers such as support vector machines 
(SVM), random forests, and naïve Bayes classifiers has been applied to SNP 
genotype data for population discrimination. These methods can handle high-
dimensional input (thousands of SNP features) and often include built-in 
regularization or feature selection that is useful for avoiding overfitting. For 
example, a random forest classifier can rank SNPs by importance, helping to identify 
a subset of informative markers (Fogel et al., 2016). The R package assignPOP (Chen 
et al., 2018) provides a machine-learning framework for population assignment. It 
allows the user to train and evaluate multiple classifiers (LDA, SVM, decision tree, 
random forest, etc.) with k-fold cross-validation into the assignment model (Chen 
et al., 2018). The emphasis on rigorous cross-validation in {assignPOP} addresses a 
critical point for ML methods, that is, to ensure that the model’s accuracy is 
assessed on independent data to prevent overfitting, especially when the number 
of SNP predictors is very large relative to sample size. 

A recent innovative approach (KLFDAPC, Kernel Local Fisher Discriminant Analysis 
of Principal Components) combines kernel methods with neural networks to 
improve assignment of individuals to geographic origin (Qin et al., 2022). KLFDAPC 
first uses a kernel-based extension of adegenet’s DAPC to capture nonlinear genetic 
structure, then trains a neural network to predict the latitude/longitude of origin 
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for each individual (Qin et al., 2022). This method significantly improved the 
accuracy of geographic origin prediction in human genomic datasets compared to 
standard PCA or DAPC, highlighting how machine learning can integrate spatial 
prediction with genetics. While such complex models are still emerging, they 
illustrate the potential for machine-learning approaches to capture subtle patterns 
in SNP data (e.g. signals of isolation by distance or admixture) that might be missed 
by simpler methods. 

Overall, machine learning and multivariate methods offer powerful alternatives 
and complements to traditional allele frequency approaches. They can be especially 
useful when dealing with thousands of correlated SNPs, where dimension 
reduction and classification algorithms can outperform likelihood-based models 
that struggle with high dimensionality. Unlike classical methods, ML models may 
not provide clear biological interpretation (e.g., they won’t directly give allele 
frequency-based probabilities), so their use is often guided by practical accuracy 
considerations rather than theoretical population genetics. 

Recommended R Software: assignPOP (Chen et al., 2018); KLFDAPC1.r (Qin et al., 
2022). 

Using dartR for Assignment 
In the spirit of dartR, we do not attempt to duplicate the innovations of others in 
the space of population assignment, focusing instead on smoothing the path 
between the genlight object and other publicly available packages. 

The focus of dartR scripts is on exploratory analysis. We present three basic 
approaches. 

 Genotype Likelihood: The likelihood of drawing the unknown from a 
population with the observed allele frequencies is calculated assuming 
Hardy-Weinberg equilibrium. 

 Private Alleles: A focal unknown individual is likely to have fewer private 
alleles in comparison with its source population than in comparison with 
other putative source populations. 

 PCA: The genotype of a focal unknown individual is likely to lie within the 
confidence envelope of its source population than within the confidence 
envelope of other putative source populations. 

 Mahalanobis Distance: The distances of the focal unknown individual from 
the centroids of the standardized confidence envelops of its putative source 
populations are used to calculate a z-scores and associated probabilities of 
assignment. 

These approaches are more of value in eliminating putative source populations 
from consideration than in making a definitive assignment to a source population 
based on rigorous statistical assessment. They can be used individually or to 
progressively eliminate unlikely source populations in sequence. 

The assignment scripts in dartR take as input a genlight object with multiple 
populations that are taken to be the putative source populations for an unknown 
focal individual. The genotype of the focal individual is included in a population 
called unknown. 
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The approaches are sound only if the sample sizes for the putative source 
populations are relatively large, and a warning is issued if the user specifies a 
minimum sample size nmin of less than 10. Populations with sample sizes less than 
nmin are eliminated from the analyses. 

Genotype Likelihood 
The script gl.assign.on.genotype() calculates the likelihood of drawing the observed 
genotype of the unknown individual from each putative source population on the 
assumption that the population is in Hardy-Weinberg equilibrium.  

A list of populations, the likelihoods, and AIC value and AIC weights are output to 
the screen. The population with the highest AIC weight is chosen as the source 
population. This decision carries the risk that the actual source population may not 
be among those sampled. 

The best n.best populations are retained if n.best is specified otherwise only 
those assignments that have AIC weights greater than a user specified threshold 
are retained.  

Private Alleles 
The script gl.assign.pa() calculates the distribution of counts of private 
alleles for each individual in a putative source population against the remaining 
individuals in that population. This information is used to generate an expectation 
for the private allele count for the unknown focal individual. Comparing the 
unknown focal individual with the expectation yields a z score and p value (under 
negative binomial assumptions) that can be used for a decision on assignment.  

The best n.best populations are retained if n.best is specified otherwise only 
those assignments that have p-values less than a specified alpha value are 
retained. The best putative source population (the one with the largest p-value) 
may be chosen in support of a decision. 

PCA 
The PCA approach implemented in dartR as gl.assign.pca() is used as a first 
cut to eliminate putative source populations from consideration. This might be 
done for example to reduce computational load when applying other approaches. 

A classical PCA analysis is applied to the data to generate confidence ellipses with 
a user specified level of alpha (typically small to avoid over-exclusion of putative 
source populations). This is done in only the top two dimensions, justified because 
if a focal unknown individual lies outside the confidence ellipse of a putative source 
population in 2D, then examination of deeper dimensions will not draw it into the 
confidence envelope. 

Only putative source populations for which the focal unknown individual falls 
within their confidence ellipses are retained in the genlight object passed back by 
the function, along with the focal individual in a population called unknown. 

Mahalanobis Distance 
The script gl.assign.mahalanobis() first undertakes a classical PCA and 
retains only those dimensions that are considered to contain structural 
information. The "noise" dimensions are discarded. The distinction between the 
informative and noise dimensions is made using the broken-stick criterion. 



Biomatix – biomatix.org.au  
 

 8 University of Canberra 

 

Standardized confidence envelopes at a user-specified level of alpha are generated 
in the reduced ordination space for each putative source population. These are 
classical PCA confidence envelopes but the extent of them along each axis is 
measured in standard deviations. The result is a series of confidence "spheres". 

The distance of the focal unknown individual from the centroids of the standardized 
confidence envelope is calculated for each putative population. Note that this is a 
z-score that can be used to generate a p-value for assignment. This p-value is 
compared to the user specified alpha value as the basis of a decision. 

As a final refinement, it is noted that each individual genotype in a diploid organism 
carries more information than is represented by its position in the PCA. To 
accommodate this, the script will optionally (the default) generate 100 individuals 
under Hardy-Weinberg equilibrium assumptions for the generation of the 
confidence ellipses. 

A list of populations, a z-score and associated p-value are output to the screen. 

Only putative source populations for which the focal unknown individual falls 
within their confidence envelopes are retained in the genlight object passed back 
by the function, along with the focal individual in a population called unknown. 

Caveats 
Each of these approaches is highly intuitive and may be used as a basis for a decision 
on the source population of an individual of unknown provenance. They are not 
presented as an alternative to the more sophisticated approaches based on the 
maximum likelihood approaches, the Bayesian approaches or the Machine Learning 
methods. The dartR approaches should be seen as a preliminary examination, 
setting the expectation for the outcome of more sophisticated analyses. 

All approaches depend critically on the estimate of the allele frequency profiles of 
the putative source populations. Without adequate sample sizes, ideally 30 
individuals per population, there is a risk of mis-assignment. This risk is managed to 
a practical extent by insisting on sample sizes of 10 individuals or greater. 

Finally, there is the possibility that the focal unknown individual has been sourced 
from a population that is not among those sampled as putative sources. A decision 
that is based on picking the best supported assignment thus carries with it a risk. 
The PCA approach and the Mahalanobis approach presented here will assist you in 
managing that risk, because both approaches admit the possibility that the focal 
unknown was not sourced from any of the putative source populations. 

Where have we come? 
The above Session was designed to give you a basic overview of approaches to 
population assignment.  

Having completed this Session, you should now: 

 Appreciate the different approaches to population assignment. 

 Understand the thinking behind the intuitive approaches applied in dartR. 

 Be aware of some of the limitations in applying population assignment tools, 
particularly the asymmetry between eliminating putative populations from 
consideration (definitive) and assigning an individual to a particular population 
(always with uncertainty). 
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Session 2: Worked Example 

Scenario 
The sample data are taken from an 
unpublished study of diversity across ranges 
(Figure 1) of the freshwater turtles of the 
genus Emydura from Australia and southern 
New Guinea. There are currently five taxa 
recognised – the southern Emydura 
(Emydura macquarii), the northern redfaced 
turtle (Emydura australis), the northern 

yellowfaced turtle (Emydura tanybaraga), the diamondhead (Emydura worrelli) 
and the New Guinea painted turtle (Emydura subglobosa). An objective of the 
analysis is to determine if it is possible to reliably assign an individual of unknown 
provenance to its source. This is of obvious relevance too monitoring of illicit 
wildlife trade. In this worked example, we will first explore this dataset to examine 
the number of populations sampled, the number of individuals per population, the 
number of loci scored for each individual and other information. 

 

 

 

Figure 1. Maps of Australia showing the comprehensive 
sampling of Emydura, a species of freshwater turtle, 
across its range. Each of the points typically represents a 
sample of at least 10 individuals (Georges et. al., 2018; 
2025).  
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The Example Data 
Reading in the SNP data 
The SNP dataset used in this tutorial is assignment.example1.Rdata which can be 
read into RStudio using readRDS() as below. Set your working directory to the 
directory with the example data files. 

setwd(<directory path> 

then begin the analysis 
gl.set.verbosity(3) 

gl <- readRDS("assignment.example1.Rdata ") 

NOTE: This dataset has already been filtered on call rate, reproducibility and read 
depth. Secondaries have also been filtered (only one SNP per sequence tag 
retained, at random). Putative admixed individuals have been identified using 
NewHybrids (Anderson & Thompson, 2002) and removed. 

Examining the Contents 
Simply typing the name of the genlight object provides a substantial amount of 
information. We can see that there are 783 individuals scored for 21,816 SNP loci, 
all but 1.66% having been successfully called. There is a list of individual metrics, 
such as Genus, Species, Sex etc and a list of locus metrics such as read depth, 
SnpPosition, CallRate etc. 

gl 

******************** 
 *** DARTR OBJECT *** 
 ******************** 
 ** 835 genotypes,  20,688 SNPs , size: 57.3 Mb 
    missing data: 289548 (=1.68 %) scored as NA 
 ** Genetic data 
   @gen: list of 835 SNPbin 
   @ploidy: ploidy of each individual  (range: 2-2) 
 ** Additional data 
   @ind.names:  835 individual labels 
   @loc.names:  20688 locus labels 
   @loc.all:  20688 allele labels 
   @position: integer storing positions of the SNPs [within 69 base sequence] 
   @pop: population of each individual (group size range: 3-30) 
   @other: a list containing: loc.metrics, ind.metrics, latlon, loc.metrics.flags, verbose, history  
    @other$ind.metrics: id, pop, lat, lon, sex, maturity, collector, location, basin, drainage, service, 
plate_location  
    @other$loc.metrics: AlleleID, CloneID, AlleleSequence, SNP, SnpPosition, CallRate, OneRatioRef, 
OneRatioSnp, FreqHomRef, FreqHomSnp, FreqHets, PICRef, PICSnp, AvgPIC, AvgCountRef, 
AvgCountSnp, RepAvg, clone, uid, rdepth, monomorphs, maf, OneRatio, PIC, TrimmedSequence  
   @other$latlon[g]: coordinates for all individuals are attached 

We could have used the adegenet accessors to pull this information, for example, 
nLoc(gl) 

[1] 20688 
nInd(gl) 

[1] 835 
nPop(gl) 

[1] 81 

and can in addition, list the individual names and population names 
indNames(gl)[1:10] 
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[1] "AA010915" "AA032703" "UC_00126" "AA032760" "AA013214" "AA011723" "AA012411" 
"AA011893" "AA011896" "AA019237" 

popNames(gl) 

[1] "Brisbane"  "Burdekin"  "Burnett"  "Clarence"  "Cooper_Alvin"  
 [6] "Cooper_Cully" "Cooper_Eulbertie" "Dumaresque" "Fitzroy_Alligator" "Fitzroy_Carnavan"  
[11] "Fitzroy_Fairburn" "Fraser_Island" "Hunter"  "EmmacJohnWari" "EmmacMaclGeor"  
[16] "Mary"  "EmmacMDBBarr" "EmmacMDBBarw" "EmmacMDBBooth" "EmmacMDBBowm"  
[21] "EmmacMDBBurr" "EmmacMDBCond" "EmmacMDBCudg" "EmmacMDBDarlBour" "EmmacMDBDarlWeth"  
[26] "EmmacMDBDart" "EmmacMDBEulo" "EmmacMDBForb" "EmmacMDBGoul" "GurraGurra"  
[31] "EmmacMDBGwyd" "EmmacMDBLach" "EmmacMDBLodd" "EmmacMDBMaci" "EmmacMDBMoon"  
[36] "EmmacMDBMurrGunb" "EmmacMDBMurrLock" "EmmacMDBMurrMorg" "EmmacMDBMurrMung" 
"EmmacMDBMurrMurr"  
[41] "EmmacMDBMurrTink" "EmmacMDBMurrYarra" "EmmacMDBOven" "EmmacMDBParoBiny" 
"EmmacMDBPind"  
[46] "EmmacMDBSanf" "EmmacMDBToon" "Normanby"  "Pine"  "EmmacRichCasi"  
[51] "EmmacRoss"  "EmmacTweeUki" "EmsubBamuAli" "EmsubBamuAwab" "EmsubMorehead"  
[56] "EmsubFlyGuka" "EmsubFlyJikw" "EmsubJardine" "EmsubKerema" "EmsubKikori"  
[61] "EmworRoper" "EmtanBlyth" "EmtanFinniss" "EmtanHolrChai" "EmtanMitchell"  
[66] "EmtanMitcMitc" "EmtanPascFarm" "EmtanWenlock" "EmvicDaly"  "EmvicDrysdale"  
[71] "Fitzroy_WA" "EmvicIsdeBell" "EmvicKingMool" "EmvicOrd"  "EmworClavPung"  
[76] "EmworDaly"  "EmworDalySlei" "EmworLeicAlex" "EmworLimmNath" "EmworLiveMann"  
[81] "EmworNichGreg"  

 

Note: popNames(gl) gives a list of population names; pop(gl) gives a list of 
population names against each individual. Samples sizes can thus be obtained using 

table(pop(gl)) 

 
 

Note that some populations have less than 10 individuals. If these are to be used as 
putative source populations, there will be some additional risk in correct 
assignment of individuals sourced from these populations. 

Brisbane Burdekin Burnett Clarence Cooper_Alvin
10 10 11 10 10

Cooper_Cully Cooper_Eulbertie Dumaresque Fitzroy_Alligator Fitzroy_Carnavan
10 10 10 10 10

Fitzroy_Fairburn Fraser_Island Hunter EmmacJohnWari EmmacMaclGeor
10 10 10 10 11

Mary EmmacMDBBarr EmmacMDBBarw EmmacMDBBooth EmmacMDBBowm
10 10 10 9 10

EmmacMDBBurr EmmacMDBCond EmmacMDBCudg EmmacMDBDarlBour EmmacMDBDarlWeth
10 10 10 10 10

EmmacMDBDart EmmacMDBEulo EmmacMDBForb EmmacMDBGoul GurraGurra
10 10 10 10 10

EmmacMDBGwyd EmmacMDBLach EmmacMDBLodd EmmacMDBMaci EmmacMDBMoon
10 10 10 10 10

EmmacMDBMurrGunb EmmacMDBMurrLock EmmacMDBMurrMorg EmmacMDBMurrMung EmmacMDBMurrMurr
10 10 10 10 10

EmmacMDBMurrTink EmmacMDBMurrYarra EmmacMDBOven EmmacMDBParoBiny EmmacMDBPind
10 10 10 10 10

EmmacMDBSanf EmmacMDBToon Normanby Pine EmmacRichCasi
10 11 11 10 10

EmmacRoss EmmacTweeUki EmsubBamuAli EmsubBamuAwab EmsubMorehead
10 10 10 9 16

EmsubFlyGuka EmsubFlyJikw EmsubJardine EmsubKerema EmsubKikori
10 30 16 10 4

EmworRoper EmtanBlyth EmtanFinniss EmtanHolrChai EmtanMitchell
11 10 7 10 9

EmtanMitcMitc EmtanPascFarm EmtanWenlock EmvicDaly EmvicDrysdale
3 9 10 10 10

Fitzroy_WA EmvicIsdeBell EmvicKingMool EmvicOrd EmworClavPung
10 12 10 18 10

EmworDaly EmworDalySlei EmworLeicAlex EmworLimmNath EmworLiveMann
10 7 10 10 9

EmworNichGreg
12



Biomatix – biomatix.org.au  
 

 12 University of Canberra 

 

Analysis 
Let us take an individual from a river in Queensland, say the Burnett River (n=11), 
and see how well we can assign this individual to its source population. The 
individual identity is AA011731. 

gen.result <- gl.assign.on.genotype(gl,unknown="AA011731", 
nmin=10) 

Starting gl.assign.on.genotype  
  Processing genlight object with SNP data 

  Discarding 9 populations with sample size < 10 : EmmacMDBBooth, EmsubBamuAwab, 
EmsubKikori, EmtanFinniss, EmtanMitchell, EmtanMitcMitc, EmtanPascFarm, 
EmworDalySlei, EmworLiveMann 

          population Log Likelihood        AIC        dAIC        AIC.wt assign 
3            Burnett      -4926.957   9853.914      0.0000  1.000000e+00    yes 
16              Mary      -5341.050  10682.101    828.1863 1.450906e-180     no 
1           Brisbane     -19251.444  38502.888  28648.9733  0.000000e+00     no 
2           Burdekin     -32844.476  65688.953  55835.0384  0.000000e+00     no 
4           Clarence     -31620.048  63240.095  53386.1808  0.000000e+00     no 
5       Cooper_Alvin     -42008.293  84016.586  74162.6716  0.000000e+00     no 
6       Cooper_Cully     -42849.639  85699.278  75845.3633  0.000000e+00     no 
7   Cooper_Eulbertie     -42636.382  85272.764  75418.8497  0.000000e+00     no 
8         Dumaresque     -28852.254  57704.509  47850.5946  0.000000e+00     no 
9  Fitzroy_Alligator     -12133.240  24266.480  14412.5655  0.000000e+00     no 
10  Fitzroy_Carnavan     -13118.904  26237.808  16383.8939  0.000000e+00     no 
……….. 
 

Bang, it is right on the mark – Burnett River. However, note that the result, although 
convincing, is based on the putative source population with the best AIC weight 
(hence the zero delta AIC). All other putative populations are measured against this. 
There is the possibility that there is another population, not sampled or for which 
the sample size was less than 10, that is the actual source. Caution is required. 

Let's try a second approach. 
pa.result <- gl.assign.pa(gl, unknown="AA011731", nmin=10, 

alpha=0.05) 

Starting gl.assign.pa  
  Processing genlight object with SNP data 
  Discarding 9 populations with sample size < 10 : 
EmmacMDBBooth, EmsubBamuAwab, EmsubKikori, EmtanFinniss, EmtanMitchell, 
EmtanMitcMitc, EmtanPascFarm, EmworDalySlei, EmworLiveMann  
                 pop count    Z-score  p-value assign 
16              Mary    81 -0.1692350 0.567194    yes 
3            Burnett    77  0.2743299 0.391916    yes 
48              Pine   167  1.1555039 0.123942    yes 
21      EmmacMDBCond   785  2.0204271 0.021670    no 
46      EmmacMDBToon   668  2.7347470 0.003121    no 
15     EmmacMaclGeor  1040  3.4791497 0.000252    no 
62         EmvicDaly  1284  3.5437788 0.000197    no 
19      EmmacMDBBowm   992  3.6051586 0.000156    no 
72     EmworNichGreg  1260  3.8784997 0.000053    no 
58        EmworRoper  1273  4.1008215 0.000021    no 
24  EmmacMDBDarlWeth   865  4.8762430 0.000001    no 

……… 
66     EmvicKingMool  1363 24.4944007 0.000000    no 
67          EmvicOrd  1333 12.5867638 0.000000    no 
68     EmworClavPung  1299 22.5017244 0.000000    no 
69         EmworDaly  1307  5.2935238 0.000000    no 
70     EmworLeicAlex  1324 15.9637009 0.000000    no 
71     EmworLimmNath  1322  5.7857267 0.000000    no 
Completed: gl.assign.pa  

So the count of private alleles held by the focal unknown in comparison to the Mary, 
Burnett and Pine Rivers is well within expectation. These three populations are 
putative source populations for specimen AA011731. The remaining 78 populations 
are no longer under consideration. 
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A next step might be to examine these three populations further with a PCA 
assignment. 

pca_pa_result <- gl.assign.pca(pa.result,unknown="AA011731") 

Starting gl.assign.pca  
Calculating a PCA to represent the unknown in the context 
                   of putative sources 
Eliminating populations for which the unknown is outside 
                   their confidence envelope 
Putative source populations: Burnett  
Populations eliminated from consideration: Mary, Pine  
Returning a genlight object with remaining putative source 
                   populations plus the unknown 
Completed: gl.assign.pca  

We see that this analysis restricts the putative source populations further to yield 
only the Burnett River, which is good because that is the population from which we 
initially drew the unknown. 

The result of the PCA shows graphically the unknown AA011731 as lying outside 
the confidence ellipses for the Mary and Pine Rivers, and within the confidence 
ellipse of the Burnett River. A nice graphical summary of the operation of this script 
(Figure 2). 

 

Figure 2. A PCA plot of a focal unknown individual (AA011731) shown in purple in 
relation to the confidence ellipses for the Burnett (orange), Mary (green) and Pine 
(blue) Rivers. The unknown falls within the confidence ellipse of the Burnett but 
outside the confidence ellipses of the Mary and Pine. The assignment of the 
unknown to the Burnett is consistent with its known source, the Burnett River. 

We might now like to try the Mahalanobis Distance approach, to see if it provides 
results that are consistent with the private alleles and PCA approaches. 
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For computational reasons, lets restrict the candidate putative sources to the 10 
best populations identified by the gl.assign.pa() script. 

gl_test <- 
gl.keep.pop(gl,pop.list=c("Mary","Burnett","Pine","EmmacM
DBCond","EmmacMDBToon","EmmacMaclGeor","EmvicDaly","Emmac
MDBBowm","EmworNichGreg","EmworRoper"),mono.rm=TRUE) 

mahal_result <- 
gl.assign.mahalanobis(gl_test,unknown="AA011731") 

Starting gl.assign.mahalanobis  
  Warning: Listed population unknown not present in the dataset -- 
ignored 
  Rendering the data matrix dense by imputation 
  Undertaking a PCA 
Starting gl.colors  
Selected color type 2  
Completed: gl.colors  
  Dimensions retained: 4  
  Number of dimensions with substantial eigenvalues (Broken-Stick 
Criterion): 4 . Hardwired limit 10  
    Selecting the smallest of the two 
    Dimension of confidence envelope set at 4  
Assignment of unknown individual: AA011731  
Alpha level of significance: 0.001  
             pop       MahalD          pval assign 
1           Mary 1.032222e+01  4.126933e-01    yes 
2        Burnett 2.609197e+01  3.618440e-03    yes 
3           Pine 5.515667e+01  2.952235e-08     no 
4   EmmacMDBCond 4.926272e+02  1.660274e-99     no 
5   EmmacMDBToon 1.275080e+03 1.057785e-266     no 
6  EmmacMaclGeor 1.406157e+04  0.000000e+00     no 
7   EmmacMDBBowm 1.716823e+04  0.000000e+00     no 
8      EmvicDaly 2.656608e+06  0.000000e+00     no 
9  EmworNichGreg 9.621106e+05  0.000000e+00     no 
10    EmworRoper 2.291194e+05  0.000000e+00     no 
  Best assignment is the population with the largest probability 
                of assignment, in this case Mary  
  Returning a genlight object with the putative source populations and 
the unknown 
Completed: gl.assign.mahalanobis  
 

This analysis again restricts the putative source populations to yield the Mary and 
the Burnett River, which are adjacent drainages on the east coast of Queensland. 
The populations in these rivers are very similar genetically. 

 

 Exercise 
The authorities have recently raided a premises in Brisbane and found a 
number of reptiles held without permit. One of these is the painted turtle 
Emydura subglobosa. This species is widespread and common in southern 
New Guinea, but restricted in Australia to the Jardine River at the tip of 
Cape York. The Australian population is considered critically endangered 
under the EPBC Act. 

The question is, was the animal sourced from Cape York or imported from 
New Guinea? 

The specimen was genotyped and run in a service with the other available 
specimens from localities shown in Figure 1. The datafile is 
assignment_example1.Rdata. 
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For this exercise, you might want to restrict the data to only those for the 
target species Emydura subglobosa. To do this, use 

gl2 <- gl.keep.pop(gl,pop.list=c("EmsubBamuAli", 
"EmsubMorehead", "EmsubFlyGuka", 
"EmsubFlyJikw","EmsubJardine", "EmsubKerema"), 
mono.rm=TRUE) 

EmsubJardine is from the tip of Cape York, Australia. The other localities 
are from southern New Guinea. 

 The seized specimen has SpecimenID  "AA046092" 

Can you confidently decide if the animal was sourced from Cape York or 
New Guinea using the tools we have provided you via dartR? 

Links to Third-party Software 

assignPOP 
assignPOP is an R package for population assignment using a machine-learning 
framework. It employs supervised machine-learning to evaluate the discriminatory 
power of your data collected from source populations to assign unknown 
individuals. assignPOP is able to analyze large genetic datasets, non-genetic 
datasets, or undertake analyses that draw upon a combination of genetic and non-
genetic data.  

To install the package, use 
install.packages("assignPOP") 

library(assignPOP) 

Refer to the manual https://alexkychen.github.io/assignPOP/. 

assignPOP can read the genepop file format using read.Genepop(), so the easiest 
avenue to providing your genlight object to assignPOP is via gl2genepop(). Let's 
work with the data used in the above exercise. 

gl2 <- gl.keep.pop(gl,pop.list=c("EmsubBamuAli", 
"EmsubMorehead", "EmsubFlyGuka", 
"EmsubFlyJikw","EmsubJardine", "EmsubKerema"), 
mono.rm=TRUE) 

data.gen <- gl2genepop(gl,outfile="genepop.txt") 

then you can run assignPOP functions in accordance with the instructions. 
gen <- read.Genepop("data.gen", pop.names=c(popNames(gl2))) 

cross.val <- assign.MC(gen,dir="D:/workspace/assignpop/") 

A warning: assignPop can be a bit idiosyncratic. You may have to fiddle a bit with 
syntax. 

https://en.wikipedia.org/wiki/Supervised_learning
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KLFDAPC 

KLFDAPC stands for Kernel Local Fisher Discriminant Analysis of Principal 
Components. It is a supervised non-linear approach for inferring individual 
geographic genetic structure that is believed to have advantages over PCA or DAPC.  
The developers tested the power of KLFDAPC to infer population structure and to 
predict individual geographic origin using neural networks. Their simulation results 
showed that KLFDAPC has higher discriminatory power than PCA and DAPC. 

To install the package, use 
requireNamespace("SNPRelate") 
 
if (!requireNamespace("BiocManager", quietly=TRUE)) 
 
  install.packages("BiocManager",repos = "http://cran.us.r-

project.org") 
   
if (!requireNamespace("SNPRelate", quietly=TRUE)) 
 
  BiocManager::install("SNPRelate") 
   
if (!requireNamespace("DA", quietly=TRUE)) 
  
  devtools::install_github("xinghuq/DA") 
   
if (!requireNamespace("vegan", quietly=TRUE)) 
  
  install.packages("vegan") 
   
if (!requireNamespace("PCAviz", quietly=TRUE)) 
  
 devtools::install_github("NovembreLab/PCAviz",build_vignettes 

= FALSE) 

devtools::install_github("xinghuq/KLFDAPC") 

 
 library(KLFDAPC) 
 library(SNPRelate) 
 library(vegan) 
 library(PCAviz) 

KLFDAPC expects a GDS file format as input. So first convert your genlight object to 
GDS then read it in to KLFDAPC. 

gl2gds(gl2,outfile="test.gds",outpath=getwd()) 

gen <- SNPRelate::snpgdsOpen("test.gds") 

then follow the instruction manual. 
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 Where have we come? 
The above Session was designed to give you some practical experience in applying 
the scripts in dartR for population assignment. Having completed this Session, you 
should now able to: 

 Apply each of the three techniques – allele frequency, private alleles, PCA and 
Mahalanobis Distance. 

 Be able to sensibly integrate the results of three approaches in coming to a 
decision. 

 Examine more formal approaches drawn from the literature, like assignPOP 
and KLFDAPC. 
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Session 3: SNP Panels for Routine Assignment 

Overview 
Single-nucleotide polymorphism (SNP) panels are targeted sets of SNP markers 
used for genotyping many loci across the genome —typically ranging from tens to 
hundreds of markers. These panels enable fast, cost-effective analysis of many 
samples and yield unambiguous, reproducible data, making them well-suited to 
high-throughput applications and standardized monitoring across laboratories (von 
Thaden et al., 2020). SNP panels can be run on array or PCR-based platforms, which 
is especially valuable for low-quality DNA (e.g. scat, hair, faeces) where whole-
genome sequencing (WGS) may fail (Armstrong et al., 2025). 

Marker Selection 
The utility of a SNP panel depends critically on how markers are selected. Different 
conservation questions require different types of markers and poor SNP selection 
can lead to reduced power to address questions and may produce inaccurate 
results.  

 For population assignment, highly differentiated loci (e.g. FST outliers) or loci 
contributing most to discrimination between populations using DAPC 
(Discriminant Analysis of Principal Components) are most informative (Bertola 
et al., 2022, Magliolo et al., 2021) 

 For individual identification, loci with high minor allele frequencies or high 
Polymorphic Information Content (PIC) are preferred to maximise genotype 
uniqueness (Wehrenberg et al., 2024). 

 For parentage or relatedness, high PIC and low linkage disequilibrium are ideal 
(Spitzer et al., 2016). 

  To detect hybridisation, panels should include diagnostic SNPs that are fixed 
or nearly fixed between species or subspecies (Stronen et al., 2022). 

To ensure panel robustness, SNP discovery should use a wide sampling of 
individuals spanning the species' full distribution, thereby minimizing 
ascertainment bias and improving the panel’s utility across populations (Quinto-
Cortés et al., 2018). 

SNP panels are most appropriate when many individuals must be genotyped on a 
fixed set of informative markers, such as long-term monitoring or enforcement. On 
the other hand, SNP panels are not suitable for discovering new genetic variants or 
when no prior SNP data exists. Additionally, SNP panels are economically inefficient 
for analysing small sample sizes since most platforms require batch processing (e.g. 
96-384 samples per run) making urgent one-off samples more difficult to 
accommodate. 

Applications 
SNP panels are increasingly being used to address conservation and management 
questions across taxa. In wildlife trade enforcement, SNP panels designed with 
highly informative, population-diagnostic SNPs have successfully assigned 
confiscated animals and products to their geographic origin, aiding prosecutions 
(see examples in cheetahs and jaguars; Magliolo et al., 2021, Zenato-Lazzari et al., 
2025). Similar approach to population assignment have helped clarify population 
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boundaries: for example, custom SNP assays helped assign individual lions to one 
of four major clades, improving phylogeographic resolution(Bertola et al., 2022). In 
agriculture, SNP panels can be applied to cattle to reliably assign individuals to their 
breed of origin  (Jasielczuk et al., 2024), and in forensics, SNP panels help resolve 
the origin of human remains from degraded samples (Terrado-Ortuño & May, 
2025). 

SNP panels are also effective for detecting hybridisation. A 192-SNP panel designed 
with species-diagnostic loci correctly distinguished three distinct wolf populations 
from dogs and jackals and identified first-generation hybrids (Stronen et al., 2022). 
Such panels are particularly valuable in areas of conservation concern where 
hybridisation threatens the genetic integrity of endangered species. 

For non-invasive genetic monitoring, SNP panels provide reliable genotyping from 
degraded samples. In European bison, a 96-SNP panel enabled genotyping from 
faecal, hair, urine and saliva samples for individual and parental assignment, sex 
determination and breeding line identification (Wehrenberg et al., 2024). Similarly, 
small SNP panels (~100 markers) have successfully been applied to faecal samples 
in brown bears to estimated population size and relatedness across a landscape 
(Spitzer et al., 2016) and identified population assignment and evolutionary 
lineages of endangered fish for management (Starks et al., 2016).  

Trait-linked SNPs can also be incorporated into panels to extend utility beyond 
population genetics. In agriculture, SNPs associated with agronomic traits enable 
prediction of genetic merit and assist selective breeding (Ohm et al., 2024). In 
wildlife or human applications, phenotype-informative markers can enhance 
individual identification, especially in forensic contexts involving trace or degraded 
samples (Armstrong et al., 2025, Terrado-Ortuño & May, 2025).  

By aligning SNP selection with the intended use—be it assignment, detection of 
hybrids, demographic monitoring, or trait prediction—researchers can build 
targeted panels with high resolution and minimal redundancy. When well designed, 
SNP panels can serve as efficient tools for both conservation research and 
management, especially for routine applications like population monitoring, 
enforcement, or management decisions in fisheries. 

Using dartR for SNP Panel Selection 

Multiple Options 
We use nine complementary metrics to identify candidate loci for inclusion in SNP 
panels. Each metric targets a different aspect of genetic informativeness, allowing 
flexibility depending on the research question.  

 DAPC (Discriminant Analysis of Principal Components): Identifies loci that 
contribute most to discrimination between populations using DAPC.  

 Pahigh (Private Alleles – High frequency): Selects loci containing private 
alleles with high frequencies, which can be informative for distinguishing 
populations. 

 Monopop (Monomorphic Within Populations): Selects loci that are 
monomorphic within populations, useful for detecting between-
population structure. 
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 PIC (Polymorphic Information Content): Targets loci with high PIC values, 
maximising individual-level discrimination power for applications such as 
parentage analysis, individual ID, relatedness, or genetic mark-recapture. 

 PICdart (Polymorphic Information Content based on presence/absence): 
Analogous to PIC but based on allele presence/absence rather than 
frequencies. 

 Hafall (High Allele Frequency – Across Populations): Selects loci with the 
highest allele frequencies across all populations, favouring broadly 
polymorphic markers 

 Hafpop (High Allele Frequency – Within Populations): Selects loci with the 
highest allele frequencies within individual populations, enhancing within-
population resolution 

 Random: Selects loci at random, providing an unbiased representation of 
diversity across the genome 

 Stratified: Stratified random sampling of loci based on allele frequencies 
to ensure even representation across the allele frequency spectrum 

The choice of metric(s) used to design the SNP panel should align with the specific 
research objectives (see notes above on marker selection). The script 
gl.select.panel() allows users to either derive all candidate loci from a single 
metric or combine loci selected across multiple metrics to address multiple 
questions simultaneously. The number of loci included in the final panel can be 
tailored accordingly.  

Evaluate Panel Performance 
Once the final panel has been selected, its performance can be assessed using the 
gl.check.panel() function. This script evaluates the panel across a suite of key 
genetic metrics, including: 

 FST – genetic differentiation 

 FIS – inbreeding coefficient 

 NALL – number of alleles 

 HE – expected heterozygosity 

 HO – observed heterozygosity 

 NE – effective population size 

To assess how well the panel captures overall genetic patterns, results from the 
panel are compared to those obtained using the full SNP dataset, and R² values are 
calculated to quantify concordance. Panel performance can be evaluated across all 
available metrics or a selected subset, depending on the specific research questions 
the panel was designed to address. 
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Worked example 

Scenario  
The sample data are taken from an 
unpublished study of on one of the 
Australia's smallest and most 
endangered fish: the red-fin blue eye 
Scaturiginichthys vermeilipinnis. 
Predation and competition with 
introduced eastern mosquitofish 
Gambusia holbrooki have likely led to 
the species' extirpation from all but a 
single spring (Kerezsy & Fensham, 

2013). Human-mediated reintroductions have been implemented for redfin blue 
eye into several nearby invader-free springs (Furlan et al., 2020). Ongoing genetic 
assessment of these populations remains essential to monitor levels of genetic 
diversity yet, due to the small size of the species, current tissue sampling methods 
are destructive. Various non-invasive DNA applications are currently being explored 
to determine their use in population monitoring, including swabbing and 
environmental DNA (eDNA) sampling.  

An objective of the analysis is to select a panel of 100 SNPs that would be suitable 
for the ongoing genetic monitoring of the species. In this worked example, we will 
first explore an existing SNP dataset to examine the breadth and depth of data 
available (i.e., number of populations sampled, the number of individuals per 
population, as well as data quality).  

Example Data 
Read in the SNP data 
The SNP dataset used in this tutorial is assignment_example2.Rdata which can be 
read into RStudio using readRDS() as below. Set your working directory to the 
directory with the example data files. 

setwd(<directory path> 

then begin the analysis 
gl.set.verbosity(3) 

gl <- readRDS("assignment_example2.Rdata ") 

Examine the Contents 
Simply typing the name of the genlight object provides a substantial amount of 
information. We can see that there are 382 individuals scored for 9,849 SNP loci.  

gl 

******************** 
 *** DARTR OBJECT *** 
 ******************** 
 ** 383 genotypes,  9,849 SNPs , size: 15.7 Mb 
 
    missing data: 47272 (=1.25 %) scored as NA 
 ** Genetic data 
   @gen: list of 383 SNPbin 
   @ploidy: ploidy of each individual  (range: 2-2) 
 ** Additional data 
   @ind.names:  383 individual labels 
   @loc.names:  9849 locus labels 
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   @loc.all:  9849 allele labels 
   @position: integer storing positions of the SNPs [within 69 base 
sequence] 
   @pop: population of each individual (group size range: 10-64) 
   @other: a list containing: loc.metrics, ind.metrics, 
loc.metrics.flags, verbose, history  
    @other$ind.metrics: id, pop  
    @other$loc.metrics: AlleleID, CloneID, AlleleSequence, 
TrimmedSequence, Chrom_Scaturiginichthys_vermeilipinnis2, 
ChromPosTag_Scaturiginichthys_vermeilipinnis2, 
ChromPosSnp_Scaturiginichthys_vermeilipinnis2, 
AlnCnt_Scaturiginichthys_vermeilipinnis2, 
AlnEvalue_Scaturiginichthys_vermeilipinnis2, 
Strand_Scaturiginichthys_vermeilipinnis2, SNP, SnpPosition, CallRate, 
OneRatioRef, OneRatioSnp, FreqHomRef, FreqHomSnp, FreqHets, PICRef, 
PICSnp, AvgPIC, AvgCountRef, AvgCountSnp, RepAvg, clone, uid, rdepth, 
monomorphs, maf, OneRatio, PIC  
   @other$latlon[g]: no coordinates attached 

Pull out the populations and the number of individuals in each population. 
table(pop(gl) 

BHA_A2 E504 E508 E509 E518 NW30 NW70 NW72 

19 19 20 20 20 20 20 10 

NW80 PJTub1.2.3 PJTub4.5 PJTub6 SE60 SW10 SW20 SW60 

10 64 51 33 20 19 18 20 

 

Filter to Reduce Loci 
We now filter the data to reduce the number of loci to those that are likely to be 
the most reliable. We will use default settings. 

gl <- gl.filter.secondaries(gl) 

gl <- gl.filter.callrate(gl) 

gl <- gl.filter.reproducibility(gl) 

gl <- gl.filter.rdepth(gl) 

which brings us down to 5,134 loci. 

We might like to filter further on minor allele frequency 
gl <- gl.filter.maf(gl, threshold = 5, by.pop = FALSE) 

which brings us down to 4,990 loci. 

Selecting informative SNPs 
We can now select a subsample of SNPs using several different methods. 
Depending on the aim of your panel you might want to select SNPs that are 
informative for population structure (Fst) or inbreeding (Ho). It turns out that the 
DAPC method is a good method to select SNPs that are informative for population 
structure. The code below uses this method to select 50 SNPs. 

panel <- gl.select.panel(gl, method="dapc", nl = 50) 

This may take a while to run. 
Starting gl.select.panel  
  Processing genlight object with SNP data 
Starting gl.keep.loc  
  Processing genlight object with SNP data 
  List of loci to keep has been specified 
  Deleting all but the specified loci 
Completed: gl.keep.loc  
Completed: gl.select.panel  
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This provides us with a panel with approximately 50 of the most informative loci in 
the context of assignment. 

nLoc(panel) 

[1] 82 

We can now assess the 82 SNPs against the original 4,990 SNPs using FST. 
outdapc <- gl.check.panel(panel, rfbe20_6, parameter = "Fst") 

 
 
The reduced SNP data set correlates well with the result we would have got with 
the full set of filtered loci. 

Where have we come? 
The above Session was designed to give you an overview of the scripts in dartR for 
selecting a SNP panel from an existing genomic dataset. Having completed this 
Session, you should now able to: 

 Filter putative SNPs for inclusion in a SNP panel based on suitability of flanking 
regions for primer design and removing linkage loci  

 Modify the selection of suitable loci for inclusion in a panel according to key 
metrics and number of loci 

 Identify concordance between the selected SNP panel and the complete SNP 
dataset across key measures of genetic diversity i.e., FST, FIS, NALL, HE, HO, and NE   
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Additional Exercises 
 Exercise 1: Efficacy within basins 

River systems are different from terrestrial systems in that there are, for 
most aquatic organisms at least, distinct barriers to movement in the form 
of drainage divides. Accumulation of genetic differences between drainages 
tends to make population assignment more definitive. 

Here you are asked to evaluate the effectiveness of our methods for 
assignment to population within the Murray-Darling Basin in comparison 
with effectiveness of assignment to discrete populations on the seaboard. 
The Murray-Darling Basin is Australia's largest river and is classified into 
many sub-basins that have been sampled. These sub-basins are of course 
interconnected. 

Here are some individuals to use in your evaluation. 
Basin Sub-basin popName Specimen 
MDB Condamine EmmacMDBCond AA032809 
MDB Lachlan EmmacMDBForb AA010936 
MDB Murray EmmacMDBMurrYarra KBF_M1.08 
MDB Lower Murray GurraGurra AA032715 
Clarence  Clarence UC_00157 
Burnett  Burnett AA011741 
Burdekin  Burdekin AA019241 

The datafile is assignment_example1.Rdata.  

NOTE: You will need to set nmin=9 because we are taking one animal out in 
the evaluation and most populations have only 10 individuals. 

What do you conclude? 

 

 Exercise 2: Individual outside sample set 
Let us consider what happens when we try to assign an individual that has 
been collected from a population that is not in our reference set. 

The first individual is Emydura subglobosa, AA036611, from the Kikori River 
in Papua New Guinea. Only four animals have been caught there in several 
years of study. 
The second animal is Emydura tanybaraga, G121, from the Pascoe River on 
Cape York. 
Both of these populations were eliminated from consideration because they 
had less than 10 animals sampled. 

The datafile is assignment_example1.Rdata.  

How do the three techniques -- private alleles, PCA and Mahalanobis 
Distance -- perform? What do you conclude in each case? 
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 Exercise 3: Generate a reduced SNP panel 

Here you are asked to design a SNP panel to assign individuals back to 
their population of origin.  

The objective is to see if we can maintain effective assignment of 
unknown individuals to putative sources with a reduced set of only 
100 of the 20,000 SNPs. 

Take the same individual used in the earlier example, AA011731, and see 
how well the SNP panel can assign this individual to its source population, 
the Burnett River. 

You are also asked to check to see how well the selected panel can 
assign individuals to their population of origin in general. 

The datafile is assignment_example1.Rdata.  

What do you conclude? When might you think such a panel would be of 
use? 

Where have we come? 
The above Tutorial was designed to give you an appreciation of the logic behind 
population assignment and an introduction to some of the tools available in or 
through dartR to assign unknown individuals to putative source populations. On 
completion of this tutorial, you should 

 Appreciate the strengths and weaknesses of the different approaches to 
population assignment.  

 Be able to apply some of the simpler approaches to population assignment, via 
assignment by genotype, elimination of putative populations from 
consideration based on private alleles and PCA, and via considerations using 
Mahalanobis distance.  

 Be aware of some of the third party software for population assignment and 
how to migrate your genlight data to a format suitable for applying these more 
sophisticated approaches. 

 Know how to reduce your data set to a smaller set of loci while maximally 
retaining discriminatory power; this can be useful in establishing a small panel 
of SNPs for routine screening in assignment. 

 Be aware of the limitations of the approaches in terms of making a definitive 
assignment, given that there are risks associated with selecting the assignment 
on the basis of best statistical support. 
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