

SNP Analysis using dartR

TechNote: For the
Developer

I A E

Institute for Applied Ecology

Biomatix – biomatix.org.au

 2 University of Canberra

The Institute for Applied Ecology
University of Canberra ACT 2601
Australia

Email: arthur.georges@biomatix.com.au

Copyright @ 2025 Arthur Georges, Bernd Gruber and Jose Luis Mijangos [V 3]

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, including electronic, mechanical, photographic, or magnetic,
without the prior written permission of the lead author.

dartR is a collaboration between the University of Canberra, CSIRO and Diversity
Arrays Technology, and is supported with funding from the ACT Priority Investment
Program, CSIRO and the University of Canberra.

mailto:arthur.georges@biomatix.com.au

 Short Course — A Primer on dartR

University of Canberra 3

Contents
Contents ... 3
Purpose of this Document ... 4
Function Structure .. 4

In a nutshell .. 4
Provide some initial Roxygen2 documentation .. 5
Define the function ... 7
Set the verbosity level .. 7
Apply checks of parameters ... 7
Flag the script start .. 8
Do the job ... 8
Finish up .. 9
Colour code your messages to the user ... 10

Programming Style ... 11
Write your code for the future you .. 11
Write efficient code... 12
Follow best practice in Coding Style .. 12
Etiquette ... 12

Data Structure .. 13
Locus metadata ... 13
Individual metadata .. 14
Flags .. 15
History .. 15

Traps for the unwary ... 15
Test datasets ... 15
Contributing your work .. 16

Workflow .. 16
Quality Control ... 18
Pipelines .. 18

Further reading .. 19
Appendix: Sample function proforma ... 20

Biomatix – biomatix.org.au

 4 University of Canberra

 Purpose of this Document
We are hoping that dartR will develop through the efforts of many people who
contribute scripts based on those developed in their own research. Indeed, this is
how dartR was initiated, when it became clear that the scripts we were
developing in our own research were of value to many around us. Rather than
give advice and develop case by case solutions, we started to develop generic
solutions. The package dartR was not intended to replace solutions already in
existence as stand-alone packages available through CRAN or elsewhere, but
rather to grease the wheels of the process between generating the data through
the company DArT and analysing the data with specialized packages. This greasing
the wheels included data manipulation, further filtering, and exploratory analysis.
dartR was born.

There is a basic ethos to the package. While a working knowledge of RStudio is
expected, users of dartR need only a rudimentary understanding of R
programming. So dartR scripts have a particular structure that we hope any
developers will be willing to follow. This document describes that structure. A
common look and feel is delivered.

There are three ways in which a developer can contribute to dartR. Perhaps the
easiest is to contribute your script that takes a genlight object and delivers an
outcome. We can then provide the wrapping. You do not need to read further.

A second way is to fork the dartR package from github, make additions and
improvements, then submit a pull request. We will then examine your
contribution, perhaps modify it to comply with the structure outlined below,
retain you as the author but add a custodian, and add it in to the dartR
development pipeline.

A third way is for those wishing to make a substantial and ongoing contribution to
dartR to join the dartR development team.

Function Structure

In a nutshell
A dartR function has a well specified structure, which includes

1. Introductory code based on roxygen2;

2. Examples again coded in roxygen2;

3. The initial function definition;

4. Setting the verbosity level with the help of gl.set.verbosity();

5. Validating the data passed to the function with the help of
gl.check.datatype();

6. Checking that the required dependencies are in place;

7. Applying some function-specific checks on the values passed to the
function;

 Short Course — A Primer on dartR

University of Canberra 5

8. Announcing the start of the function for the user with the help of
utils.flag.start();

9. DO THE JOB

10. Delivering the graphical outputs

11. Saving the graphical outputs as gglplot and other outputs to the session
temporary directory;

12. Adding to the history of the genlight object, for later recall;

13. Announcing the closure of the function for the user;

14. Returning any parameters

15. Closing the function

A proforma to guide you in the preparation of functions for dartR is attached as
an appendix. The code we use to construct functions follows a standard format.

First there is introductory material to be interpreted by the R system to associate
a name, description, authors and references to the function. This section also
defines parameters to be called by the function, identifies functions from other
packages to be used, other packages to be imported as dependencies, and a
sample script that can be used to test the functions operation. The introductory
material typically ends with an export statement to signal that the function is to
be added to the NAMESPACE and so be available to users.

Let’s look at this in more detail.

Provide some initial Roxygen2 documentation

dartR uses the R package roxygen2 to document all the functions. Roxygen2 uses
the first lines of the function (those lines that start with #') to generate the R
documentation files of the functions (.Rd files), the NAMESPACE file and the
Collate field in DESCRIPTION file.

Here is an example

#' @name gl.report.callrate
#'
#' @title Report summary of Call Rate for loci or individuals
#'
#' @description
#' SNP datasets generated by DArT have missing values primarily
#' arising from failure to call a SNP because of a mutation at one
#' or both of the the restriction enzyme recognition sites. This
#' function reports the number of missing values for each of several
#' quantiles.
#'
#' @param x Name of the genlight object containing the SNP or
#' presence/absence(SilicoDArT) data [required].
#' @param method Specify the type of report by locus (method='loc')
#' or individual(method='ind') [default method='loc'].
#' @param plot_theme Theme for the plot. See Details for options
#'[default theme_dartR()].
#' @param plot_colors List of two color names for the borders and
#'fill of the plots [default two_colors].

Biomatix – biomatix.org.au

 6 University of Canberra

#' @param verbose Verbosity: 0, silent or fatal errors; 1, begin and
#'end; 2, progress log ; 3, progress and results summary; 5, full
#'report [default 2 or as specified using gl.set.verbosity]
#'
#' @details
#' The function \code{\link{gl.filter.callrate}} will filter out the
#' loci with call rates below a specified threshold.
#'
#' Tag Presence/Absence datasets (SilicoDArT) have missing values
#' where it is not possible to determine reliably if the sequence
#' tag can be called at a particular locus.
#'
#' Quantiles are partitions of a finite set of values into q subsets
#' of (nearly) equal sizes. In this function q = 20. Quantiles are
#' useful measures because they are less susceptible to long-tailed
#' distributions and outliers.
#'
#'\strong{ Function's output }
#'
#' The minimum, maximum, mean and a tabulation of call rate
quantiles against thresholds rate are provided. Output also includes
a boxplot and a histogram to guide in the selection of a threshold
for filtering on callrate.
#'
#' Plots and table are saved to the temporal directory (tempdir)
#'and can be accessed with the function
#'\code{\link{gl.print.reports}} and listed with the function
#'\code{\link{gl.list.reports}}. Note that they can be accessed only
#'in the current R session because tempdir is cleared each time that
#'the R session is closed.
#'
#' Examples of other themes that can be used can be consulted in:
#'\itemize{
#'\item \url{https://ggplot2.tidyverse.org/reference/ggtheme.html}
#' and
#'\item
#'\url{https://yutannihilation.github.io/allYourFigureAreBelongToUs/
#'ggthemes/}
#' }
#'
#'@return Returns unaltered genlight object
#'
#'@author Author: John Smith Custodian: James Wyneck -- Post to
#'\url{https://groups.google.com/d/forum/dartr}
#'
#'@examples
#' # SNP data
#' gl.report.callrate(testset.gl)
#' gl.report.callrate(testset.gl,method="ind")
#' # Tag P/A data
#' gl.report.callrate(testset.gs)
#' gl.report.callrate(testset.gs,method="ind")
#'
#'@references Gruber, B., Unmack, P.J., Berry, O. and Georges, A.

2018. dartR: an R package to facilitate analysis of
SNP data generated from reduced representation genome
sequencing. Molecular Ecology Resources 18:691–699.

#'
#'@seealso \code{\link{gl.filter.callrate}}
#'

 Short Course — A Primer on dartR

University of Canberra 7

#'@family filters and filter reports
#'
#'@importFrom dplyr join
#'@import patchwork
#'
#'@export
#'

Note that some specific characters will interfere when roxygen creates the above
files. Refer to the roxygen documentation for bells and whistles -- https://cran.r-
project.org/web/packages/roxygen2/vignettes/roxygen2.html

Define the function

The next step in creating your dartR function is to define the function.

gl.filter.callrate <- function(x,
method = "loc",
threshold = 0.95,
mono.rm = FALSE,
recalc = FALSE,
recursive = FALSE,
plot = TRUE,
bins = 25,
verbose = NULL) {

Set the verbosity level

Package dartR allows the user to specify verbosity in two ways. They can specify it
at the time of calling a function using the verbose = value. This parameter takes
on one of six values:

0 – silent or fatal errors. Good for batch processing.
1 – notifies begin and end, and fatal errors.
2 – notifies warnings and progress log, in addition to above.
3 – reports progress and results summary, in addition to above.
4 – to be implemented.
5 – displays a full report.

Alternatively the verbosity level can be set as an environment variable using
verbosity <- gl.set.verbosity(value=n). This script will check if
the user has specified the verbosity as a parameter in the call, or if not, pull it
from the environment. If it cannot find it in the environment, verbosity is set to 2.

SET VERBOSITY
 verbose <- gl.check.verbosity(verbose)

Apply checks of parameters

You now need to apply quality control checks on the user supplied parameters.

A utility script does some checks for you:

GENERAL ERROR CHECKING
 datatype <- utils.check.datatype(x, accept=c(”SNP”,

”SilicoDArT”, verbose=verbose)

https://cran.r-project.org/web/packages/roxygen2/vignettes/roxygen2.html
https://cran.r-project.org/web/packages/roxygen2/vignettes/roxygen2.html

Biomatix – biomatix.org.au

 8 University of Canberra

This function checks that the appropriate object has been supplied, that is, one of
class

• genlight or dartR
• dist
• fd
• matrix

as specified in the accept= parameter. If it is a genlight or dartR object, the
function ascertains whether it includes SNP data or SilicoDArT data. If none of the
above, it returns the class of the object (strictly class(x)[1]).

The function also checks the data for loci or individuals scored as all NA, and
notifies the user.

Next you should apply checks as to whether required functions are installed.

 # FUNCTION SPECIFIC ERROR CHECKING
pkg <- "HardyWeinberg"
if (!(requireNamespace(pkg, quietly = TRUE))) {
 stop(error("Package",pkg," needed for this function to work.

Please install it."))

}

You will also need to apply quality control checks on the user supplied parameters
that are specific to the particular function.

FUNCTION SPECIFIC ERROR CHECKING
 # Check that call rate is up to date and recalculate if necessary
 if (!x@other$loc.metrics.flags$callrate) {
 x <- utils.recalc.callrate(x, verbose = verbose)
 }

Flag the script start

To allow the user to follow the progress of their scripts, each function should
notify when it has started, and when it has finished, for verbose = 1 or greater.

FLAG SCRIPT START
 funname <- match.call()[[1]]
 utils.flag.start(func=funname,v=verbose)

Do the job
DO THE JOB

Finally, we get to the point where we can write the code to meet the purpose of
the function. Leave that to you.

Displaying output

We display graphical output using ggplot compatible plots, which scale nicely
depending on the RStudio configuration particular users have in place. To do this
we use packages ggplot and patchwork (see https://patchwork.data-imaginist.com)
For example

https://patchwork.data-imaginist.com/

 Short Course — A Primer on dartR

University of Canberra 9

DISPLAY GRAPHICS
 # Boxplot
 p1 <- ggplot(ind.call.rate, aes(y=ind.call.rate)) +

geom_boxplot(color=plot_colours[1], fill=plot_colours[2]) +
coord_flip() +
plot_theme + xlim(range=c(-1, 1)) +
ylim(0,1) + ylab(" ") +
theme(axis.text.y=element_blank(),
axis.ticks.y=element_blank()) +
ggtitle(title1)

 # Histogram
 p2 <- ggplot(ind.call.rate, aes(x=ind.call.rate)) +

geom_histogram(bins=50,color=plot_colours[1],
fill=plot_colours[2]) +
coord_cartesian(xlim=c(0,1)) +
xlab("Call rate") + ylab("Count") +
plot_theme

 # Combine using package patchwork
 p3 <- p1/p2 + plot_layout(heights=c(1, 4))
 print(p3)

Note that dartR plots use a pre-established plot theme (theme_dartR), colours
(two_colors and three_colors) and colour palettes (discrete_palette,
diverging_palette, convergent_palette and viridis_palette), which
are defined in the zzz.r file. To make these colours and theme available when
testing your function you should source the zzz.r file with

source(paste0(getwd(),"/R/","zzz.r"))

Finish up

To finish up, there are a few housekeeping matters. The first is to save any plots
and dataframes to the temporary directory tempdir(), so that they are
available to the more sophisticated user. They may for instance wish to access the
ggplot to modify it for publication.

SAVE INTERMEDIATES TO TEMPDIR
 if(save2tmp){
Create temp file names
 temp_plot <- tempfile(pattern

=paste0("dartR_plot",paste0(names(match.call()),"_",a
s.character(match.call()),collapse = "_"),"_"))

 temp_table <- tempfile(pattern =
paste0("dartR_table",paste0(names(match.call()),"_",a
s.character(match.call()),collapse = "_"),"_"))

Save to tempdir
 saveRDS(<plot>, file = temp_plot)
 saveRDS(<table>, file = temp_table)
 }

If your function modifies a genlight object and returns the new genlight object,
then you need to add your function call to the genlight object history:

ADD TO HISTORY
if (class(x)[1] == "genlight") {
 nh <- length(x@other$history)
 x@other$history[[nh + 1]] <- c(match.call())
 }

Biomatix – biomatix.org.au

 10 University of Canberra

This will enable the user to track the history of the genlight object with
gl.print.history(), optionally replay it with gl.play.history(), or apply the
history to another genlight object via assignment.

Print the end of the function, to match the message on function start:

FLAG SCRIPT END
 if (verbose >= 1) {
 cat(report("\n\nCompleted:", funname, "\n"))
 }

Return what you need to:

RETURN
 return(x)

or
 invisible(x)

depending on whether you want to script to print the returned object if the
function is called as a statement rather than an assignment.

and close the function:

}

Colour code your messages to the user

dartR functions use the R package crayon to differentiate the types of messages
within the functions:

• For fatal errors use error() which will print the message in red.
• For warning messages use warn() which will print the message in

yellow.
• For reporting messages use report() which will print the message in

green.
• For important messages use important() which will print the message

in blue.
• For other messages as code use code() which will print the message in

cyan.

The above colours should be used in function messages using cat() and
stop(), for example:

cat(report("Completed:", funname, "\n"))
stop(error("Data must include Trimmed Sequences\n"))

Note that these colours for messages are defined in the zzz.r file. To make
these colours available when testing your function you should source the zzz.r file
with

source(paste0(getwd(),"/R/","zzz.r"))

 Short Course — A Primer on dartR

University of Canberra 11

Programming Style
R is a programming language that allows a fair bit of flexibility, and so different
programmers develop different approaches to coding. Two programmers writing
code to address the same problem can generate quite different code, the code of
one sometimes quite difficult to decipher by the other.

Notwithstanding the object orientation of R, loose constraint on the style of
programming can be the enemy of collaborative effort. So, the first principle in
preparing code is:

Write your code for the future you
Indeed, write your code for the future programmer who might have to pick up
from you. In essence, this means writing for readability not efficiency, except
where efficiency really matters. Embedded object chains might be clever compact
coding, but at the expense of comprehensibility.

Comment, comment, comment. A person picking up your code, with
programming experience, but perhaps little experience with R, should be able to
comprehend your code. Takes time, but well worth the effort in the longer run.

Indent your code to clearly identify conditional blocks and repetition blocks. For
example:

if (all(x@ploidy==1)){
 cat(" Processing Presence/Absence data. \n")
} else if (all(x@ploidy==2)){
 cat(" Processing a SNP dataset\n")
} else {
 stop("Fatal: Ploidy must be universally 1 or 2!")
}

Each line should be wrapped, normally at 80 characters. If you are using RStudio,
there is a setting to help you do this. Go to Tools | Global Options |
Code | Display, and select the option Show Margin, and set margin
column to 80.

Try to avoid R functions that act in specific ways depending on context or
behaviour that requires a detailed understanding of R to interpret the actions. Use
R base functions where possible, or well-established utility packages.

When using a function from another package, loaded as a dependency, be
explicit. For example, when calling

fruits<-c("apples and oranges and pears and bananas")
str_split(fruits, " and ")

use

stringr::str_split(fruits, " and ")

to improve comprehensibility.

Biomatix – biomatix.org.au

 12 University of Canberra

Write efficient code
Notwithstanding the need to write comprehensible code, sometimes
compromising on efficiency to do so, there is no need to make code unnecessarily
or inadvertently inefficient.

Big inefficiencies can arise from the simplest mistakes. A common one is to
compute and recompute a variable inside a loop when that variable or a
component of it does not depend on the loop index.

for (i in 1:nLoc(x)) {
 n <- nInd(x)
 var[i] <- sum(as.matrix(x)[i,])/n
}

This code is very inefficient for a number of reasons. First, it calculates n over and
over again for each iteration of the loop, when it needs only be calculated once.
Any calculations not involving the index i should be taken outside the loop.

Second, it calls in a major deficiency in R, where object types are not declared. R
must interrogate the object on each encounter to determine what it is and handle
it appropriately. This interrogation of x by the as.matrix function, and the
conversion of x to a matrix is repeated for each iteration of the loop, with a
dramatic loss of performance.

Third, there is a calculation involving n which is not subject to index i and so does
not need to be repeated for each iteration of the loop.

A much-improved approach is

mat <- as.matrix(x)
n <- nInd(x)
loc <- nLoc(x)
for (i in 1:loc) {
 var[i] <- sum(mat[i,]
}
var <- var/n

A little more wasteful of memory, but a great improvement in computation time.
R aficionados might suggest alternatives that are even more efficient, and
adegenet aficionados, yet more efficient approaches drawing upon adegenet
accessors.

Follow best practice in Coding Style
We have talked about comprehensibility of code, through adequate commenting,
but there is also the matter of style. We encourage you to follow the style guide
of Hadley Wickham as outlined in Edition 1 of his book Advanced R. The relevant
section can be found here -- http://adv-r.had.co.nz/Style.html.

Etiquette
When working in a team of developers, it is important to follow unwritten
etiquette. In particular, do not stomp in someone else's garden. Do not modify
their scripts without discussing with them the problem that needs to be solved,
and what you propose to do to resolve it. When contributing to a script in which
another team member is contributing, try to maintain their formatting style
where possible. But basically, the message is communication, communication,
communication.

http://adv-r.had.co.nz/Style.html

 Short Course — A Primer on dartR

University of Canberra 13

Data Structure
 dartR relies on the SNP data being stored in a compact form using a bit-level
coding scheme. SNP data coded in this way are held in a genlight object that is
defined in R package adegenet (Jombart, 2008; Jombart and Ahmed, 2011). Refer
to the tutorial prepared by Jombart and Collinson (2015), called Analysing
genome-wide SNP data using adegenet 2.0.0.

Note that for SNP data, the values are 0 for homozygous reference, 1 for
heterozygous, 2 for homozygous alternate, NA for missing, with ploidy set
universally to 2. This differs from the coding used by DArT.

Note that for SilicoDArT data (sequence tag present/absent) the values are set to
0 for absent, 1 for present, NA for missing, with ploidy set universally to 1.

The genlight objects used in dartR not only have the SNP/SilicoDArT data, but also
allow for attachment of locus metadata to the loci, and attachment of individual
metadata to the individuals/samples. This is represented diagrammatically in Fig.
1.

Figure 1. Diagram of the structure of a genlight object in dartR. Note that it is a superset of
the genlight object defined by adegenet in that it has additional data as flags. This means
that all of the adegenet functions can be used on a dartR genlight object, but that you may
need to run gl.compliance.check() if the genlight object accessed by your scripts is
not generated within dartR.

Locus metadata
The locus metadata included in the genlight object are those provided as part of
your DArT PL report. These metadata are obtained from the DArT PL csv file when
it is read into the genlight object. The locus metadata are held in an R data.frame
that is associated with the SNP data as part of the genlight object. In addition,
dartR calculates an estimate of read depth, at the time of reading the data in, and

Biomatix – biomatix.org.au

 14 University of Canberra

stores this in the locus metadata. These metadata variables are held in the
genlight object as part of a data.frame called loc.metrics, which can be accessed
by your scripts as follows:

Only first 10 entries shown
gl@other$loc.metrics$RepAvg[1:10]

[1] 1.000000 1.000000 1.000000 1.000000 0.989950 1.000000 0.993274
[8] 1.000000 1.000000 0.980000

You can check the names of all available loc.metrics via:

names(gl@other$loc.metrics)

[1] "AlleleID" "CloneID" "AlleleSequence" "SNP"
[5] "SnpPosition" "CallRate" "OneRatioRef" "OneRatioSnp"
[9] "FreqHomRef" "FreqHomSnp" "FreqHets" "PICRef"
[13] "PICSnp" "AvgPIC" "AvgCountRef" "AvgCountSnp"
[17] "RepAvg" "clone" "uid" "rdepth" "maf"

You can add new metrics by simple assignment.

gl@other$loc.metrics$newvariable <- vector

Individual metadata
Individual (=specimen/sample) metadata are typically user specified. Individual
metadata are held in a second dataframe associated with the SNP data in the
genlight object (see Fig. 1).

Two special individual metrics are:

id Unique identifier for the individual or specimen that links back
to the physical sample.

pop A label for the biological population from which the individual
was drawn.

These special metrics can be accessed in your scripts using:

pop(gl)
popNames(gl)
indNames(gl)
table(pop(gl))

You can check the names of all available ind.metrics via:

names(gl@other$ind.metrics)

[1] "id" "pop" "lat" "lon" "sex" "maturity" "collector" "location" "basin" "drainage"

They can be accessed by your scripts in the following way:

Only first 10 entries shown
gl@other$ind.metrics$sex[1:10]

[1] Male Male Male Male Unknown Male Female Female Male Female
Levels: Female Male Unknown

You can add new metrics by simple assignment.

mailto:gl@other$loc.metrics$newvariable

 Short Course — A Primer on dartR

University of Canberra 15

gl@other$ind.metrics$newvariable <- vector

Flags
A number of flags (scalar variables, type logical) are also stored in the genlight
object, to indicate if the locus metadata are current, or if they require
recalculation.

testset.gl@other$loc.metrics.flags

AvgPIC OneRatioRef OneRatioSnp PICRef PICSnp CallRate maf FreqHets FreqHomRef FreqHomSnp
 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 monomorphs
 FALSE

Your scripts will need to attend to these flags. For example, if you remove
monomorphic loci by direct coding, not using gl.filter.monomorphs, then
you will need to set the monomorphs flag to TRUE. In particular, if you delete
individuals or populations from the data set, a number of the associated metrics
will no longer be accurate. You will need to set the appropriate flags to FALSE in
your script. The function gl.recalc.metrics may be useful.

History
The dartR genlight object also has its history recorded, and your scripts need to
attend to maintaining this history but only when the genlight object has been
modified.

ADD TO HISTORY
if (class(x)[1] == "genlight") {
 nh <- length(x@other$history)
 x@other$history[[nh + 1]] <- c(match.call())
}

Traps for the unwary
The SNP or SilicoDArT data can be accessed by converting the genlight object to a
matrix using the function as.matrix() or by accessing the genlight object
directly using adegenet accessors. Caution needs to be exercised to be sure that
any manipulation to the genotypes is accompanied by companion manipulation to
the metadata. Adegenet will not look after this for you in all instances.

Test datasets
Test datasets are included in the dartR package and you should use these for
incorporating examples in your scripts. These datasets are small, so that your
examples will run quickly in accordance with the requirements of CRAN.

testset.gl SNP dataset
testset.gs Silico dataset

mailto:gl@other$ind.metrics$newvariable

Biomatix – biomatix.org.au

 16 University of Canberra

Contributing your work

Workflow

dartR’s code is hosted on GitHub and so anyone can contribute code to be
incorporated into the package via well-established protocols. Individual
developers willing to contribute to dartR need to understand how these protocols
work in terms of a workflow and individual preferences for a pipeline to
implement that workflow. Fig. 2 diagram outlines the workflow.

Figure 2 shows how you as a developer can interact with the workflow of the core
dartR team. The end point of this workflow is a version of dartR distributed via the
CRAN repository (orange box). Once the core dartR team has a revised version
that has been adequately tested (master) they submit this to CRAN for their
thorough checking and release. Hence the master branch of the dartR GitHub
repository and the CRAN version of dartR remain identical. As a developer, you do
not need to and should not access the master branch directly.

Figure 2. A workflow for the dartR development team using GitHub for version control.
Grey boxes are on remote (=origin); blue boxes are local to the developer. Orange arrows
show actions to be taken by the core dartR team; blue arrows show actions to be taken by
individual developers. The flowchart on the left is for a regular contributor (in this case,
Jacob); that on the right is for an occasional contributor (in this case, Julie). It is prudent to
always follow the direction of the arrows, and not take actions that will flow in reverse
directions.

 Short Course — A Primer on dartR

University of Canberra 17

Workflow for the regular contributor

The dev branch is a work in progress, incorporating all the latest changes from
individual developers. It is available for downloading by end users who want the
latest features at the risk of them not being fully tested. In other words, the dev
branch acts as a beta version of dartR.

Individual developers who make regular contributions will request a personal
branch of dev upon which to work, innovate, debug, etc. For example, developer
Jacob will request and maintain a personal branch of dev called dev_jacob on
the dartR remote GitHub site (green-striped-gecko). It is from this personal branch
that the core dartR team will periodically evaluate and incorporate (merge) the
changes made by Jacob into the dev branch available to all users and ultimately
pass those changes up the workflow to the CRAN version.

To work on their branch, Jacob needs to create a local copy of their branch. They
work locally on dev_jacob, and periodically commit and push their changes up
to the remote version of dev_jacob.

At some point, the core dartR team will merge the remote versions of
dev_jacob into dev. At this point, because both the modifications of Jacob are
now incorporated into dev, both the local and remote versions of dev_jacob
will become stale. The branch dev_jacob will not have the modifications made
by other developers or indeed modifications made by the core dartR team.

Clearly there is the potential for the local and remote branches established by
individual developers to diverge from the work that has been contributed by
others. To avoid working on stale branches, regular contributors should follow the
procedure below:

1. Pull the latest working version of dartR from the remote origin/dev to
your local branch (e.g. dev_jacob).

2. Resolve any conflicts (hopefully few if you do all of this regularly).
3. Add new scripts or alter existing scripts, do a local build, and test the scripts

function appropriately without error.
4. Commit any changes you have made to scripts, and include any files created by

the local build.
5. Push your local branch (e.g. dev_jacob)to your remote branch (e.g.

origin/dev_jacob)where it is then available to the Core dartR Team to
evaluate your changes committed in 1 above, and ultimately merge with dev.

The rule is to follow the flow shown in Figure 2, and never take action that is in
the reverse direction. Conflicts arising in step 4 should be minimal if you routinely
follow this workflow. Ideally, resolving conflicts should be the task of the core
development team.

Workflow for the occasional contributor

The occasional contributor should simply fork /dev from the dartR repository to
create a clone on their personal github site. They can then pull a copy locally,

Biomatix – biomatix.org.au

 18 University of Canberra

work on it, and push it back to the cloned copy. Once they have finished the
development (including a build and check), they need to submit a pull request to
bring their work to the attention of the development team. The development
team will examine the contribution for conflicts with the work of others, check the
scripts for consistency, and then incorporate the new or revised scripts into /dev
on the dartR repository.

The process can then begin again. It is best to avoid development in the period
between when the pull request is submitted and when you fork a new copy of the
/dev in order to undertake further work.

Quality Control

There are three levels of quality control over coding, needed to meet the
stringent conditions placed on packages by CRAN.

The first layer of quality control occurs when you build your revised version of the
package locally. Any errors at this point need to be addressed.

Then, when you push your local branch (e.g. dev_jacob) to your remote branch
(e.g. origin/dev_jacob), a number of checks will be made to ensure your
new scripts are consistent with the CRAN environment. This takes some time, and
you will be sent an email outlining how to access the error log through Gighub. It
will be challenging at first, but you will need to resolve any errors that are
detected and then push your local copy to remote again.

A final check is made when the Core dartR team merge your remote copy of the
package into /dev. They will notify you of any difficulties.

Pipelines

The above workflow shows what needs to be done and in what order to
contribute to dartR via the core development team. It does not explain how to do
it because each developer will have their own tools for interacting with Git and
GitHub.

RStudio allows you to pull, commit and push between your local and remote
branch (e.g. dev_julie), which provides the means of contributing new scripts,
modifying existing scripts and making them available to the core dartR team for
integration with dev and ultimately the Beta version then master and CRAN.

Unfortunately, the RStudio plug-in for Git does not allow you to pull from remote
dev, the latest working copy, to your branch. You will need to find a way of doing
this. A useful tool for executing the dartR workflow for Windows users is
TortoiseGit available from https://tortoisegit.org/download/. This allows you to
assess where your branch is in relation to the dev branch, and to pull from the
dev branch to your local dev_jacob or dev_julie branches. TortoiseGit is
fully functioned for all other tasks you might contemplate.

Alternatively, you can use the command line, for example:

https://tortoisegit.org/download/

 Short Course — A Primer on dartR

University of Canberra 19

git pull origin dev

will pull a copy of dev to the local branch dev_jacob (with the appropriate
configuration in place). You can then push it up to remote branch dev_jacob to
complete the synchronization.

Further reading

Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic markers.
Bioinformatics, 24(11), 1403-1405.

Jombart, T., & Ahmed, I. (2011). adegenet 1.3-1: new tools for the analysis of genome-
wide SNP data. Bioinformatics, 27(21), 3070-3071.

Jombart T. and Caitlin Collins, C. (2015). Analysing genome-wide SNP data using adegenet
2.0.0. http://adegenet.r-forge.r-project.org/files/tutorial-genomics.pdf

Gruber, B., Unmack, P.J., Berry, O. and Georges, A. 2018. dartR: an R package to facilitate
analysis of SNP data generated from reduced representation genome sequencing.
Molecular Ecology Resources, 18:691–699.

Wickham, H. Advanced R (1st Edition). Chapman and Hall. Style Guide -- http://adv-
r.had.co.nz/Style.html.

Ende

http://adegenet.r-forge.r-project.org/files/tutorial-genomics.pdf

Biomatix – biomatix.org.au

 20 University of Canberra

Appendix: Sample function proforma
#'@name gl.<function name> (it may not contain ‘!’ ‘|’ nor ‘@’)
#'
#'@title <short informative title> (should not end in a full stop)
#'
#'@description <short description> (one paragraph, a few lines only)
#'
#'@param <name> <description> [required or default <value>]
#'@param <name> <description> [required or default <value>]
#'@param <name> <description> [required or default <value>]
#'
#'@details <detailed description of the function>
#'
#'@return <description of returned object>
#'
#'@author <author name(s)> (Post to

\url{https://groups.google.com/d/forum/dartr})
#'
#'@examples <executable R code showing how to use the function>
#'
#'@references <reference to literature>
#'
#'@seealso \code{\link{<name of related function(s)>}}
#'
#'@family <name of the functions group>
#'
#'@importFrom <package> <function> (functions from other packages)
#'
#'@export (adds the function to the NAMESPACE file)
#'

gl.<function name> <- function(x,
 <parameter> = < default value >,
 plot_theme = theme_dartR(), (if plots)
 plot_colours = two_colors, (if plots)
 verbose = NULL) {

 # SET VERBOSITY
 verbose <- gl.check.verbosity(verbose)

 # FLAG SCRIPT START
 funname <- match.call()[[1]]
 utils.flag.start(func=funname,build="Jody",v=verbose)

 # CHECK DATATYPE
 datatype <- utils.check.datatype(x, verbose=verbose)

 # FUNCTION SPECIFIC ERROR CHECKING
 # check if packages are installed
 pkg <- "HardyWeinberg"
 if (!(requireNamespace(pkg, quietly = TRUE))) {

 Short Course — A Primer on dartR

University of Canberra 21

 stop(error("Package",pkg," needed for this function to work.
Please install it."))

 }

FUNCTION SPECIFIC ERROR CHECKING

 if (<Condition>) {
 stop(error(" <message> \n")
 }

DO THE JOB

 (if to be used in the function)
 # recalculate/modify @others slot (ind.metrics, loc.metrics)

 < main body of the function >

DISPLAY OUTPUTS

(if plots and reports are to be displayed)
 # displayed plots and reports
 print(<plot>)
 print(<report>)

SAVE INTERMEDIATES TO TEMPDIR

 (if plots and reports are to be saved to tempdir)
 # creating temp file names

temp_plot <- tempfile(pattern = paste0("dartR_plot", paste0(
names(match.call()), "_" , as.character(
match.call()), collapse = "_"),"_"))

temp_table <- tempfile(pattern = paste0("dartR_table",paste0(
names(match.call()), "_", as.character(match.call()
), collapse = "_"), "_"))

 # saving to tempdir

saveRDS(p3, file = temp_plot)
if(verbose>=2){
 cat(report(" Saving the plot in ggplot format to the

tempfile as",temp_plot,"using saveRDS\n"))
 }

saveRDS(df, file = temp_table)
if(verbose>=2){
 cat(report(" Saving the outlier loci to the tempfile

as",temp_table,"using saveRDS\n"))
 }

 if(verbose>=2){
 cat(report(" NOTE: Retrieve output files from tempdir using

gl.list.reports() and gl.print.reports()\n"))
 }

ADD TO HISTORY

 if (class(x)[1] == "genlight") {
 nh <- length(x@other$history)
 x@other$history[[nh + 1]] <- c(match.call())

Biomatix – biomatix.org.au

 22 University of Canberra

 }

FLAG SCRIPT END

 if (verbose >= 1) {
 cat(report("Completed:", funname, "\n"))
 }

RETURN

 return(<object to return>) OR invisible(<object to return>)

}

	Contents
	Purpose of this Document
	Function Structure
	In a nutshell
	Provide some initial Roxygen2 documentation
	Define the function
	Set the verbosity level
	Apply checks of parameters
	Flag the script start
	Do the job
	Finish up
	Colour code your messages to the user

	Programming Style
	Write your code for the future you
	Write efficient code
	Follow best practice in Coding Style
	Etiquette

	Data Structure
	Locus metadata
	Individual metadata
	Flags
	History

	Traps for the unwary
	Test datasets
	Contributing your work
	Workflow
	Quality Control
	Pipelines

	Further reading
	Appendix: Sample function proforma

