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TECHNICAL NOTE

Distance and Visualization in Population Genetics
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A basic concept in population genetics is the Wright-Fisher model named after
Sewall Wright and Ronald Fisher, two individuals who set much of the foundation
in theoretical population genetics. In its simplest form, this model consists of a
single locus with two alleles in a population of constant finite size and does not
incorporate selection or mutation. Over a specified period (e.g. one season, one
generation), all individuals randomly mate and then die, leaving only the new,
nonoverlapping generation. Through the process of random mating, one allele
may become present in greater frequency than another in the offspring of the
new generation owing to genetic drift. If the population is finite, this means that
one allele must decrease in abundance to accommodate the increase in the
abundance of the other. Through time one allele eventually might become extinct
resulting in the system moving to a state of fixation, where only one allele exists.

As such, the fundamental processes of population genetics that lead to
divergence between populations arise from the interplay of drift, gene flow and
selection for one allele over another. The outcome of these processes over time
can be captured as genetic distance between populations.

Genetic distances between populations and between individuals are intertwined
because one often examines structure by considering genetic difference and
similarity among individuals with no preconceived notion of how they might
aggregate into natural groupings. Genetic distance between individuals is
influenced by the processes of random assortment of alleles (or not) during
sexual reproduction, whether the parents were more related in some way than
individuals in the general population, other influences on non-random mating,
the source of the individuals in the context of barriers to gene flow, etc.

Whether considering populations or individuals, genetic distance is an important
concept in population genetics.

There is a daunting plethora of distance and dissimilarity measures in the
literature®. Fortunately, SNP data have characteristics that limit options
substantially. SNP genotypes are comprised of biallelic markers, scored as the
frequency of the alternate allele — 0 for homozygous reference allele, 2 for
homozygous alternate allele, and 1 for heterozygotes (in diploid organisms). The
attributes (SNP loci) are thus all measured as genotypes on the same scale (0, 1 or
2). Thus standardization or normalization is not required as would be under some
circumstances in multiallelic systems. The values of 0 and 2 carry equal weight,
because the choice of reference allele and alternate allele is arbitrary. The value
of 0 is not a true zero. Any distance measures that give differential weight to 0
will yield results that depend on the arbitrary choice of which allele is reference
and which is alternate, and this cannot be the case. Such distance measures can
be eliminated from consideration.
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For SNP data that comprises presence or absence of the amplified sequence tag —
0 for absence and 1 for presence — there exists an array of binary distance
measures that are appropriate, but the field of options is manageable.

These notes introduce the concept of distance, the importance of metric
properties and the most familiar of distances, Euclidean distance. The rationale
for the related techniques of Principal Components Analysis (PCA)** and Principal
Coordinates Analysis (PCoA)°® is presented, followed by the rationale for genetic
distances of relevance to SNP datasets. Application of these techniques using
dartR is described to make it clear exactly what algorithms are applied.

We use the concept of distance loosely to encompass the notions of measures of
dissimilarity through to metric distances and rigid Euclidean distances. Where the
distinction is necessary, a distance is referred to as a non-metric distance, a
metric distance, or a Euclidean distance. We refer to individuals or samples or
specimens as entities, the SNP loci that are scored for each entity as attributes,
and the scores themselves as states.

Possibly the best way to introduce the concept of distance is with a familiar
example. Euclidean distance is a common-sense notion derived as an abstraction
of physical distance. The distance between two points in our physical space can
be measured, as the shortest distance between them, to any desired level of
accuracy with a ruler or gauge.

It is possible also to calculate the distance between two points from their
coordinates in a space defined by orthogonal Cartesian axes (Figure 1).

d(A.B) = (3, - X, + (¥, - X,)?

B

.y_')_'

X] yl

Figure 1. Distance between two points A and B represented in
two-dimensional space can be calculated from their Cartesian
coordinates using Pythagoras’ rule — the square of the
hypotenuse of a right-angled triangle is equal to the sum of the
squares of the two adjacent sides.

The distance between two points in space is calculated by applying Pythagoras’
rule to their projection onto the Cartesian axes (Figure 1).
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d(A,B)? = (y1 — x1)* + (¥ — x2)?

and so the distance between two points A and B can be represented algebraically
by

d(4,B) = \/(Y1 = x)2+ (72 — x2)?

This calculation can be generalized to 3 dimensions

d(4,B) = \/(Y1 = x)%+ (2 — %)%+ (3 — x3)?

and beyond to L dimensions

dA4,B) = | Y (=
i=1

Euclidean distance is just one of many distance measures. The concept of
distance more generally can be distilled down to three basic properties. For a
metric distance:

d(AB)=0ifandonlyif A=B

d(A,B) =d(B,A)

d(A,B) <d(A,C) +d(B,C)
The first condition asserts that indiscernible entities are one and the same. The
second condition asserts symmetry. The last condition is referred to as the
triangle inequality which enforces the notion that the distance between two

points is the shortest. From these properties we can conclude that metric
distances must be non-negative.

d(A,B)>0
In essence, metric distances are well behaved distances.

Graphically, the metric property makes complete sense for a distance (Figure 2).
Given three points defined by the distances between them, the position of each
of them is uniquely defined. This is necessary (though not sufficient) if we are to
draw an analogy between our distances and a representation in a linear physical
space.

A B < diACH+ dfB.C) so O exists A B > di A Cr + dif, C so Cundefined

?

dB.C)
diA.Cl dfd.C)
d(B.C)

A diA,B) B A A8 B

Figure 2. If three distances between A, B and C satisfy the metric
properties, then the position of each of A, B and C in space is well defined.
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Euclidean Distance is a metric distance.

A genetic distance between two individuals (= samples, specimens) or between
two populations is a measure of their genetic dissimilarity. If two individuals or
populations have very different genetic profiles, then the measure of dissimilarity
will be large. If they have similar genetic profiles, then the measure of
dissimilarity will be low. If they have identical genetic profiles, the measure of
dissimilarity will be zero. This is a common-sense notion that fits in well with the
concept of distance.

Consider a bivariate plot where the axes are defined by the loci and the value
taken on each axis is represented by the genotype, which in the case of SNP data
is essentially the frequency of the alternate allele (Figure 3). For each individual at
a particular locus, the genotype is scored 0 for an individual that is homozygous
reference allele (count of zero for the alternate allele); it is scored 1 for an
individual that is heterozygous at that locus (count of one for the alternate allele);
and it is scored 2 for an individual that is homozygous for the alternate allele
(count of 2 for the alternate allele).

In Figure 3, we plot two individuals in a space defined by two loci. Individual A is
heterozygous for both Locus 1 and Locus 2 and individual B is homozygous for the
alternate allele at each of the two loci.

Locus 2

24— ——_———————— =

d(A,B)

SNP Genotype

Locus |

SNP Genotype

Figure 3. Two individuals, A and B, plotted in a space
defined by their genotypes at Locus 1 and Locus 2. The
values taken by an individual at a locus are O,
homozygous reference allele; 1, heterozygous; 2,
homozygous alternate allele. In effect, each axis
represents the frequency of the alternate allele at the
corresponding locus.
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Euclidean distance is defined by:

d(A,B) = Z(xi - y)?

where X and yj are the counts of the alternate allele at locus i for individual A and
B respectively, and L is the number of loci. In this case of two loci

dAB)=J2-1)2+@2-1)2=+2

Note that the contribution of a locus to the distance between A and B is invariant
under the choice of which allele is assigned reference and which is assigned
alternate. To demonstrate this, reassign the reference allele to alternate and the
alternate allele to reference at a locus, that is, let

x'=2—-x
y=2-y
then

=YD= 1C-x)— -y’ = (xi —»)°
so the Euclidean Distance is invariant under our choice of which allele is to be
considered reference and which alternate. This result is really important because
we cannot have the value of our genetic distance depending on an arbitrary
choice of which SNP allele is the reference allele and which is the alternate allele.
An Example of Euclidean Genetic Distance

Consider data for two individuals scored for six loci. The score O represents
homozygous reference, 2 represents homozygous alternate, and 1 represents the
heterozygous state.

LocO1 Loc02 Loc03 Loc04 Loc05 Loc06
IndA 0 0 2 2 2 1
IndB 0 1 0 1 2 1

Applying the above formula for d(A,B) yields
d(4,B)?=0+1+4+1+0+0=6
d(4,B) =6 =245

which you can easily confirm for yourself.

Rationale

Principal Components Analysis (PCA)>™* is a method of visualizing structure in a
multivariable dataset, that is, where the entities have attributes that exceed in
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number the 2 or 3 that can be plotted. At first glance, PCA does not appear to be
a distance analysis, but hopefully you will appreciate the connection when
reading the section on a related technique, Principal Coordinates Analysis (PCoA).

ATTRIBUTES
Locusl Locus2 Locus3 Locus4  Locus5 Locus6é  Locus7 Locus8  Locus9 Locus10 Locusll
Ind01 0 0 1 0 0 0 1 0 0 0 1
Ind02 0 0 2 1 0 0 2 1 0 0 2
Ind03 0 0 2 0 0 0 2 0 0 0 2
«~ Ind04 0 0 2 1 0 0 2 1 0 0 2
UEJ Ind05 1 0 2 2 NA 0 2 2 0 0 2
2 Indo6 0 0 0 0 1 0 0 0 0 0 0
“ Indo7 0 1 0 0 0 1 0 0 0 1 0
Ind08 0 0 0 0 0 0 0 0 0 0 0
Ind09 0 0 0 0 0 0 0 0 0 0 0
Ind10 NA 0 0 0 0 0 0 0 0 0 0

Table 1. A SNP genotype dataset comprises the entities (individuals) scored across the attributes (loci)
where the data within the individual by locus matrix are the states (genotypes: 0 for homozygous
reference allele, 1 for heterozygous, 2 for homozygous reference allele and NA for missed calls).
SNP genotype datasets can be organised into a matrix of Individuals (rows) by
Loci (columns) (Table 1). Principal Components Analysis begins with the entities
(individuals or samples or specimens) each represented as a point in a
multivariable space defined by the L independent loci (see Figure 3). It then
remaps those points, maintaining their relative positions, in a new ordered set of
orthogonal axes derived as linear transformation of the original axes. They are
ordered in the amount of information they contain, so that the first few axes tend
to contain information on any structure in the data (signal) and later axes tend to
contain only noise®.

We might, for example, represent N individuals in a space defined by distances
calculated from their SNP scores for L loci, that is, as a cloud of points in an L-
dimensional space (Figure 4a). With the variation among populations spread
across L axes, say 10,000 axes, it is impossible to peruse the data to identify any
genetic structure.

Instead, the basis defined by the original L coordinate axes can be centred then
rotated to form a new set of L coordinate axes without changing the relative
proximity of the depicted points. In Principal Coordinates Analysis, the L axes are
rotated such that the first new axis is in the direction of maximal variation in the
data; the second new axis, orthogonal to the first, lies in the direction of maximal
remaining variation; the third new axis, orthogonal to the first two, lies in the
direction of maximal remaining variation, and so on (Figure 4b). The new, L
ordered axes are then adopted as the basis for our new reference system (Figure
4c).

The final solution is a multivariate space defined by a basis with distinct ordered
dimensions equal to the number of entities minus 1 or the number of attributes,
whichever is the lesser, after removing redundancy.

The mathematics of PCA draw from either the covariance matrix or the
correlation matrix (standardized covariance matrix). Because SNP data are all

10
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measured on the same scale, the covariance matrix is preferred as
standardization is not necessary.

(a) x b}

FCAZ

Figure 4. The process of reduced space representation used in Principal Components Analysis
illustrated in two dimensions. (a) The entities are represented in Euclidean space defined by Cartesian
coordinates X and Y; (b) New axes are selected as linear combinations of the original axes after
centering and optionally standardizing the data, with the first (PCA1) in the direction of maximal
variation in the data, the second (PCA2) orthogonal to the first in the direction of maximal remaining
variation; (c) The new axes are used as a new basis for the spatial representation of the entities.
Using PCA, we can take a SNP data matrix (genotypes or presence-absence data),
represent the entities (individuals or samples or specimens) in a space defined by
the L loci, represent that space in new orthogonal axes ordered on the
contribution of variance in their direction, and examine important patterns of
variation among the entities in a relatively few dimensions, preferably 2 or 3. This
is a very powerful visual technique.

The analysis yields the following information.

Eigenvalues  eigenvalues give the component of variation in the direction of
each dimension of the reduced space representation.

Scores scores are the coefficients of the linear relationships that define
the new PCA axes and are used to plot the entities in the
ordinated space.

Loadings loadings are the correlations between the original variables (the
SNP loci) and the principal components. They give an indication of
which loci are contributing to variation along particular PCA axes.

Consider the reduced space representation of individuals sampled from across a
wide geographic range (Figure 5). Here we have a projection of the multivariable
data in only two dimensions, capturing 42.8% of total variation among entities, to
reveal the essential structure present.

Note that were the data to have been drawn from a panmictic population
(arguably the null proposition), each of the original variables would, on average,
be expected to capture the same quantity of variance, and the PCA would fail
(the first two axes would each represent only a small percentage of the total
variance). The visualization of Figure 5 is informative because the different
populations differ in genetic composition. There is structure to uncover.

11 University of Canberra
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PCoA Axis 2(10.5%)

g, M

PCoA Axis 1(23.3%)
Figure 5. A PCA plot of individuals of turtle species in the genus
Emydura sampled from across the Australian continent. A total of
42.8% of variation is captured in the first two of the ordered axes.
Substantial structure across the landscape is clearly evident.

How many dimensions to retain?

The question now arises as to how many dimensions are required to fully capture
the structure. A PCA plot can be misleading if one arbitrarily chooses, for
convenience, only two dimensions in which to visualize the solution. Separation
in the 2-D plot can be accepted as real, but proximity cannot. For example, in
Figure 5, the individuals drawn from the Murray-Darling Basin (MDB) and the
coastal rivers of Queensland and NSW (Coastal) are in close proximity in the 2-D
plot. But were we to consider a third dimension (% variation explained < 19.5%
but nevertheless possibly substantial), the MDB and Coastal individuals might be
well separated. Interpreting proximity in a PCA requires careful interpretation.

There are a few techniques that can assist in the decision on how many
dimensions to include in the final PCA solution and how to sensibly interpret the
structure if more than three such dimensions are indicated.

The most commonly used approach is a scree plot’, where the eigenvalues
(variance explained) associated with each of the new ordered dimensions are
plotted (Figure 6).

It is usual only to consider dimensions that have more than the average
eigenvalue (the Kaiser-Guttman criterion®) because anything less than the
average explains only that explained by each of the original variables, on average.
Even so, this may leave many dimensions still in consideration (14 in Figure 6). A
rule of thumb is to only consider axes that explain more than 10% of total
variation, or one can look for a sudden drop in the percentage variation explained
as a threshold.

12
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Scree plot for PCoA

Percentage Contribution
“ 5 = ]
.
-
P

o

Eigenvalue

Figure 6. A Scree Plot’ of the percentage contribution to total

variance of each axis in the ordinated space. Eigenvalues give the

component of variation in the direction of each dimension of the

reduced space representation. Because the dimensions are ordered,

the first eigenvalue is the largest, followed by the second, the third

and so on for N-1 dimensions. In this case, at least three dimensions

(> 10%) are indicated.
Common sense can also prevail. If you have three primary clusters in your
reduced space representation, arising from aggregations of individuals that are
diverging from other such aggregations independently through drift, then two
dimensions will be adequate. Any three points (centroids) can be represented in
2-D space. If you have four primary clusters, diverging from each other
independently through drift, then three dimensions will be required — required
because, having captured the variation between the three major clusters in two
dimensions, it is highly unlikely that the fourth cluster will diverge from the other

three in the direction of their common plane.

The number of dimensions can be decided by considering both the scree plot and
the gross structure among entities in the PCA. However, to make the decision to
use only 2 or 3 dimensions as the final solution, simply because it is easy to
present as a graph, is not appropriate.

Visualizing structure in 4 or more dimensions

Final solutions in 2D can be reported in publications, but what do you do if 3 or
more dimensions are indicated?

There are three approaches to examining structure in more dimensions than two.
The first is to construct a 3D plot and rotate it to best display the distinction
between clusters. That approach is appropriate if the scree plot indicates that
three dimensions are sufficient to represent the structure in the dataset.

Separation between two clusters of entities in two dimensions can be accepted
as real, but adjacency might belie separation in deeper dimensions. In Figure 5,
above the MDB and the Coast are overlaid, but this might not be sustained on
examination of Axes 3 and 4. A second approach is to plot deeper dimensions
taken two at a time, say by plotting PCA1 against PCA3 for example. This would
show the true relationship between clusters MDB and Coastal that are overlaid in

13
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the 2D solution of Figure 5, for example. The presentation of multiple pairwise
plots is common in reporting PCA results.

A third approach is to run a separate PCA on each distinct cluster to examine
structure within®. This is like treating the deeper dimensions as 2D or 3D 'bubbles'
that emanate from a single point (the cluster centroid) in the initial 2D space. An
example might be to run a separate PCA on the individuals in the MDB and
Coastal cluster of Figure 13.

Impact of missing values

Missing data are problematic for distance analyses. Techniques like PCA that
access the raw data matrix cannot accommodate missing data, and PCoA which
accesses a distance matrix, is affected in ways that are not entirely transparent.

With SNP genotypes, missing data can arise because the read depth is insufficient
to yield full coverage of the sequence tags in the genome, or because of
mutations at one or both of the restriction enzyme recognition sites in some
individuals. In SNP presence-absence data, missing values arise because the read
depth is insufficient to be definitive about the absence of a particular sequence
tag. SNP datasets typically have substantial numbers of missing values.

Classical PCA will not accept missing values, so if a locus is not scored for a
particular individual, either the locus must be deleted or the individual must be
deleted. This is clearly very wasteful of information.

The data loss can be managed to an extent by pre-filtering on call rate by locus
(say requiring a call rate > 95%) or by individual (say requiring a call rate > 80%),
but the remaining missing data need to be managed. Numerous ways for
handling missing data in PCA have been suggested'’, but the most common
method is to replace a missing value with the mean of the allele frequencies for
the affected individual (mean-imputed missing data).

Mean-imputed missing data can lead to the individuals (or samples or specimens)
with a high proportion of missing data to be drawn out of their natural grouping
and toward the origin, which can lead to potential misinterpretation®3. For
example, if individuals in the PCA aggregate into natural clusters, perhaps
representing geographic isolates, and these clusters are on either side of the
origin, then an individual with a high frequency of missing values will be drawn
out of its cluster toward the origin. Its location intermediate to the two clusters
might be falsely interpreted as a case of admixture. Substantial individuals with
missing data corrected by mean-imputation will also distort confidence envelopes
that may be applied to clusters.

Perhaps a better way of handling missing values in SNP datasets used for
population genetics is to implement a local imputation. There are several options:

1. Missing values for an individual are replaced with the mean allele frequency
for the population from which the individual was drawn. In this way, the
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individual is displaced toward the centroid of the population from which it
was drawn, not the origin of the PCA.

2. Missing values for an individual are replaced with the value drawn from the
population from which the individual was drawn based on the assumption of
Hardy-Weinberg equilibrium. In this way, the individual will again be
displaced toward the centroid of the population from which it was drawn, not
the origin of the PCA.

3. Missing values can be replaced by the value at the same locus by its nearest
neighbour (the individual closest to the focal individual based on Euclidean
distance). This has the advantage of pulling the focal individual toward its
nearest neighbour, typically an individual within the same population. The
method has the advantage of being able to fill missing values even in the case
where all individuals in a population are missing for a given locus.

4. Missing values can be replaced by a random value selected from the options
of 0, 1 or 2 in the case of SNP genotypes; 0 or 1 in the case of presence-
absence data. The individual is displaced in a random direction adding noise
that will presumably be represented in the deeper dimensions of any
ordination.

Strictly, these methods of local imputation should be applied to panmictic
populations, which means the group of individuals sampled from the same
locality. In practice, it is unlikely to matter too much so long as the imputation is
restricted to the aggregation that is appearing as distinct in the PCA.

If imputation is not desirable, an alternative approach is to apply pairwise
deletion of loci rather than the global deletion dictated by classical PCA'*. We do
this by calculating a matrix of Euclidean distances for individuals taken pairwise,
whereby loci with a missing value for one or both individuals are removed.
Provided the Euclidean distance is scaled for the number of loci in the pair (as
introduced later), a Principal Coordinates Analysis (PCoA, see next section) can be
applied to the distance matrix to deliver the ordination. This approach capitalizes
on the observation that PCA and PCoA using Euclidean distance yield the same
visualizations'®%3, There are cryptic implications of this approach, not least of
which is the disruption of the metric and/or Euclidean properties of the distance
matrix, so the resultant eigenvalues should be examined for negative values.
Negative eigenvalues are unlikely unless the frequency of missing values is
extreme.

Implementation of PCA in dartR

When it receives a genlight object, the script gl.pcoa() in package dartR uses the
gIPCA() function of {adegenet}*''? to undertake a PCA with parameters set as the
defaults of center=TRUE, scale=FALSE, alleleAsUnit=FALSE. A PCA can be
undertaken on either SNP genotype data or SNP presence-absence data.

Package glIPCA handles missing values by substituting them with the mean allele
frequency for the associated entity (mean-imputed missing data). As outlined
above, entities (individuals/samples/specimens) with a high proportion of missing
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data will thus be drawn out of their natural grouping and toward the origin,
which can lead to potential misinterpretation?®. The appropriate strategy to avoid
this is to

(a) Filter stringently on call rate, using a threshold of at least 95% loci called.
(b) Remove individuals for which call rate is exceptionally low, say <80%.
(c) Impute the remaining missing values on a population-by-population basis.

An example of a script to implement these steps follows:

gl <- gl.filter.callrate(gl, method="loc", threshold=0.95)
gl <- gl.filter.callrate(gl, method="ind", threshold=0.80)
gl <- gl.impute(gl, method="nearest-neighbour')

gl <- gl.impute(gl, method="random™) # To tidy up stragglers
pca <- gl.pcoa(gl)

To undertake a PCA with pairwise deletion of missing values, a script along the
following lines is appropriate.

gl <- gl.filter.callrate(gl, method="loc", threshold=0.95)

gl <- gl.filter.callrate(gl, method="ind", threshold=0.80)

d <- gl.dist.ind(gl, method="euclidean", scale=TRUE)
pca <- gl.pcoa(d)

Rationale

Principal Co-ordinates Analysis® is a visualization technique that represents a
distance matrix in a Euclidean space defined by an ordered set of orthogonal
axes, as does PCA. They are ordered in the amount of information they contain,
so that the first few axes tend to contain information on any structure in the data
(signal) and later axes tend to contain only noise®.

The primary difference between PCA and PCoA is that PCA works with the original
data and the covariance (or correlation) matrix derived from the original data
whereas PCoA works with a distance matrix and does not directly draw upon the
original data that was used to generate that matrix. Indeed there are some
circumstances where the distances are measured directly, such as immunological
distance®®. Because the mathematics of PCA moves forward from the covariance
(or correlation) matrix, the insight attributed to John Gower® was to substitute, at
this point in the analysis, any distance matrix following a simple transformation.
This yields an ordered representation of those distances in multivariable space.
akin to PCA

Intuitively, we represent N individuals in a space defined by the distances
between them, that is, as a cloud of points in an (N-1)-dimensional space (Figure
7a). Itis (N-1) because any two points can be represented with a line, that is in 1-
D space, any three points define a plane, that is a 2-D space, etc.
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FCoAZ

Figure 7. The process of reduced space representation used in Principal Coordinates Analysis
illustrated in two dimensions. (a) The distance matrix is represented in Euclidean space defined by
Cartesian coordinates X and Y; (b) New axes are selected as linear combinations of the original axes
after centering and standardizing the data, with the first (PCoA1) in the direction of maximal variation
in the data, the second (PCoA2) orthogonal to the first in the direction of maximal remaining
variation; (c) The new axes are used as the new basis for the spatial representation of the distances.
Any distance measure can be used, but a metric distance is preferred.

Note the important distinction between Figure 4(a) where the N entities are
represented in a space of L dimensions defined by the loci and Figure 7(a) where
the entities are represented in an N-1 space with coordinate axes not directly
connected to any raw data based solely on their distances. Apart from that, the

mathematics of PCA and PCoA are very similar.

As with PCA, the basis defined by the original N-1 coordinate axes can be rotated
to form a new set of N-1 coordinate axes without changing the relative proximity
of the depicted points (Figure 7b). The N-1 axes are rotated such that the first
new axis is in the direction of maximal variation in the data; the second new axis,
orthogonal to the first, lies in the direction of maximal remaining variation; the
third new axis, orthogonal to the first two, lies in the direction of maximal
remaining variation, and so on. The new, N-1 ordered axes are then adopted as
the basis for our new reference system as shown in Figure 7(c).

Because the new orthogonal axes ordered on the contribution of variance in their
direction, we can examine important patterns of variation in a relatively few
dimensions, preferably 2 or 3. This too is a very powerful visual technique,
extended to apply to any well-behaved distance matrix.

The analysis yields the following information.

Eigenvalues eigenvalues give the component of variation in the direction of
each dimension of the reduced space representation, which can
be expressed as a percentage of the sum of the eigenvalues.

Scores scores are the coefficients of the linear relationships that define
the new PCA axes and are used to plot the entities in the
ordinated space.

PCoA does not retain a link to the data used to generate the distance matrix. It is
possible to generate a Pearson correlation between the original data axes (the
loci) and the new PCoA axes. These are called Loadings and provide an indication
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of which loci are providing the variation contributing to that represented by each
retained PCoA axis.

Note that were the data to have been drawn from a panmictic population
(arguably the null proposition), each of the original variables would, on average,
be expected to capture the same quantity of variance, and the PCoA would fail
(the first two axes would each represent only a small percentage of the total
variance). The visualization is informative because the different populations differ
in genetic composition. There is structure to uncover.

All of the same considerations on choice of dimension for the final reduced space
that applied to PCoA apply to PCA. PCA is also equally intolerant of missing data,
which need to be managed.

The result of a PCoA with an input matrix comprised of Euclidean Distances'®43-44

is identical to a PCA. In this context, the interchangeability of the two, PCA and
PCoA, leads to considerable confusion on the distinction between the two
analyses.

Impact of missing values

PCoA is not as sensitive to missing values as PCA because it works from a distance
matrix, and distance matrices are typically complete. As such, missing values are
important only insofar as they influence the distance matrix used for PCoA.

First of all, in the presence of missing data, the distance matrix may no longer be
metric or Euclidean even if the distance measure used for the computations is
theoretically metric or Euclidean. In extreme cases, this may lead to negative
eigenvalues and distortion of the representation of entities in the ordinated
space.

The second issue is that the distances calculated between entities in pairwise
fashion will vary in sample size depending on the frequency of missing values for
the particular pair, and so the distances in the matrix will vary in precision.

Neither of these issues are likely to be serious if there is adequate filtering of the
raw data based on call rate, say to ensure that the call rate for loci is > 95% and
for individuals is > 80%. The distance metric algorithm will ignore pairs of loci
where one or both of the locus scores are missing. Hence, distance measures that
take into account the number of values used at a locus in calculating the distance
between pairs of individuals should be chosen if possible.

PCoA is more robust to missing values than is PCA. This is in part because the
potential impact of missing values on PCA is global, whereas the impact of
missing values on PCoA can be constrained to pairwise comparisons. However, it
may be wise to apply imputation in addition to stringent filtering on call rate
before calculating the distance matrix if it is to be subsequently used in PCoA.
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Implementation in dartR

Distances of relevance to population genetics can be calculated for SNP genotype
data and SNP presence-absence data using the dartR functions gl.dist.ind() and
gl.dist.pop().

When it receives a matrix or distance object (class dist), the script gl.pcoa() in
package dartR uses the pcoa() function of {ape}!” with default parameters to
undertake a PCoA.

A sample script for undertaking a PCoA on presence-absence data might be:

gs <- gl.filter.callrate(gs, method="loc", threshold=0.95)
gs <- gl.filter.callrate(gs, method="ind", threshold=0.80)

D <- gl.dist.ind(gs, method="jaccard"™, scale=TRUE, flip=TRUE)
pc <- gl.pcoa(D)

or with imputation

gs <- gl.filter.callrate(gs, method="loc", threshold=0.95)
gs <- gl.filter.callrate(gs, method="ind", threshold=0.80)

gl <- gl.impute(gl, method="nearest-neighbour')

gl <- gl.impute(gl, method="random™) # To tidy up stragglers
D <- gl.dist.ind(gs, method="jaccard"™, scale=TRUE, flip=TRUE)
pc <- gl.pcoa(D)

The advent of PCoA admits the use of almost any metric distance or dissimilarity
measure for generating reduced dimension representations of multivariable data.
A great number of measures of genetic dissimilarity have been devised over
time!, many of which apply well to SNP data. Each distance has different
properties that may make it more suitable for a particular purpose than does
another measure.

While the metric properties of a distance are clearly important, many measures
used in genetics are non-metric. An example of a dissimilarity measure that fails
to satisfy the symmetry condition is one defined on private alleles. The number of
private alleles possessed by population X when compared to population Y will
typically be different from the number of private alleles possessed by population
Y in comparison with X. The resultant 'distances' will not satisfy the second metric
criterion of symmetry.

Many genetic distances do not satisfy the triangle inequality. For example,
percent fixed differences satisfy the first two conditions of a metric distance, but
not the triangle inequality and so is non-metric. Nor is Nei's D a metric distance,
but the common alternative of Rogers' D is metric. Fst is non-metric. The Bray-
Curtis dissimilarity measure is non-metric but is rank-order similar to the Jaccard
distance, which is metric. And so on.

In the following sections, distance measures of relevance to SNP data, both
genotypes and presence-absence data, are introduced.
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Strictly speaking, Euclidean Distance is required for entities to be faithfully
represented in a space defined by Cartesian coordinates. Only then are we
guaranteed to have all of our entities (individuals or populations) accurately
positioned in the space of (N-1) dimensions. Euclidean distances are a special
class of metric distance, because they allow unambiguous representation of our
entities (=individuals, specimens or samples) in a space defined by the familiar
Cartesian coordinates, without any distortion. The distances in the original
Distance Matrix and the distances in the reduced space will agree.

Entities defined by their relationship as a Metric Distance can be uniquely and
accurately represented in a non-linear space regardless of the metric distance
measure chosen, but their representation in a space defined by Cartesian
coordinates typically comes at the expense of some distortion. This is analogous
to representing points on a restricted area on the surface of the earth in a 2D
map —the challenge of cartographers. In most cases, an adequate representation
is possible in Euclidean space. The level of distortion is acceptable.

Entities defined by their relationship as a non-metric dissimilarity measure are
potentially problematic because they cannot necessarily be uniquely represented
in a space at all. Attempting to represent these entities (individuals or
populations) in a space defined by Cartesian coordinates can lead to considerable
distortion, which may mislead interpretation.

To illustrate the above points, consider the case presented in Figure 8. Here we
have distances between four points, X, Y, Zand V (Figure 8A). Taken three at a
time, the distances between these points satisfy the metric conditions, yet it is
still not possible to represent all four in a Cartesian space. In Figure 8A, point V is
not defined. So, although it is possible to represent any 4 points in a 3D space,
with distances between them meeting the metric conditions, not all sets of
distances between 4 points can be represented in 3D space even if the metric
properties hold. They can be represented in 3D space if we admit a level of
curvature (Figure 8B), but not in a flat space represented by Cartesian
coordinates.

How much weight you place on choosing a non-metric dissimilarity measure, a
metric distance or a Euclidean distance depends on whether or not other
considerations dominate. For example, you may place value on some underlying
model of evolutionary divergence. Nei's D, for example, is roughly linear with
time of divergence, assuming drift-mutation equilibrium. This may outweigh
considerations of its non-metricity in practice.
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Figure 8. Metricity is not sufficient to represent distances in a rigid space defined by

Cartesian coordinates. A, distances between four individuals satisfy the metric properties

can nevertheless not be represented in three dimensions. B, this distortion can be resolved

by allowing non-linear links to represent distances between individuals. C, Euclidean

distances between four individuals can be represented without distortion. [after Gower'®]
The distortion arising from using non-Euclidean distances manifests as
displacement of the points in the visualization, so that the distances among them
no longer fundamentally represent the input values, and as negative eigenvalues
(imaginary eigenvectors)®®. However, the level of distortion is only likely to be of
concern if the absolute magnitude of the largest negative eigenvalue is less than
that of any of the dimensions chosen for the reduced representation®°. So in
practice, a few small negative eigenvalues do not detract much if only a few
dimensions are retained in the final solution®.

Because the distortion arising from using non-Euclidean distances also manifests
as negative eigenvalues, interpretation of the variance contributions is
challenging. In particular, one can no longer calculate the percentage variation
explained by a PCoA axis by expressing the value of its eigenvalue over the total
sum of the eigenvalues. A correction is necessary??>%,

o 3 e; + k
% explained = W+ (N =Dk
= 13

where €; is the eigenvalue for PCoA axis i, N is the number of entities, and K is the
absolute magnitude of the largest negative eigenvalue.
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If negative eigenvalues are considered problematic for the reduced space
representation, a transformation can render them all positive and the distance
matrix Euclidean. Common transformations put to this purpose are:

Square root?**0!  D(A,B) = /D(A,B)

Cailliez?® D(A,B) =D(A,B) + ¢ forallA # B

Lingoes'®2* D(A,B) =,/D(AB) + ¢ forallA # B

The value of cis chosen to be the smallest value required to convert the most
extreme negative eigenvalue to zero.

A final point to note is that it is a departure from theory requires addressing in
practice only if it causes serious issues. In particular, distances do not need to be
measured using a metric that is metric Euclidean in theory for the distance matrix
to be metric or Euclidean. It is important to look at the diagnostics to assess if
there is a problem of sufficient magnitude to require remedial action.

Let’s apply these ideas now to formulate distances between individuals.

Binary Data

Where the data are in the form of presences [1] and absences [0], the data are
said to be binary. Such is the case where we are scoring SNP loci as “called” or
“not called”. They are called because the two restriction enzymes find their mark
(in DArTSeq or ddRAD), the corresponding sequence tags are amplified and
sequenced, and the SNP is scored. The individual is thus scored as 1 for that
locus.

If, however, there is a mutation at one or both of the restriction enzyme sites,
then the restriction enzyme does not find its mark, the corresponding sequence
tag in that individual is not amplified or sequenced, and the SNP is called as
missing for that individual. The individual is scored as 0 for that locus.

We might have, for example,

LocO1 Loc02 Loc03 Loc04 Loc05 Loc06 Loc07
IndA 0 0 1 1 0 1 0
IndB 0 1 0 1 0 1 0

We can count up the different cases,

_ 1,wherex; =y; =0
4. 0,where x; #y;

i=1

NOO

that is, sum loci scored 0 (absent) for both individuals;
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_ 1,wherex; =1
~ L.0,wherey; =0

=1

Nio

that is, sum loci scored 1 (present) for Individual A and 0 (absent) for Individual B;

Neo = 1,wherex; =0
01 ™ £,0,wherey; =1
=1
that is, sum loci scored 0 (absent) for Individual A and 1 (present) for Individual B;
N = 1,wherex; =y, =1
17 £, 0,where x; #y;

i=1

that is, sum loci scored 1 (present) for both individuals. These summations do not
include loci for which data are missing (NA) for one or both individuals.

The number of loci L is given by
L = Nyg + Ny1 + Nyg + Nyiq

There are several ways to calculate a binary dissimilarity between two
individuals?®, some of which follow:

Euclidean Distance

dg = vV No1 + Ny

Properties: Metric. Range [0,v/L). Symmetric in choice of coding for reference and
alternate allele.

Scaled Euclidean Distance

The number of mismatches Ny, + N achieves its maximum of L when there is a
mismatch at all loci, so the Euclidean Distance can be conveniently scaled to fall
within the range of [0,1] as

Nop1 + Ny

dE= L

Properties: Metric. Range [0,1]. Symmetric in choice of coding for reference and
alternate allele.

Simple Matching Distance*®

No1 + Ny

Aoy =
SM L

which is the sum of the mismatches across loci over the total number of non-
missing loci.

Properties: Non-metric. Range [0,1]. Symmetric in choice of coding for reference
and alternate allele. Accommodates missing data (NA) in part by expressing
mismatches as a proportion of the total number of loci considered (i.e. scaled to
fall between 0 and 1).
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Notes: This simple matching distance is used when there is symmetry
(equivalence) in the information carried by 0 (absence) and 1 (presence).

Jaccard Distance?’

d = (No1 + Nyo)
] L - NOO

which is the sum of the mismatches over the total number of non-missing loci for
which at least one of the individuals scores a 1 (presence).

Properties: Metric distance?®. Range [0,1]. Accommodates missing data (NA) in
part by expressing mismatches as a proportion of the total number of loci
considered (i.e. scaled to fall between 0 and 1). Not symmetric in choice of coding
for reference and alternate allele. Requires consideration.

Notes: The Jaccard Distance down-weights the joint absences, which is arguably
what you do not want for data comprised of counts of sequence tag absences
arising from a positive event, that of a mutation at one (or both) of the restriction
enzyme sites.

If you wish to use the Jaccard Distance on DArT or ddRAD presence/absence data,
you might consider recoding the data so that 1 represents presence of a mutation
at one or both of the restriction enzyme sites and 0 represents absence of such a
disruptive mutation. This application of the Jaccard Distance will down-weight
joint absence of a disruptive mutation leading to loss of the particular sequence
tag.

Alternative names: Marczewski-Steinhaus Distance®’; RuZi¢ka Distance; Soergel
Distance

Bray-Curtis Distance®'

_ (Noy + Nyp)

d -
BC L_N00+N11

Properties: Not a metric distance?®?, so it is strictly a dissimilarity measure, but it

is rank consistent with the Jaccard metric. Range [0,1]. Accommodates missing
data (NA) in part by expressing mismatches as a proportion of the total number
of loci considered. Not symmetric in choice of coding for reference and alternate
allele. Requires consideration.

Notes: Bray-Curtis Distance adjusts the denominator to down-weight the joint
absences (0,0) and up-weight joint presences (1,1). As with the Jaccard Distance,
you might consider reversing the scores for absence (0) and presence (1) to 1 and
0 respectively when dealing with DArT or ddRAD data.

Alternative names: Sgrensen Distance?, Dice Distance®; also equivalent to the
Nei & Li Distance3* as applied to two individuals.

Impact of Missing Values

The package dartR uses the above algorithms with deletion of loci scored as
missing for one or both of the individuals in a pair. This pairwise deletion is
accommodated in distance measures that are corrected for the number of loci
examined (L in the denominator). Adjustment of the denominator in the Jaccard
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and Bray-Curtis distances can lead to a potential systematic bias arising from
missing values?**®2, Unscaled Euclidean metric is severely affected by missing
values, and should be used only for complete data.

Implementation in dartR

The above algorithms are implemented in dartR with the script gl.dist.ind() as it
applies to binary presence-absence data (e.g. SilicoDArT).

SNP Data

Unlike binary data, SNP data take on three values at a locus

0, homozygous reference allele
1, heterozygous
2, homozygous alternate allele

This is a scoring scheme that is convenient because the value represents the
frequency of alternate allele, and so can be considered to be measured at least at
the ordinal level.

With SNPs scored in this way, a property of a distance measure, in addition to the
desirable metric properties, is

Shared homozygous reference alleles (0) and shared homozygous
alternate alleles (2) need to contribute equally to the distance
measure.

from which it follows that the distance measure needs to be invariant under
choice of which allele is considered the reference allele and which is considered
the alternate allele (DArT typically chooses the most frequent allele as the
reference allele).

This additional condition eliminates from consideration a number of potential
metric distances (e.g. Jaccard Distance) and non-metric dissimilarity measures
(e.g. Bray-Curtis Distance) that are appropriate for binary presence/absence
data®.

Euclidean Distance

Euclidean distance is defined by:

L

dA,B) = | > (=

i=1

where X and yi are the counts of the alternate allele at locus i for individual A and
B respectively, and L is the number of loci for which both x; and y;are non-
missing.

Properties: Metric distance. Range [0,4L). Symmetric in choice of coding for
reference and alternate allele.
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Scaled Euclidean Distance

The maximum squared distance between two individuals at a locus is (2-0)* = 4,
so the sum of squared distances over L loci has a maximum of 4L. The Euclidean
Distance applied to SNPs can thus be rescaled to fall within the range of [0,1] as
follows:

L
dEuclidean (A: B) = E Zl %
i=

where X; and yi are the counts of the alternate allele at locus i for individual A and
B respectively; L is the number of loci for which both X; and y;are non-missing.

Properties: Metric distance. Range [0,1]. Symmetric in choice of coding for
reference and alternate allele.

Simple Mismatch Distance
The count of shared alleles between two individuals i and j at a locus is given by

¢;; = 0,where no alleles are shared [0,2]|[2,0]
= 1,where one allele is shared [0,1]][1,0]][2,1]|[1,2]
= 2,where both alleles are shared [0,0], [1,1],[2,2]

The Simple Mismatch Distance is given by

L

1
dsw(AB) =1 — ZZ ¢y

=1
where L is the number of loci non-missing for both individuals i and j.

Properties: Non-metric. Ranges [0,1]. Symmetric in choice of coding for reference
and alternate allele.

Alternative names: Similar to the Allele Sharing Distance®®, differing from it by a
factor of 2.
Absolute Mismatch Distance

The count of shared alleles between two individuals i and j at a locus is given by

¢;j = 0,no alleles are shared [0,2]
= 1,0ne or both alleles are shared [0,0]][0,1]|[1,2]][2,2]
The Absolute Mismatch Distance is given by

L

1
du(AB) =1 — ZZ ¢

=1
where L is the number of loci non-missing for both individuals i and j.

Properties: Non-metric. Ranges [0,1]. Symmetric in choice of coding for reference
and alternate allele.
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Czekanowski (Manhattan) Distance

Often referred to as the City Block Distance, this metric is calculated by summing
the scores on each of the axes representing the loci.

L

d= lei_yi|

i=1

where X and y; are the counts of the alternate allele at locus i for individual A and
B respectively; L is the number of loci for which both X; and y;are non-missing.

Clearly, |Xi —Vi| = 0 when Xi = yiand achieves a maximum of 2 when xi= 0andYy;
= 2 or vice versa. So we can scale this value to range between 0 and 1 by dividing
by 2L.

L
1
dc,(A,B) = ﬂlei - yi|
i=1

Properties: Metric. Ranges [0,1]. Symmetric in choice of coding for reference and
alternate allele.

Impact of Missing Values

The package dartR uses the above algorithms with deletion of loci scored as
missing for one or both of the individuals in a pair. This pairwise deletion is
accommodated in all but one of distance measures by correcting for the number
of loci examined (L in the denominator). The unscaled Euclidean metric is
severely affected by missing values, and should be used only for complete data.

Implementation in dartR

The above algorithms are implemented in dartR with the script gl.dist.ind() as it
applies to SNP genotypes (e.g. DArTseq).

Genomic Relationship

A pedigree provides knowledge of the genealogical relationships among
individuals. Progeny receive a random half of each parents’ genes and full-sibs are
expected to share half their genes, on average. Genealogical relationship and
genetic similarity are loosely connected, in that there can be considerable
departure from the 0.5 expectation for shared alleles across independent loci in
practice, because of sampling variation. Indeed, because genes are parcelled on
to chromosomes, a parent of a species with a small chromosome number can
expect to generate descendants with no direct inheritance of its genes after even
relatively few generations. They are related to their descendants by descent
genealogically, but can be unrelated genetically. It is for this reason that
measures of genetic relatedness are considered more informative than
knowledge of a pedigree alone.

This field has expanded rapidly because of its relevance to animal and plant
breeding. The techniques are beyond the scope of this technical note, but the
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reader is directed to the work of VanRaden®” and those who cite his work. A
genetic relatedness matrix or G-matrix can be generated from a genlight object in
dartR with gl.grm(), a wrapper for the A.mat function of package {rrBLUP}®.
Alternatively, you may wish to look at other R packages, such as {snpReady}*°.

Binary Data

When dealing with populations and binary data, we consider the relative
frequency p of presences (1) at each locus. If 10% of individuals are scored as a
presence at a particular locus i for population A, then pai = 0.1.

N
1
RO
k=1

where Xix is the score (0 or 1) for individual Kk at locus i and N is the number of
individuals in population A. The relative frequency of the absences is given by

9y =1-1py

The relative frequencies of presences at each locus is the fodder of binary
distance as applied to populations (Figure 9).

Locus 2
e
d(A,B)
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Figure 9. Two populations, A and B, plotted in a
space defined by the proportions of Presences at
Locus 1 and Locus 2. Euclidean distance between the
two populations can be calculated from their
Cartesian coordinates using Pythagoras’ rule.

Euclidean Distance

The Euclidean Distance between population A and B in the space defined by
Locus 1 and 2 (Figure 9) is given by

D(A,B) = \/(p31 —Pa)? + (Pp2 — Paz)?

28 University of Canberra




Biomatix — biomatix.org.au \

which can be generalized for L loci as

DEAB) = | (o = pai)?

and, noting that 0 < p <1, is scaled to the range [0,1] as

L
1 2
DEuclidean(A' B) = ZZ(pBl - pAi)
i=1

Properties: Metric. Range [0,1]. No underlying genetic model.

SNP Genotypes

Euclidean Distance

SNP data for populations comprise the proportion of alleles that are the alternate
allele (Figure 10), so computationally the options are not that much different
than for binary presence/absence data.

L
1
Dgyctidean(4, B) = ZZ(pBi - pAi)Z
i=1

where pai is the proportion of the alternate allele for Locus i in population A, pgi is
the proportion of the alternate allele for Locus i in population B and L is the
number of called loci.

Noting that 0 < p < 2, this can be scaled to the range [0,1] as

L
101 )
DEuclidean(A' B) = E ZZ(pBL - pAi)
i=1

Properties: Metric distance. Range [0,1]. No underlying genetic model.

Alternative names: Similar to Roger’s D, differing from it by a constant factor.
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Figure 10. Two populations, A and B, plotted in a space defined
by the relative frequency of the alternate allele at Locus 1 and
Locus 2. Euclidean distance between the two populations can
be calculated from their Cartesian coordinates using
Pythagoras’ rule

Nei’s Standard Genetic Distance

Nei's standard genetic distance® is favoured by some because of its relationship
to divergence time. When populations are in mutation-drift balance throughout
the evolutionary process and all mutations result in new alleles in accordance
with the infinite-allele model, Nei’s D is expected to increase in proportion to the
time after divergence between two populations.

L P +q,
D B) = _ln/ ic(pypy, + 4,9, \
\ \/ZLl[(pji +¢2] \/ZLl[(pf;i +q2] /

Properties: Non-metric. Range [0,o°). The underlying genetic model incorporates
both drift and mutation. Proportional to divergence time under specified
assumptions®.

Reynolds Genetic Distance

Reynolds genetic distance*! is also approximately linearly related to divergence
time in theory, but unlike Nei’s Standard Genetic Distance, it is based solely on a
drift model and does not incorporate mutations. As such, it may be more
appropriate than Nei’s distance for population genetics and in particular,
representation of genetic similarity in trees or networks where branch lengths
need to be interpretable.

L'L=1[(pAi - pBi)Z + (in — qBi)Z]
2 Z%:l(l T PyPp inqBi)

D(4,B) =
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A better approximation*! of the linear relationship with time is given by
DReynolds(A: B) = —In[1-D(4,B)]
which is used in dartR.

Properties: Non-metric. Range [0,1]. The underlying genetic model incorporates
drift alone. Proportional to shallow divergence time under specified
assumptions®..

Chord Distance

Edward’s Angular distance® assumes divergence between populations is via drift
alone, and so again may be more appropriate than Nei’s Distance for population
genetics. It is calculated as

cosa = \[paippi +\/daidsi

where a is the Angular Distance. This can be approximated by the straight-line
segment or Chord Distance® as follows:

L
1
Depora(4,B) = |1 - ZZ VPaiPpi T/ Auilp;
i1

Properties: Metric. Range [0,1]. It can be transformed to be approximately
Euclidean®. Underlying genetic model incorporates drift alone. Proportional to
shallow divergence time under specified assumptions*.

Wright’s F Statistics

Wrights F can be defined as

Hobs

F=1--2
Hexp

such that a deficit in the observed frequency of heterozygotes compared with
that expected under Hardy-Weinberg equilibrium will yield a Wright’s F less than
one. If observed and expected heterozygosity are in agreement, then F=0. If, at
the extreme, no heterozygotes are observed, then F=1. Wright’s F can be
interpreted as a measure of inbreeding.

When applied to multiple populations, for which Hardy-Weinberg equilibrium is
not a sensible null expectation, Wright’s F is nevertheless informative, as any
deficit in heterozygotes in the populations when pooled is an indication of
structure among those populations.

In this context, Wright’s F can be considered a [non-metric] distance when
applied to populations in pairwise fashion.

We defer discussion of this distance to our treatment of spatial analysis and
assessing structure across the landscape.
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Impact of Missing Values

When dealing with population level data, random missing values are important
only insofar as they reduce the sample size in calculations of the allele frequency
distributions. This becomes important only when all individuals in a population
are missing for a locus, in which case the information for that locus is discarded.
Most analyses, including PCoA, that use a population-level distance matrix expect
it to be complete.

Implementation in dartR

The above algorithms are implemented in dartR with the script gl.dist.pop() as it
applies to SNP genotypes.

Distance of an individual from a population is not as simple as it might
seem. When variation among individuals within a population varies in the
direction of particular axes (that is, the measurements represented by the
axes are correlated), Euclidean Distance can be quite misleading. Consider
the data presented in Figure 11. The two highlighted points A and B are
equally distant from the population centroid, but clearly point A is an
outlier whereas point B is quite within expectation for a point belonging
to the population. So Euclidean Distance is not a good measure of the
distance of an individual from a population.

Variable 2
=3

P ; ; i ‘
Variable 1

Figure 11. A bivariate plot of individuals belonging to a population in a
space defined by two measurement variables. Individual B could be quite
reasonably considered to belong to the population, whereas individual A

is a clear outlier. Yet they are equally distant from the population centroid
if distance is defined as Euclidean Distance.
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The solution to this is to express the deviation of a point from the
population centroid in units of standard deviation measured in the
direction of the point from the centroid. You can see then how Point A of
Figure 11 is much further away from the centroid than Point B.

The distance measure that does this is Mahalanobis Distance®. The
formula for computing Mahalanobis Distance is complicated, but
essentially is a generalization of the standardization of a univariate
variable to a Z-score, to the multivariable case.

A way of visualizing this for those familiar with Principal Components
Analysis is to first centre the data on the multivariate mean (centroid),
ordinate the space to establish a series of uncorrelated axes, then
standardize each those axes to a unit variance. After that transformation
(converting the ellipsoid to a sphere), the Mahalanobis Distance is simply
the Euclidean Distance.

The Mahalanobis distance is very useful for identifying outliers, and in
population assignment for individuals of unknown provinence. It the data
are multivariate normal, then the transformed data will follow a
Chisquare distribution to good approximation, so that p values can be
associated with each individual.

These techniques all work well for SNP data.

Just as individuals (entities) can be represented in a space defined by axes where
each axis represents a locus (attributes), the loci can be represented in a space
defined by axes where each axis represents an individual (Figure 12). The former
analysis leads to what can be regarded as an R-mode distance matrix and the
second analysis leads to what can be regarded as a Q-mode distance matrix. The
distinction between the two is one of focus. In an

R-mode analysis, we are interested in the distance structure amongst the entities
of interest — individuals or populations. In the Q-mode analysis, the focus is on
the attributes — the loci scored for presence-absence or scored for SNP variants.

Application of Q-mode analysis of SNP sequence tag presence-absence using SNP
variants is not well developed, apart from the possibility of visually identifying loci
departing from linkage equilibrium, so we deal with it only briefly here.

To undertake a Q-mode analysis, one needs a measure of distance defined for
loci on the basis of their state in the individuals.
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Figure 12. SNP Loci plotted in a space defined by axes
representing the SNP scores over individuals.

Euclidean distance between two SNP loci based on their variation across
individuals is given by

N
1
Dguciigean(L1, L) = ﬁz(pl‘li - pLZi)z
i=1

where py_; is the frequency of the alternate allele at locus L1 for individual i; py,,;
is similarly defined, and N is the number of individuals.

This distance is probably of little utility unless applied to individuals from a single
population in Hardy-Weinberg equilibrium.

Sequence-level genetic distance as it applies in the context of SNP data refers to
distance measures devised to capture variation among sequence tags. The most
common distance measure used in this context is the Hamming Distance.

Hamming distance is defined as the number of base mismatches between the
sequence tags for Locus 1 and Locus 2.

The DNA sequences being compared, the sequence tags, need to be aligned as
they are because they all start at the first restriction enzyme site and should be of
the same length. Sequence tags arising from double digestion are typically not of
the same length, and DArT sequence tags for example range in length from 20
base pairs to 69 base pairs.

When confronted with sequence tags that differ in length, the package dartR
truncates the longer sequence tag before calculating the Hamming Distance.

Clearly, a 5 bp difference between sequence tags of 20 bp length is not the same
as 5 bp difference between sequence tags of 60 bp length. To overcome this in
part, the Hamming Distance can be scaled to a proportion of the number of base
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pairs compared. Nevertheless, one might consider filtering sequence tags below
some threshold length if Homming Distance considerations are important.

Properties: Non-metric. Range [0, Length). If scaled, range [0,1]

A final distance measure that is worth mentioning is tree distance. A tree
distance, in addition to being a metric distance, satisfies the four-point
condition®:

d(X,Y) +d(Z,V) <max[d(X,Z) +d(Y,V),d(Y,Z) + d(X,V)]
X Z

Y Vv

Figure 13. An unrooted tree showing the
relationships among four individuals X, Y, V and Z.
In order to satisfy the criteria of a tree distance, the
internal node d must be defined.

Without labouring on the point, the four-point condition is a constraint that the
internal node has a defined distance, d > 0 (Figure 13). A distance matrix that
satisfies the four-point condition can be represented, without distortion, as a
unique bifurcating tree.

Distances that satisfy the four-point condition are referred to as additive.

Heatmap

Genetic distances are typically presented as a distance matrix with N rows and N
columns, where N is the number of individuals or populations being compared in
pairwise fashion.

Visualizing genetic distances can be quite a challenge if the number of entities
being compared (individuals or populations) is large. Poring over a large matrix of
numbers is not the most enlightening exercise.

One way of looking for structure in a distance or dissimilarity matrix is to
represent it as a heat map (Figure 14). Zero distances are shown in the lightest
colour, the largest distances in bright red, with scaled colours for distances in
between.
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Figure 9. A heat map showing the distribution of
distance values across a distance matrix defined, in
this case, for individuals using unscaled Euclidean
Distance. Light yellow represents zero distance (as
along the diagonal, as d(AA) = 0) through to dark
red representing large distances. The matrix is
symmetric around the diagonal (as d(AB) =
d(BA)).

Reordering the rows and columns of this distance matrix based on grouping like
with like is perhaps more informative, when interpreted in the context of
knowledge of the individuals or populations involved (Figure 10).
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Figure 14. A heat map showing the distribution of
distance values across a distance matrix defined, in
this case, for individuals using unscaled Euclidean
Distance. In this case, the distances are ordered.
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Network Analysis

Another way of representing dissimilarities and distances is in a network diagram
(Figure 15). Here, all the entities are regarded as nodes, linked together by edges.
Various algorithms are applied to reduce the length of the links between entities
that are similar in comparison to entities that are less similar. Needless to say,
this will introduce some level of distortion between the graphical representation
and the distances in the distance matrix. But the technique can serve to visually
highlight clusters as an aid to communication.

[ Kamada-Kawal layout |

o

Figure 15. A network diagram where the lengths of

the branches between entities reflects their

similarity — the longer the branch, the greater the

dissimilarity.
Networks have the advantage, together with heatmaps, of depicting asymmetric
dissimilarity measures (bidirectional network plots). That option will not be

covered here.

Trees

Genetic relationships can be summarized in the form of a tree, usually using the
Neighbour-joining algorithm?. This algorithm uses the distance matrix to
calculate the relative proximity of each of the entities to each other (closest
neighbours) and then selects the pair of entities that are closest to form the first
node of the tree. It then repeats the process for the node and remaining entities,
and so on until it completes the tree. A good example is provided on Wikipedia
(https://en.wikipedia.org/wiki/Neighbor joining).

In the context of population genetics, these trees are phenograms that provide a
visual summary of genetic similarity rather than phylograms that summarise the
pattern of ancestry and descent. Nevertheless, when aggregations of individuals
have been isolated and their allelic profiles have drifted apart over time, selecting
among the distance measures based on a model incorporating drift (Reynolds
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Distance, Chord Distance) or drift and mutation (Nei Distance) is an option. The
branch lengths on the tree will then reflect time since divergence, at least in
theory.

Generating neighbour-joining trees has gained popularity over other methods of
generating visual summaries of genetic similarity (e.g. UGPMA?*’) because it is not
constrained by the assumption of equal rates of divergence (which under a drift
model, translates to equal population sizes historically), it usually finds the tree of
minimum overall length and reassuringly it will always recover the correct unique
tree specified by a distance matrix that satisfies the four-point condition.

A detracting feature is that the neighbour-joining algorithm can produce negative
branch lengths. This can be addressed by setting the negative branch length to
zero, and then adding the difference to the adjacent branch length so that the
total distance between an adjacent pair of terminal nodes remains unaffected®<2s

You might wish to present your tree diagram together with a PCoA, in which case
the same distance measure should be used for both analyses (usually Reynolds
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