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Abstract Several recent studies have produced com-
parative maps of genes on amniote sex chromosomes,
revealing homology of gene content and arrangement
across lineages as divergent as mammals and lizards.
For example, the chicken Z chromosome, which
shares homology with the sex chromosomes of all
birds, monotremes, and a gecko, is a striking example
of stability of genome organization and retention, or
independent acquisition, of function in sex determina-
tion. In other lineages, such as snakes and therian
mammals, well conserved but independently evolved
sex chromosome systems have arisen. Among lizards,
novel sex chromosomes appear frequently, even in
congeneric species. Here, we review recent gene map-
ping data, examine the evolutionary relationships of
amniote sex chromosomes and argue that gene content
can predispose some chromosomes to a specialized
role in sex determination.
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Abbreviations
GSD Genotypic sex determination
Mbp Million base pairs
MRX Mental retardation genes on the X

chromosome
MYA Million years ago
TSD Temperature-dependent sex determination
XAR X added region
XCR X conserved region

Sex chromosomes in amniotes

Sex determination, the process by which development
is directed down the male or female pathway, has been
the subject of philosophical interest for millennia
(Mittwoch 2000) and rigorous enquiry in more recent
times (Bellott and Page 2010; Mank 2011; Ming et al.
2011; Ito et al. 2011). Even when the focus is nar-
rowed to amniotes (comprising reptiles, birds, and
mammals), an astonishing variety of mechanisms
determine sex, suggesting frequent evolution and turn-
over of sex chromosomes as well as sex-determining
modes.

In mammals (and some turtles and lizards) with
genotypic sex determination (GSD), heterogametic
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males segregate heteromorphic sex chromosomes
called X and Y, the latter of which is often heterochro-
matic and gene poor. Females have an XX constitu-
tion. In snakes and birds (as well as some turtles and
lizards), males are homogametic, and females produce
gametes with different sex chromosomes, called Z and
W. In some GSD amniotes (e.g., pythons, ratite birds,
and many lizards), sex chromosomes are so similar in
morphology that the heterogametic sex cannot be
determined using standard cytogenetic techniques
(Ezaz et al. 2005, 2009b; Gamble 2010). In several
reptiles, sex is determined not by chromosomal con-
tributions of the parents, but by the influence of
ambient temperature on the egg at a critical period in
embryonic development, known as temperature-
dependent sex determination (TSD) (Bull 1983;
Charnier 1966). Orthologs of genes on the sex chro-
mosomes of GSD species are borne by autosomes in
TSD species so do not segregate with sex. Although the
trigger for determining sex is so variable, these genetic
or environmental factors initiate a complex regulatory
signal cascade that is remarkably similar in all taxa,
involving a network of genes and hormones that ulti-
mately—and reliably—produces either male or female
offspring (Georges et al. 2010).

In all but a few exceptional mammals, a single
dominant gene on the Y chromosome (SRY) is respon-
sible for the primary signal that directs sexual differ-
entiation down the male pathway (Koopman et al.
1991; Sinclair et al. 1990). In birds, male development
is effected, not by presence or absence of a dominant
gene, but by copy number (dosage) of the Z-borne
DMRT1 (Smith et al. 2009), as well as an unknown
cell autonomous factor (Clinton et al. 2011). A ther-
mosensitive gene may have captured initiation in rep-
tiles with TSD (Rhen et al. 2011), or sex may be
determined more by overall displacement of the sex
differentiation pathway by temperature early in devel-
opment (typically the middle third) while the differen-
tiating gonad is still bipotential (Georges et al. 2010).
Sex determination by genotype and temperature are
not mutually exclusive modes, as genotype and envi-
ronment can interact to determine sex in some species
(Ospina-Álvarez and Piferrer 2008; Quinn et al. 2007;
Radder et al. 2008).

The determination of sex by a constitutional differ-
ence in the genotype of males and females often, but
not always, leads to marked differences in morphology
and gene content of the chromosome pair responsible

for sex determination (Bergero and Charlesworth 2009;
Graves 2008; Perrin 2009). These differences derive
partly from inefficient selection on the non-recombining
sex-specific Y or W chromosome, and partly from the
different proportion of evolutionary time that the X and
Y, or the Z andW, spend in males and females (reviewed
byMank et al. (2010), Bachtrog (2006), Bellott and Page
(2010), and Bergero and Charlesworth (2009)).

The diverse mechanisms of sex determination in
amniotes have raised longstanding questions about
sex chromosome evolution: Why are some sex chro-
mosomes so well conserved and others so changeable
(Ezaz et al. 2009b; Nanda et al. 2008; Ohno 1967)?
Are amniote sex chromosomes all derived from a
common ancestral autosome (Bellott et al. 2010;
Smith and Voss 2007)? Are some chromosomes better
suited to a role in sex determination than others?
Graves and Peichel (2010) asked whether similarity
of sex chromosomes in divergent taxa reflect “shared
ancestry or limited options,” and concluded that, at least
in some cases, the same genomic region had indepen-
dently acquired a role in sex determination.Much recent
work has focused on the remodeling of sex chromo-
somes after a pair of autosomes takes on that role (e.g.,

Fig. 1 Phylogeny of tetrapods and amniote sex chromosome
homologies. a A consensus tree of tetrapod relationships, indi-
cating the distribution of sex determination modes and sex
chromosome systems. Branch lengths are proportional, with di-
vergence dates from Bininda-Emonds et al. (2007) and Hedges
and Kumar (2009). Only representative taxa are shown to give
some indication of the depth of divergence in the major groups.
The uncertain placement of turtles (Testudines) is indicated by a
dotted line (Hugall et al. 2007; Werneburg and Sánchez-Villagra
2009). MYA millions of years ago, XY male heterogamety, ZW
female heterogamety, TSD temperature-dependent sex determina-
tion. b Generalized representation of chromosome and linkage
group homologies of the chicken Z chromosome (green); the turtle
Pelodiscus sinensis Z chromosome (magenta); the snake Elaphe
quadrivirgata Z chromosome (yellow and cyan); and the human
X chromosome (blue & red). There is little evidence of an
ancestral syntenic association of snake, bird, and mammal sex
chromosomes, but the Pelodiscus Z almost certainly derives
from the same ancestral chromosome that gave rise to the Anolis
X, the gecko and bird Z, and platypus X5. Finer scale gene
mapping in reptiles and amphibians may reveal as yet unde-
tected ancestral chromosomal associations. Mapping and paint-
ing data are from http://ensembl.org and Alfoldi et al. (2011),
Bellott et al. (2010), Ezaz et al. (2009a), Hellsten et al. (2010),
Kawagoshi et al. (2009), Kawai et al. (2009, 2007), Matsubara
et al. (2006), Matsuda et al. (2005), Mikkelsen et al. (2007),
O’Meally et al. (2009), Shetty et al. (1999), Srikulnath et al.
(2009a, b), and Uno et al. (2008). LG linkage group, μ uniden-
tified microchromosome
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Bellott et al. 2010; Bergero and Charlesworth 2009;
Potrzebowski et al. 2008). Instead, we examine the idea
that some sex chromosomes were derived from auto-
somes with preexisting features that lend them to such a
role.

Sex chromosomes of birds, snakes, and therian
mammals are nonhomologous

Sex chromosomes are ubiquitous in mammals, birds,
and snakes and are known in some turtles and many
lizards (Fig. 1). More than 40 years ago, Susumu
Ohno speculated that despite their opposite systems
of heterogamety, mammal, bird, and snake sex chro-
mosomes had arisen from the same ancestral autoso-
mal pair because of their common involvement in sex
determination (Beçak et al. 1964; Ohno 1967).

However, comparative gene mapping and, more
recently, complete sequence analysis of several spe-
cies of birds and mammal sex chromosomes have
dispelled any notion of homology between the therian
X and avian Z (Bellott et al. 2010; Mikkelsen et al.
2007; Nanda et al. 2002). Like the mammalian X
(Ohno 1967; Rodríguez Delgado et al. 2009; Ross et
al. 2005), synteny of avian Z-borne genes is highly
conserved across species (Nanda et al. 2008; Shetty et

al. 1999). In therian mammals, the chicken Z corre-
sponds to autosomal regions: parts of chromosomes 5,
9, and 18 in humans and to parts of opossum chromo-
somes 3 and 6 (Figs. 1b and 2). The human X corre-
sponds to parts of chicken chromosomes 1 and 4.
None of the 1,000 or so genes on the chicken Z lies
on the X in therian mammals and vice versa for the
approximately 1,100 genes on the human X (Bellott et
al. 2010).

Comparative mapping of 11 Z-borne genes across
three divergent snake families (a python, colubrid, and
viper) shows that they share a conserved Z chromo-
some that is clearly not homologous with the bird Z
(Fig. 2) (Matsubara et al. 2006). The chicken Z is
orthologous to parts of chromosome 2 in the four-
lined ratsnake, Elaphe quadrivirgata. The snake Z
bears orthologs of genes on chicken chromosomes
2p and 27. To date, 29 genes mapped to the snake Z
have orthologs on these two chicken chromosomes
(K. Matsubara, personal communication), indicating
that this chromosome arose by fusion of ancestral seg-
ments represented by chicken chromosomes 2p and 27
after a translocation between Z and 2 in sauropsid
ancestor (O’Meally et al. 2010). Synteny of chicken 2
and Z genes is conserved in monotremes (Rens et al.
2007), suggesting that the translocation occurred in an
amniote ancestor.
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Fig. 2 Comparative map of chicken, ratsnake, and human sex
chromosomes. Sex chromosomes are ubiquitous in the amniote
groups represented here, though they are not homologous by
gene content. The snake Z is composed of genes found on
chicken chromosomes 2 (yellow) and 27 (cyan). The chicken

Z (green) is equivalent to parts of chromosome 2 in the ratsnake
and parts of human chromosomes 5, 9, and 18. The human X is
orthologous to parts of chicken chromosomes 1 (red) and 4
(blue). Mapping data are from http://ensembl.org and Bellott et
al. (2010), Matsubara et al. (2006), and Matsuda et al. (2005)
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Independent and multiple origins

Genome sequencing and gene mapping have con-
firmed that the conserved sex chromosomes of snakes,
birds, and therian mammals share no orthology by
gene content. This nonhomology has generally been
attributed to their independent evolution from different
autosomes (e.g., Graves 2006); however, such a situ-
ation could also arise by independent rearrangements
of a large ancestral (sex) chromosome in an amniote
ancestor (Ezaz et al. 2006; Smith and Voss 2007).

The latter hypothesis can be tested by comparing the
syntenic arrangement of sex chromosome orthologs in
amniote outgroups, such as amphibians or fish. Smith
and Voss (2007) found that orthologs from chicken 2
(0snake Z), chicken Z, and human X map to the same
chromosome (linkage group 2) in the tiger salamander,
Ambystoma tigrinum, with which amniotes last shared a
common ancestor some 360–390 MYA (citations to
these and other divergence dates are made in Fig. 1).
However, synteny of chicken and human sex chromo-
some orthologs is not shared by any other amphibian or
amniote so far examined. In A. tigrinum, such an
arrangement of genes may be coincidental, made more
likely by the very large chromosomes of this species.

Additional outgroup comparison is provided by the
recently sequenced genome of the tropical clawed frog,
Xenopus tropicalis. The snake Z (chicken chromosomes
2p+27) is orthologous to parts ofXenopus chromosomes
6 and 10; the chicken Z is orthologous to part of chro-
mosome 1; and the human X is orthologous to parts of
chromosomes 2 and 8 (Fig. 1b) (Hellsten et al. 2010;
O’Meally et al. 2010); thus, none of these conserved
amniote sex chromosomes is syntenic in Xenopus.

Further afield, teleost fish such as Gasterosteus,
Danio, Fugu, and Oryzias also provide an appropriate
outgroup, but they are not ideal because the teleost
genome duplication complicates detection of orthologs
(Kasahara et al. 2007) and their genomes are rearranged
and gene duplicates have dropped out, so synteny is
poorly conserved (Nakatani et al. 2007). However,
fine-scale analysis of these genomes produced no evi-
dence of synteny of bird Z and human X orthologs in
teleost fish (Bellott et al. 2010).

In their in silico reconstructions of ancestral verte-
brate chromosomes, neither Nakatani et al. (2007) nor
Kohn et al. (2006) specifically addressed the question
of ancestral synteny of amniote sex chromosomes, but
their proposed ancestral karyotypes do not recover

synteny of snake with bird, or bird with mammal,
sex chromosomes. The absence of ancestral synteny
in the blocks that make up the sex chromosomes of
extant therian mammals, birds, and snakes suggests
that they were each derived independently from dif-
ferent ancestral autosomes.

Relationship between fused regions in sex
chromosomes

But is there a deeper relationship? In eutherian mammals,
two ancestral chromosome segments make up the X. The
conserved region (XCR) is defined by the X chromo-
some in marsupials and the added region (XAR) by an
autosomal gene block (Fig. 3) (Graves 1995; Mikkelsen
et al. 2007; Ross et al. 2005), and this fused X gave rise to
a degenerate Ywith a conserved region (YCR) and added
region (YAR) (Waters et al. 2001). The same two blocks
lie on different autosomes in all other tetrapods for which
mapping data are available (Fig. 1b). This suggests that
the eutherian X arose by fusion of an ancestral autosome
with the therian X between 148 MYA, when marsupials
and eutherians last shared a common ancestor and
105 MYA before eutherians radiated. The position of
the centromere at this junction on the X of the African
elephant, Loxodonta africana, implies that there was a
centric fusion in the ancestor of eutherians, followed by a
centric shift in the ancestor of other eutherian lineages
(Rodríguez Delgado et al. 2009).

Similarly, synteny of genes on the snake Z must
have arisen by the fusion of ancestral segments (rep-
resented by chicken chromosomes 2p and 27) between
166 and 275 MYA because, with the exception of
agamid and iguanid lizards (Srikulnath et al. 2009b,
http://ensembl.org release 64), these regions are
always found on separate chromosomes in other tetra-
pods (Fig. 1b).

Were the independent fusions of these segments in
mammals and snakes chance events, or were the two
ancestral blocks of the X or Z related in some way? One
possibility is that they were ancient duplicates that arose
through two rounds of vertebrate genome duplication,
first proposed by Ohno (1970). By using tunicate and
sea urchin genes to define paralogs (“Ohnologs”) that
arose through these ancient vertebrate genome duplica-
tions, Nakatani et al. (2007) were able to reconstruct
proto-karyotypes for the pre-duplicated genome of the
ancestral vertebrate; after one round of genome
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duplication in the ancestral gnathostome (jawed verte-
brate); and after two rounds in the ancestral amniote.
Inspection of these ancient duplicates implies that a
single chromosome in the ancestral vertebrate gave rise
to the two segments that would ultimately define the
conserved and added regions of the eutherian X (Fig. 3).

The human X chromosome is known to bear an
overrepresentation of genes involved in mental retarda-
tion (MRX) and reproduction (Graves et al. 2002;
Nguyen and Disteche 2006; Saifi and Chandra 1999;
Skuse 2005) that is thought to have arisen through gene
trafficking and subfunctionalization of transposed copies
(Potrzebowski et al. 2008). Alternatively, it might reflect
the biased gene content of the ancestral autosomes from
which it evolved (Graves 2006). Candidate humanMRX
genes from the XAR map to a single autosome in mar-
supials and most other tetrapods, implying that their
location on the X arose, not by independent transloca-
tions, but in a single addition of the XAR (Delbridge et

al. 2008). Some known and candidate MRX genes have
widespread expression patterns in chickens and marsu-
pials, but are restricted to neuronal and gonadal tissues or
particular cell types in mice and humans (Delbridge et al.
2008; Kohn et al. 2007). The addition of a segment rich
in Ohnologs to a chromosome with brain and reproduc-
tive functions may have enabled genes on the neo-X of
the ancestral eutherian to take on new and highly spe-
cialized roles. Combined with the special selective forces
that act on X chromosomes (e.g., fast X, sexual selection;
Charlesworth et al. 1987; Singh and Petrov 2007), the
nascent X was transformed in to a chromosome that is
both “smart and sexy” (Graves et al. 2002).

Remarkably, the two segments of the snake Z also
derive in large part from two duplicates of a single
ancestral vertebrate chromosome (represented by chicken
2q and 27). The Z chromosome appears to be conserved
at least across “true” snakes (Alethinophidia) whose ori-
gins are in the Cretaceous about 105 MYA; the gene
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SLC25A6 1.5 SLC25A5 118.5
AKAP17A 1.7 AKAP16BP 118.3
NLGN4X 6.2 NLGN3 70.3

MID1 10.8 MID2 107.0
ARHGAP6 11.6 ARHGAP36 130.0

PRPS2 12.7 PRPS1 106.8
TMSB4X 12.9 TMSB15B 103.1
RAB9A 13.6 RAB9B 103.0
GPM6B 13.9 PLP1 102.9
GLRA2 14.5 GLRA4 102.9
BMX 15.4 BTK 100.5
GRPR 16.1 BRS3 135.4

PHKA2 18.9 PHKA1 71.9
RPS6KA3 20.2 RPS6KA6 83.3

APOO 23.8 APOOL 84.1
IL1RAPL1 28.5 IL1RAPL2 103.7

CYBB 37.5 NOX1 100.0
SYTL5 37.8 SYTL4 99.9
SRPX 38.0 SRPX2 99.8

TSPAN7 38.3 TSPAN6 99.8
FGF16 76.6 FGF13 137.9
GLRA4 102.9 GABRA3 151.4

Fig. 3 The eutherian X chromosome consists of two ancestral
chromosome segments known as the X-conserved region (XCR,
45–155 Mbp, blue) which is shared with marsupials, and an
added region (XAR, 0–45 Mbp, red) that is autosomal in mar-
supials. Intriguingly, these two segments derive in large part
from a single ancestral vertebrate chromosome, prior to two
rounds of genome duplication (Nakatani et al. 2007). Of the

687 human X-borne Ohonologs derived from the jawed-
vertebrate whole genome duplication identified by Makino and
McLysaght (2010), 20 pairs (green arcs) have a member on both
the XAR (red) and XCR (blue), and 2 pairs (magenta arcs) on
just the XCR, presumably due to small-scale rearrangements.
Perhaps the wholesale addition of Ohnologs allowed the rapid
specialization of a “smart and sexy” eutherian X chromosome
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content of sex chromosomes in the earliest snakes (blind-
snakes, Scolecophidia), which arose about 160 MYA
(Vidal et al. 2009), remains unknown. Gene mapping in
lizards indicates that the fusion of these ancestral seg-
ments predates the origin of snakes by 6 Ma. Perhaps the
distant homology of these segments predisposed subse-
quent fusion in an early snake ancestor. Such fusionsmay
have been favored by selection because of their comple-
mentary gene content. This distant homology may have
enabled rapid subfunctionalization of Z-borne genes by
selection on the hemizygous Z of females, or sexual
selection and fixation of novel mutants arising by drift
(Mank et al. 2010). Perhaps this sex chromosome even
played some role in the rapid divergence of snakes from
other lizards. The fully assembled and mapped genomes
of amphioxus (Putnam et al. 2008), several snakes
(http://snakegenomics.org), and gene mapping in a
diversity of reptiles will inform the interpretation of
these observations.

Which came first, the chicken or the Z?

The chicken Z represents a single ancestral chordate
chromosome, which is also present as a single chro-
mosome, or chromosome arm, in many reptiles and
amphibians (Graves and Shetty 2001; Matsuda et al.
2005; Nakatani et al. 2007; Nanda et al. 2008;
Pokorná et al. 2011; Srikulnath et al. 2009b; Voss et
al. 2011). In the ancestral karyotypes proposed by
Nakatani et al. (2007), synteny of the ancestral verte-
brate proto-chromosome “A” is conserved in the gna-
thostome proto-chromosome “A0,” the amniote proto-
chromosomes “3” and “26,” and is found today in
chicken chromosomes Z and 17. Almost all orthologs
of chicken Z genes map to chromosome 1 in Xenopus
(Fig. 1b) (Hellsten et al. 2010) and linkage group 8 in
theMexican axolotl, Ambystomamexicanum (Voss et al.
2011). Even in the ancestral chordate karyotype sug-
gested by analysis of the amphioxus genome (Putnam
et al. 2008), chicken Z orthologs cluster as linkage
group 2.

This represents an unusually stable syntenic arrange-
ment, which remained intact for more than 500 Ma,
with its origin long before the evolution of birds. It has
been proposed that a role in sex determination,
and the subsequent accumulation of male-specific
genes on the chicken Z chromosome, exerts selec-
tive pressure to conserve Z chromosome synteny

in birds (Nanda et al. 2008), but clearly synteny has been
conserved even in lineages in which it does not act in
that role.

The chicken Z and sex determination

The distribution of, and enormous variation in, mech-
anisms of sex determination across the amniote phy-
logeny suggests that sex chromosomes have evolved
many times (Ezaz et al. 2006; Graves 2008; Organ and
Janes 2008; Ezaz et al. 2009b). However, the ancestral
chromosome represented by the chicken Z is found to
have a sex-determining function in at least three very
distantly related lineages. The chicken Z chromosome
is shared by all birds, although there are some lineage
specific rearrangements (Nanda et al. 2008). Gene
mapping in the Hokou gecko, Gekko hokouensis, also
reveals a gene content and order in the acrocentric Z
and slightly degenerated W that is shared with the
chicken Z chromosome (Kawai et al. 2009). Most
remarkably, the bizarre platypus sex chromosome sys-
tem of five Xs and five Ys that form a translocation
chain at meiosis share homology with the chicken Z,
principally in the terminal X chromosome, X5 (Veyrunes
et al. 2008, http://ensembl.org, release 64).

Many reptiles have sex chromosomes that are not
homologous to the bird ZW, and their gene content
makes it clear that they were independently derived
from different autosomes (e.g., Ezaz et al. 2009a;
Matsubara et al. 2006; Pokorná et al. 2011; Alfoldi
et al. 2011). However, reconstructing ancestral syn-
teny suggests some were derived from the same
ancestral chromosome as was the chicken Z, despite
the absence of shared synteny in extant species. For
instance, the Z chromosome of the Chinese softshell
turtle, Pelodiscus sinensis, shares five genes with
chicken chromosome 15, and the chicken Z chromo-
some is homologous to chromosome 6, although the
gene order is different (Matsuda et al. 2005). This
suggests an origin in a different autosomal pair of
chromosomes than the chicken Z (Kawagoshi et al.
2009). However, in opossum and Xenopus these five
turtle Z genes (and most other genes in the same
region) are syntenic with orthologs from chicken Z
(Fig. 1b), suggesting the chromosomes were fused at
some stage (Hellsten et al. 2010; Mikkelsen et al.
2007). In amphioxus, scaffolds remain unassigned to
chromosomes, but at least one of the five mapped
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turtle Z genes (TOP3B) lies on a scaffold shared with
chicken Z orthologs (Putnam et al. 2008). Strikingly,
the X chromosome of the green anole lizard, Anolis
carolinensis, also shares synteny with chicken chro-
mosome 15 (Alfoldi et al. 2011). These observations
suggest that both the X of Anolis and the Z chromo-
some of Pelodiscus are derived from the same ances-
tral autosome that gave rise to the chicken Z.
Understanding how this chromosome acts in opposite
systems of heterogamety (XY vs. ZW) is of great
interest, particularly for comparing fast X and Z
effects, or demonstrating differential gene traffic onto
or off the Z and X.

Evolution of the sex-determining function
of the proto-Z

Homology of sex chromosomes in amniotes as diver-
gent as birds, a gecko and monotreme mammals raises
the question of whether the sex-determining function
of this 325-Ma-old proto-Z chromosome has been
retained in several different descendants, or whether
the ancestral chromosome that gave rise to it has an
unusual tendency to become a sex chromosome
(Graves and Peichel 2010). Testing these alternative
hypotheses requires close examination of the sex chro-
mosomes in lineages that contain a bird-like ZW.

Has the sex-determining function of the platypus
X5 chromosome been preserved? It has been sug-
gested that the monotreme XY complex evolved by
repeated translocations of four autosomes with an
ancestral bird-like Z chromosome to form the translo-
cation chain of 10 seen at meiosis (Graves 2008; Rens
et al. 2007; Veyrunes et al. 2008). To test this hypoth-
esis, it would be necessary to examine sex determina-
tion in related species. However, there are no mammal
taxa extant other than Theria, which have recently
evolved a unique XY system, so it is not possible to
determine whether the monotreme XY system retained
an ancestral sex-determining function or gained its
sex-determining function independently.

The relationship between the bird ZW and the ZW
system of the Hokou gecko, G. hokouensis, is more
amenable to analysis. Chromosome painting shows
that sex chromosome homology with the chicken Z
is not widespread among reptiles (Fig. 4). Pokorná et
al. (2011) hybridized a chicken Z chromosome paint to
chromosome spreads of species with cytologically

identifiable sex chromosomes, representing seven
squamate families. In each case, the probe marked
only autosomes. A further 18 squamates in 10 families
confirm that synteny of the Z is conserved, but sex
chromosomes remain unidentified in these species. Of
particular interest are species related to G. hokouensis,
as they may give an indication of the antiquity of the
gecko Z chromosome. Pokorná et al. (2011) examined
three species congeneric with G. hokouensis, and found

?

?

Other squamates
(snakes & lizards)

Pygopodidae

Eublepharidae

Gekkonidae

200 100 0
MYA

X1 X2 Y

2

Gekkota

6
Gekko vittatus

Coleonyx elegans

Lialis burtonis

6

Gekko ulikovskii

WZ

Gekko hokouensis

X1 X2 Y

6 X Y

Gekko gecko

Gekko japonicus

6 X Y
?

8 Z W

Hemidactylus platyurus

Fig. 4 A simplified phylogeny of geckos (Gekkota), showing
chromosomal homology with the chicken Z chromosome
(green). Geckos have evolved sex chromosomes independently
many times (open chromosomes) and many exhibit temperature-
dependent sex determination (bulb). Among all species exam-
ined, including other lizards and snakes, a single-chromosome
arm is homologous to the chicken Z (with some exceptions).
Only in one species, Gekko hokouensis, does the same chromo-
some have a role in sex determination, suggesting this function
arose independently, rather than being retained for ~275 Ma.
Mapping and painting data from Kawai et al. (2009), Pokorná et
al. (2011), and Trifonov et al. (2011); phylogeny after Gamble et
al. (2011) and Rösler et al. (2011)
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that a single acrocentric chromosomewasmarked by the
chicken Z probe; however, sex chromosomes remain
unidentified in these species (Gekko japonicus, Gekko
vittatus, and Gekko ulikovskii). Trifonov et al. (2011)
used chromosome paints from G. japonicus to demon-
strate that sex chromosomes in the tokay gecko, G.
gecko, and the flat-tailed house gecko, Hemidactylus
platyurus, are not homologous with those in chicken.
In more distantly related gekkotans (a pygopod and a
eublepharid), XXY sex chromosomes are also not
homologous with the chicken Z, suggesting that those
ofG. hokouensis arose independently and more recently
than the sex chromosomes of other gekkotans (Fig. 4)
(Pokorná et al. 2011). The alternative explanation that
the sex-determining function was lost many times in
other squamates and geckoes is less parsimonious. We
can conclude, therefore, that the ancestral proto-Z
acquired a sex-determining function independently at
least twice, once in the ancestors of birds, and once in
the ancestors of G. hokouensis.

Does the identity of the sex-determining gene pro-
vide a definitive answer on the functional homology of
the sex-determining role for the chicken, gecko, and
platypus sex chromosomes? In the chicken, the sex-
determining gene has been proposed to be DMRT1,
which lies on the Z but not the W, and appears to
operate by means of the dosage difference between ZZ
males and ZW females. Knocking down DMRT1 in
genotypically ZZ eggs produces sex-reversed females
(Smith et al. 2009). Dosage of DMRT1 is also critical
in humans, for deletion of the tip of chromosome 9,
where DMRT1 maps in humans, produces XY females
(Calvari et al. 2000). It is unknown whether DMRT1 is
involved in sex determination in G. hokouensis. In the
platypus, it seems unlikely that DMRT1 could play a
sex-determining role, given that it is present in one
copy in XY males and two copies in XX females
(Grützner et al. 2004).

If sex determination were found to be initiated by the
same gene(s), would this provide evidence of a shared
evolutionary history in sex determination? This would
assume no homoplasy, that is, no predisposition to enlist
common machinery when new instances of sex deter-
mination arise in evolution (Graves and Peichel 2010).
This is clearly not a valid assumption, given thatDMRT1
has independently spawned novel sex-determining sys-
tems in fish and frogs. In medaka, Oryzias latipes, a
retroposed copy of DMRT1 acts as a male-dominant
testis-determining gene, presumably by boosting the

concentration of DMRT1 product (Matsuda et al.
2002). It defines a new Y chromosome that is shared
only by the most closely related species. In Xenopus
laevis, a partially duplicated copy has the opposite func-
tion; lacking a transactivating domain it inhibits
DMRT1, so acts as a dominant female-determining
“anti-testis” gene (Yoshimoto and Ito 2011). Only the
most closely related species share this system, showing
that it was recently independently derived.

What could predispose the proto-Z
to a sex-determining function?

Comparative maps provide a unique perspective on
the evolution of sex chromosomes: different auto-
somes can be co-opted to this role independently, but
some appear to be recruited more frequently than
others. What makes some chromosomes more suited
to this role than others?

In the case of the chicken Z, perhaps its inclusion of
the sex-determining and sex-differentiation gene
DMRT1 makes it a particularly good candidate. As
discussed above, transposed copies of DMRT1 are
thought to be sex determining in medaka and Xenopus,
and its two-fold dosage directs male development in
the chicken and is necessary in mammals. The primary
sex-determining genes are yet to be identified in the
Hokou gecko, but having established sex chromosome
homology with birds, the list of candidates is nar-
rowed considerably. In monotremes, although DMRT1
is an unlikely candidate, it may have been the original
sex-determining gene, which was supplanted by a
gene on the autosome with which it first fused.

Perhaps the unusual stability of the proto-Z chromo-
some also permits it to retain not one, but two, or even
several genes that must act in concert to effect sex
determination. It is clear that DMRT1 dosage alone
cannot explain the occurrence of gynandromorph chick-
ens (Zhao et al. 2010), and there must also be a cell-
autonomous factor on one or other sex chromosome to
explain the sexually dimorphic features on the ZZ and
ZW sides of the same bird (Clinton et al. 2011). The
mammal X chromosome, too, is highly stable in gene
content and even gene order, though this may be a
consequence of selection against disruptions of a
chromosome-wide dosage compensation mechanism.

Another possibility is that this proto-Z makes a good
candidate for sex chromosomes because the genes it

Evolution of amniote sex chromosomes 15



bears are insensitive to haploinsufficiency. This would
obviate the need to evolve a complex system of dosage
compensation (Livernois et al. 2011). Indeed, dosage
compensation is only partial and gene-specific in birds,
and also in platypus (Deakin et al. 2008; Itoh et al.
2010). In contrast, failure to inactivate the mammal X
chromosome or duplications of even small regions on
the active X have severe phenotypes (Migeon et al.
2000; Schmidt and Du Sart 1992).

Others have argued for the role that sexual selection
and sexually antagonistic genes play in shaping sex
chromosomes. It is possible that autosomes that bear a
suite of such genes are preferentially recruited to a role
in sex determination (Bachtrog et al. 2011). Pala et al.
(2011) report a rare case of autosomal fission and
fusion with both Z and W sex chromosomes in
warblers and their allies (Sylvioidea). The neo-sex
chromosome was formed by fusion of the distal end
of the ancestral Z and part of chromosome 4a. This 42-
Ma-old rearrangement may have been favored because
it brings one or more genes with sex-biased functions
(e.g., androgen receptor, AR) into linkage with the
male determining gene DMRT1 (Pala et al. 2011).

The huge variety in the mechanisms of sex deter-
mination and life history traits among amniotes and, in
particular, reptiles, provides countless natural experi-
ments with which to test these and other ideas. Sophis-
ticated molecular cytogenetic techniques and wide
taxonomic sampling in genome sequencing (e.g.,
Genome 10K Community of Scientists 2009) will pro-
vide further insights in to the evolutionary history of
amniote sex chromosomes.
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