CHELONIAN RESEARCH MONOGRAPHS
Contributions in Turtle and Tortoise Research

Series Editor
ANDERS G.J. RHODIN
Chelonian Research Foundation, 168 Goodrich Street, Lunenburg, Massachusetts 01462 USA, and
Turtle Conservancy, 49 Bleecker Street, New York, New York 10012 USA [RhodinCRF@aol.com]

CHELONIAN RESEARCH MONOGRAPHS (ISSN 1088-7105) is an international peer-reviewed scientific publication series for monograph-length manuscripts, collected proceedings of symposia, edited compilations, and other longer turtle-related research documents. The series accepts contributions dealing with any aspects of chelonian research, with a preference for conservation or biology. Manuscripts or edited compilations dealing with conservation biology, systematic relationships, chelonian diversity, geographic distribution, natural history, ecology, reproduction, morphology and natural variation, population status, husbandry, and human exploitation or conservation management issues are of special interest. Bibliographic and other reference materials are also of interest. Submit proposals for publications directly to A.G.J. Rhodin at the e-mail address above. Instructions for manuscript submission and detailed guidelines for authors are available at the same address. The series is published on an occasional basis, from 1996 to 2016 by Chelonian Research Foundation, and from 2017 on by Chelonian Research Foundation and Turtle Conservancy.

Published Issues in Series

CHELONIAN RESEARCH MONOGRAPHS are available for purchase from Chelonian Research Foundation and Turtle Conservancy. No overall series subscription rate is available, as individual monograph issues are priced separately. Contact either Turtle Conservancy (49 Bleecker St., New York, NY 10012 USA, 212-353-5060, 212-353-5014 [fax], www.turtleconservancy.org) or Chelonian Research Foundation (168 Goodrich Street, Lunenburg, MA 01462 USA, 978-807-2902. RhodinCRF@aol.com, www.chelonian.org/crm) for prices, titles, and to place orders. Chelonian Research Foundation (founded in 1992) and Turtle Conservancy (founded in 2009) are nonprofit tax-exempt organizations under section 501(c)(3) of the Internal Revenue Code.

Copyright © 2017 by Chelonian Research Foundation and Turtle Conservancy
TURTLES OF THE WORLD
Annotated Checklist and Atlas of Taxonomy, Synonymy, Distribution, and Conservation Status (8th Ed.)
COVER AND PREFACE ILLUSTRATIONS

RECOMMENDED CITATION

TURTLES OF THE WORLD
Annotated Checklist and Atlas of Taxonomy, Synonymy, Distribution, and Conservation Status (8th Ed.)

TURTLE TAXONOMY WORKING GROUP
ANDERS G.J. RHODIN, JOHN B. IVERSO, ROGER BOUR, UWE FRITZ, ARTHUR GEORGES, H. BRADLEY SHAFFER, AND PETER PAUL VAN DIJK

SUPPLEMENT NO. 1 OF CHELONIAN RESEARCH MONOGRAPHS NO. 5:
Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group
EDITED BY
ANDERS G.J. RHODIN1,2, JOHN B. IVERSO3, PETER PAUL VAN DIJK2,4, RAYMOND A. SAUMURE5, KURT A. BUHLMANN6, PETER C.H. PRITCHARD7, AND RUSSELL A. MITTERMEIER8

1Chelonia Research Foundation, Lunenburg, Massachusetts, USA; 2Turtle Conservancy, New York, New York, USA; 3Earlham College, Richmond, Indiana, USA; 4Global Wildlife Conservation, Austin, Texas, USA; 5Southern Nevada Water Authority, Las Vegas, Nevada, USA; 6University of Georgia, Aiken, South Carolina, USA; 7Chelonia Research Institute, Oviedo, Florida, USA; 8Conservation International, Arlington, Virginia, USA

CHELONIAN RESEARCH MONOGRAPHS
Number 7

2017
Chelonia Research Foundation and Turtle Conservancy
TURTLES OF THE WORLD
Annotated Checklist and Atlas of Taxonomy, Synonymy, Distribution, and Conservation Status (8th Ed.)

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>9</td>
</tr>
<tr>
<td>Introduction</td>
<td>9</td>
</tr>
<tr>
<td>Methodology</td>
<td>10</td>
</tr>
<tr>
<td>TTWG Guidelines for Taxonomic Changes</td>
<td>13</td>
</tr>
<tr>
<td>Taxonomic Changes</td>
<td>14</td>
</tr>
<tr>
<td>Distributions</td>
<td>15</td>
</tr>
<tr>
<td>GIS Maps</td>
<td>16</td>
</tr>
<tr>
<td>Conservation Status</td>
<td>18</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>19</td>
</tr>
<tr>
<td>Conservation Status</td>
<td>19</td>
</tr>
<tr>
<td>Genetic Pollution</td>
<td>19</td>
</tr>
<tr>
<td>Request for Updates</td>
<td>19</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>20</td>
</tr>
<tr>
<td>Photos and Photographers</td>
<td>21</td>
</tr>
<tr>
<td>Checklist</td>
<td>23</td>
</tr>
<tr>
<td>Linnaean Classification Content</td>
<td>23</td>
</tr>
<tr>
<td>Alternative Phylocode Classification</td>
<td>23</td>
</tr>
<tr>
<td>Testudines</td>
<td>24</td>
</tr>
<tr>
<td>Cryptodira</td>
<td>24</td>
</tr>
<tr>
<td>Chelydridae</td>
<td>24</td>
</tr>
<tr>
<td>Chelydra</td>
<td>24</td>
</tr>
<tr>
<td>Macrochelys</td>
<td>26</td>
</tr>
<tr>
<td>Chelonioidae</td>
<td>27</td>
</tr>
<tr>
<td>Cheloniidae</td>
<td>27</td>
</tr>
<tr>
<td>Carettinae</td>
<td>27</td>
</tr>
<tr>
<td>Caretta</td>
<td>27</td>
</tr>
<tr>
<td>Eretmochelys</td>
<td>28</td>
</tr>
<tr>
<td>Lepidochelys</td>
<td>29</td>
</tr>
<tr>
<td>Cheloniinae</td>
<td>30</td>
</tr>
<tr>
<td>Chelonia</td>
<td>30</td>
</tr>
<tr>
<td>Natator</td>
<td>32</td>
</tr>
<tr>
<td>Dermochelyidae</td>
<td>32</td>
</tr>
<tr>
<td>Dermochelys</td>
<td>32</td>
</tr>
<tr>
<td>Kinosternoidea</td>
<td>34</td>
</tr>
<tr>
<td>Dermatemyidae</td>
<td>34</td>
</tr>
<tr>
<td>Dermatemydys</td>
<td>34</td>
</tr>
<tr>
<td>Kinosternidae</td>
<td>34</td>
</tr>
<tr>
<td>Kinosterninae</td>
<td>34</td>
</tr>
<tr>
<td>Kinosternon</td>
<td>34</td>
</tr>
<tr>
<td>Kinosternon or Cryptochelys</td>
<td>35</td>
</tr>
<tr>
<td>Sternotherus</td>
<td>45</td>
</tr>
<tr>
<td>Staurotypinae or Staurotypidae</td>
<td>47</td>
</tr>
<tr>
<td>Claudius</td>
<td>47</td>
</tr>
<tr>
<td>Staurotypus</td>
<td>48</td>
</tr>
<tr>
<td>Testudinoidea</td>
<td>49</td>
</tr>
<tr>
<td>Emydidae</td>
<td>49</td>
</tr>
<tr>
<td>Deirochelyinae</td>
<td>49</td>
</tr>
<tr>
<td>Chrysemys</td>
<td>49</td>
</tr>
<tr>
<td>Deirochelys</td>
<td>51</td>
</tr>
<tr>
<td>Graptemys</td>
<td>51</td>
</tr>
<tr>
<td>Malaclemys</td>
<td>57</td>
</tr>
<tr>
<td>Pseudemys</td>
<td>59</td>
</tr>
<tr>
<td>Trachemys</td>
<td>62</td>
</tr>
<tr>
<td>Emydininae</td>
<td>71</td>
</tr>
<tr>
<td>Clemmys</td>
<td>71</td>
</tr>
<tr>
<td>Taxon</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Emys</td>
<td>72</td>
</tr>
<tr>
<td>Emys or Actinemys</td>
<td>75</td>
</tr>
<tr>
<td>Emys or Emydoidea</td>
<td>76</td>
</tr>
<tr>
<td>Glyptemys</td>
<td>77</td>
</tr>
<tr>
<td>Terrapene</td>
<td>77</td>
</tr>
<tr>
<td>Platysternidae</td>
<td>82</td>
</tr>
<tr>
<td>Platysternon</td>
<td>82</td>
</tr>
<tr>
<td>Geoemydidae</td>
<td>83</td>
</tr>
<tr>
<td>Geoemydinae</td>
<td>83</td>
</tr>
<tr>
<td>Batagur</td>
<td>83</td>
</tr>
<tr>
<td>Cuora</td>
<td>86</td>
</tr>
<tr>
<td>Cyclemys</td>
<td>93</td>
</tr>
<tr>
<td>Geoclemys</td>
<td>96</td>
</tr>
<tr>
<td>Geoemyda</td>
<td>96</td>
</tr>
<tr>
<td>Hardella</td>
<td>97</td>
</tr>
<tr>
<td>Heosemys</td>
<td>98</td>
</tr>
<tr>
<td>Leucocephalon</td>
<td>99</td>
</tr>
<tr>
<td>Malayemys</td>
<td>100</td>
</tr>
<tr>
<td>Mauremys</td>
<td>101</td>
</tr>
<tr>
<td>Melanochelys</td>
<td>107</td>
</tr>
<tr>
<td>Morenia</td>
<td>109</td>
</tr>
<tr>
<td>Notochelys</td>
<td>109</td>
</tr>
<tr>
<td>Orlitia</td>
<td>110</td>
</tr>
<tr>
<td>Pangshura</td>
<td>110</td>
</tr>
<tr>
<td>Sacalia</td>
<td>113</td>
</tr>
<tr>
<td>Siebenrockiella</td>
<td>114</td>
</tr>
<tr>
<td>Vijayachelys</td>
<td>114</td>
</tr>
<tr>
<td>Rhinoclemmydinae</td>
<td>115</td>
</tr>
<tr>
<td>Rhinoclemmys</td>
<td>115</td>
</tr>
<tr>
<td>Testudinidae</td>
<td>120</td>
</tr>
<tr>
<td>Aldabrachelys</td>
<td>120</td>
</tr>
<tr>
<td>Astrochelys</td>
<td>121</td>
</tr>
<tr>
<td>Centrochelys</td>
<td>123</td>
</tr>
<tr>
<td>Chelonoidis</td>
<td>123</td>
</tr>
<tr>
<td>Chersina</td>
<td>132</td>
</tr>
<tr>
<td>Chersobius</td>
<td>132</td>
</tr>
<tr>
<td>Cylindraspis</td>
<td>134</td>
</tr>
<tr>
<td>Geochelone</td>
<td>136</td>
</tr>
<tr>
<td>Gopherus</td>
<td>137</td>
</tr>
<tr>
<td>Homopus</td>
<td>140</td>
</tr>
<tr>
<td>Indotestudo</td>
<td>140</td>
</tr>
<tr>
<td>Kinixys</td>
<td>141</td>
</tr>
<tr>
<td>Malacochersus</td>
<td>145</td>
</tr>
<tr>
<td>Manouria</td>
<td>145</td>
</tr>
<tr>
<td>Psammobates</td>
<td>146</td>
</tr>
<tr>
<td>Pyxis</td>
<td>149</td>
</tr>
<tr>
<td>Stigmochelys</td>
<td>150</td>
</tr>
<tr>
<td>Testudo</td>
<td>151</td>
</tr>
<tr>
<td>(Testudo)</td>
<td>151</td>
</tr>
<tr>
<td>(Agrionemys)</td>
<td>155</td>
</tr>
<tr>
<td>(Chersine)</td>
<td>157</td>
</tr>
<tr>
<td>Trionyoidea</td>
<td>158</td>
</tr>
<tr>
<td>Carettochelyidae</td>
<td>158</td>
</tr>
<tr>
<td>Carettochelys</td>
<td>158</td>
</tr>
<tr>
<td>Trionychidae</td>
<td>158</td>
</tr>
<tr>
<td>Cyclorhinae</td>
<td>158</td>
</tr>
<tr>
<td>Cyclanorhinae</td>
<td>158</td>
</tr>
<tr>
<td>Cyclanorbis</td>
<td>158</td>
</tr>
<tr>
<td>Cycloderma</td>
<td>159</td>
</tr>
<tr>
<td>Lissemys</td>
<td>160</td>
</tr>
<tr>
<td>Trionychinae</td>
<td>162</td>
</tr>
<tr>
<td>Amyda</td>
<td>162</td>
</tr>
<tr>
<td>Apalone</td>
<td>164</td>
</tr>
<tr>
<td>Chitra</td>
<td>168</td>
</tr>
<tr>
<td>Dogania</td>
<td>169</td>
</tr>
<tr>
<td>Nilssonia</td>
<td>169</td>
</tr>
<tr>
<td>Palea</td>
<td>171</td>
</tr>
<tr>
<td>Pelochelys</td>
<td>172</td>
</tr>
<tr>
<td>Pelodiscus</td>
<td>173</td>
</tr>
<tr>
<td>Rafetus</td>
<td>175</td>
</tr>
<tr>
<td>Trionyx</td>
<td>176</td>
</tr>
<tr>
<td>Taxonomy</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
</tr>
<tr>
<td>Pleurodira</td>
<td>177</td>
</tr>
<tr>
<td>Chelidae</td>
<td>177</td>
</tr>
<tr>
<td>Chelinae</td>
<td>177</td>
</tr>
<tr>
<td>Acanthochelys</td>
<td>178</td>
</tr>
<tr>
<td>Chelus</td>
<td>179</td>
</tr>
<tr>
<td>Mesoclemmys</td>
<td>180</td>
</tr>
<tr>
<td>Phrynops</td>
<td>183</td>
</tr>
<tr>
<td>Platemys</td>
<td>185</td>
</tr>
<tr>
<td>Rhinemys</td>
<td>186</td>
</tr>
<tr>
<td>Hydromedusinae</td>
<td>186</td>
</tr>
<tr>
<td>Hydromedusa</td>
<td>186</td>
</tr>
<tr>
<td>Chelodininae</td>
<td>187</td>
</tr>
<tr>
<td>Chelodina</td>
<td>187</td>
</tr>
<tr>
<td>(Chelodina)</td>
<td>187</td>
</tr>
<tr>
<td>(Macrochelodina)</td>
<td>191</td>
</tr>
<tr>
<td>(Macrodiremys)</td>
<td>193</td>
</tr>
<tr>
<td>Elseya</td>
<td>193</td>
</tr>
<tr>
<td>(Elseya)</td>
<td>193</td>
</tr>
<tr>
<td>(Hanwarachelys)</td>
<td>194</td>
</tr>
<tr>
<td>(Pelocomastes)</td>
<td>195</td>
</tr>
<tr>
<td>Elusor</td>
<td>196</td>
</tr>
<tr>
<td>Emydura</td>
<td>197</td>
</tr>
<tr>
<td>Myuchelys</td>
<td>200</td>
</tr>
<tr>
<td>Rheodytes</td>
<td>201</td>
</tr>
<tr>
<td>Pseudemydurinae</td>
<td>202</td>
</tr>
<tr>
<td>Pseudemydura</td>
<td>202</td>
</tr>
<tr>
<td>Pelomedusidae</td>
<td>202</td>
</tr>
<tr>
<td>Pelomedusa</td>
<td>202</td>
</tr>
<tr>
<td>Pelusios</td>
<td>206</td>
</tr>
<tr>
<td>Podocnemididae</td>
<td>214</td>
</tr>
<tr>
<td>Erymnochelys</td>
<td>214</td>
</tr>
<tr>
<td>Peltocephalus</td>
<td>214</td>
</tr>
<tr>
<td>Podocnemis</td>
<td>214</td>
</tr>
<tr>
<td>Regional Species Richness Maps</td>
<td>218</td>
</tr>
<tr>
<td>Annotations</td>
<td>221</td>
</tr>
<tr>
<td>Current 2017 Checklist</td>
<td>221</td>
</tr>
<tr>
<td>Previous Checklist Annotations</td>
<td>234</td>
</tr>
<tr>
<td>2007 Annotations</td>
<td>234</td>
</tr>
<tr>
<td>2008 Annotations</td>
<td>238</td>
</tr>
<tr>
<td>2009 Annotations</td>
<td>239</td>
</tr>
<tr>
<td>2010 Annotations</td>
<td>242</td>
</tr>
<tr>
<td>2011 Annotations</td>
<td>246</td>
</tr>
<tr>
<td>2012 Annotations</td>
<td>247</td>
</tr>
<tr>
<td>2014 Annotations</td>
<td>251</td>
</tr>
<tr>
<td>Appendix – Distributional Data</td>
<td>256</td>
</tr>
<tr>
<td>Distribution Updates 2011</td>
<td>256</td>
</tr>
<tr>
<td>Distribution Updates 2012</td>
<td>256</td>
</tr>
<tr>
<td>Distribution Updates 2014</td>
<td>257</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>257</td>
</tr>
<tr>
<td>CRM 5 and CRM 7 Citations</td>
<td>290</td>
</tr>
<tr>
<td>TTWG, CBFTT, and TEWG Checklists</td>
<td>290</td>
</tr>
<tr>
<td>CBFTT Species Accounts</td>
<td>290</td>
</tr>
</tbody>
</table>

TURTLE TAXONOMY WORKING GROUP*

*Authorship of this article is by this working group of the IUCN SSC Tortoise and Freshwater Turtle Specialist Group, which for the purposes of this document consisted of the following contributors:

ANDERS G.J. RHODIN1,2, JOHN B. IVESON3, ROGER BOUR3,4, ARTHUR GEORGES6, H. BRADLEY SHAFFER7, and PETER PAUL VAN DIJK2,8

1Chairman Emeritus, IUCN SSC Tortoise and Freshwater Turtle Specialist Group.
Chelonia Research Foundation, 168 Goodrich St., Lunenburg, Massachusetts 01462 USA [rhodincrf@aol.com];
2Turtle Conservancy, 49 Bleecker St., New York, New York 10012 USA;
3Department of Biology, Earlham College, Richmond, Indiana 47374 USA [johnt@earlham.edu];
4Laboratoire des Reptiles et Amphibiens, Muséum National d’Histoire Naturelle, 75005 Paris, France [bour.roger@gmail.com];
5Museum für Tierkunde, Senckenberg Dresden, A.B. Meyer Building, 01109 Dresden, Germany [uwe.fritz@senckenberg.de];
6Institute for Applied Ecology, University of Canberra, ACT 2601, Australia [georges@aerg.canberra.edu.au];
7Department of Ecology and Evolutionary Biology and La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095 USA [brad.shaffer@ucla.edu];
8Deputy Chair, IUCN SSC Tortoise and Freshwater Turtle Specialist Group,
Global Wildlife Conservation, PO Box 129, Austin, Texas 78767 USA [ppvandijk@globalwildlife.org]

ABSTRACT. – This is our 8th edition of an annotated checklist of all recognized and named taxa of the world’s modern chelonian fauna, documenting recent changes and controversies in nomenclature through early 2017, and including all primary synonyms, updated from 7 previous checklists (Turtle Taxonomy Working Group 2007b, 2009, 2010, 2011, 2012, 2014; Rhodin et al. 2008). We provide an updated comprehensive listing of taxonomy, names, and conservation status of all turtles and tortoises of the world, including detailed distribution maps. We strive to record the most recent justified taxonomic assignment of taxa in a hierarchical framework, providing annotations, including alternative possible arrangements, for some proposed changes. We provide common English names and detailed distributional data for all taxa, listing occurrence by countries and many smaller political or geographic subunits (states or regions), including indications of native, extirpated, and introduced (modern or prehistoric) populations. We include current published and draft IUCN Red List status assessments for all turtles, as well as CITES listings. The diversity of turtles and tortoises in the world that has existed in modern times (since 1500 AD) and currently generally recognized as distinct and included in this checklist, now consists of 356 species. Of these, 60 are polytypic, representing 122 additional recognized subspecies, or 478 total taxa of modern turtles and tortoises. Of these, 7 species and 3 subspecies, or 10 taxa (2.1%), have gone extinct. As of the current IUCN 2017 Red List, 148 turtle species (60.4% of 245 species listed, 41.6% of all 356 recognized modern species) are officially regarded as globally Threatened (Critically Endangered [CR], Endangered [EN], or Vulnerable [VU]). We record additional draft Red List assessments by the IUCN Tortoise and Freshwater Turtle Specialist Group (TFTSG) of previously “unevaluated” species, and updated draft re-assessments of previously listed species, allowing us to evaluate the overall current threat levels for all turtles and tortoises. Of the 356 total species of turtles and tortoises, 114 (32.0%) are CR or EN, 179 (50.3%) are Threatened (CR, EN, or VU), and 186 (52.2 %) are Threatened or Extinct. If we provisionally adjust for predicted threat rates of Data Deficient and Not Evaluated species, then ca. 59% of all extant turtles are Threatened. These numbers and percentages of Threatened species have increased since our last checklist. Turtles are among the most threatened of the major groups of vertebrates, in general more than birds, mammals, cartilaginous or bony fishes, or amphibians.

KEY WORDS. – Reptilia, Testudines, turtle, tortoise, chelonian, taxonomy, nomenclature, genera, species, subspecies, primary synonyms, suprageneric hierarchy, systematics, common names, distribution, maps, introduced species, conservation status, IUCN Red List, CITES, threatened species, extinction
The diversity of all turtles and tortoises (cheloniens) in the world that has existed in modern times (since 1500 AD), and currently generally recognized as distinct by specialists in turtle taxonomy and systematics, consists of approximately 356 species, of which 60 are polytypic, with 122 additional recognized subspecies, or 478 total taxa of modern cheloniens. Of these, 8 species plus 3 subspecies, or 11 total taxa, of tortoises and freshwater turtles have become extinct since 1500 AD (see Table 1), leaving us currently with 348 species and 119 additional subspecies, or 467 total taxa of living turtles and tortoises. Of all living turtle taxa, 7 species are marine turtles, leaving 341 species and 460 total taxa of modern living freshwater and terrestrial turtles and tortoises.

In this checklist we present a full taxonomic listing of all recognized modern turtle and tortoise taxa, including synonymized names and type localities, detailed distribution maps, and annotations concerning recently described new taxa, nomenclatural and taxonomic updates, and significant taxon-related controversies or developments.

The 478 modern turtle and tortoise taxa we recognize here are based on a synonymy of 1473 separate named turtle and tortoise species and subspecies, including all primary description names, secondary nomen novum replacement names, undescribed nomen nudum names, and other nomenclaturally unavailable names. These names also include those fossil taxa that have been synonymized with modern taxa.

We also recognize 1 order, 2 suborders, 4 superfamilies, 14 families, 13 subfamilies, 94 genera (plus 5 potentially separate genera), and 6 subgenera of modern turtles, for a potential total of 139 supraspecific groupings. These groups are based on 457 valid and synonymized names, for a total listing here of 1930 taxonomic names and almost 2000 total taxa of modern living freshwater and terrestrial turtles and tortoises.

As there is always some disagreement among experts as to which taxa are distinct and valid, and at what systematic level or rank (species or subspecies), these numbers are variable depending on the authorities presenting their data or interpretations. For prior discussions and listings of all recognized modern turtle taxa, with extensive annotations regarding areas of recent taxonomic change, instability, or controversy, see the previous publications by the Turtle Taxonomy Working Group (TTWG 2007a,b, 2009, 2010, 2011, 2012, 2014), Rhodin et al. (2008), and the turtle checklist produced for CITES by Fritz and Havaš (2007). For a listing of all extinct Pleistocene and Holocene turtle and tortoise taxa, see our companion checklist by the Turtle Extinctions Working Group (TEWG 2015).

METHODOLOGY

The Turtle Taxonomy Working Group (TTWG) functions under the auspices of the IUCN SSC Tortoise and Freshwater Turtle Specialist Group (TFTSG), which operates under the umbrella of the IUCN (International Union for Conservation of Nature) and its Species Survival Commission (SSC). We first compiled our checklist of modern turtle taxa in 2007 (TTWG 2007b), and have previously updated it annually to reflect more recent changes, as required by subsequent publications with taxonomic novelties or proposed changes, as well as adding primary synonyms for all recognized taxa, type species and type locality designations, as well as distribution maps (Rhodin et al. 2008; TTWG 2009, 2010, 2011, 2012, 2014). This present checklist has taken three years to update and produce because of extensive further expansion in content, and is now the 8th installment in this series. It is current through approximately July 2017.

We list all primary and synonymized description names, as well as all nomina nova and nomina nuda names of which we are aware. We added nomen novum names in the previous checklist. We continue to exclude most obvious ex errore names, especially the profusion of recent egregious misspellings in modern literature (especially in the popular literature and other non-systematic biological sciences). In addition, we do not list variations in spelling of the two alternate patronymic endings (-ii vs. -i), always using the original valid orthography.

Our listing of nomen novum names takes a broadly encompassing approach and lists both justified and unjustified subsequent emendations, including substantial name changes caused by early writers’ occasional tendencies to create new or “better” names that they felt were more appropriate or more correct. Many early names were also unjustifiably emended in order to try to comply with perceived rules about word constructions and the use of non-Greek vs. Greek letters, (e.g., c vs. k, as in Cinosternon vs. Kinosternon, Cinixys vs. Kinixys). Occasionally, early authors did not appear to remember what the previously used names were, and simply came up with new spelling variations, with these new names sometimes becoming established in the literature for a while. This was especially true for the many names and spelling emendations created and recorded by John Edward Gray between 1825 and 1874. Prior to the establishment of the International Commission on Zoological Nomenclature in 1895, and the publication of the first edition of the Code of Zoological Nomenclature in 1905, these kinds of new names and changes were fairly common and we do not consider them to be simple ex errore typographical errors, and therefore, we have instead recorded many of them as nomina nova.

We include listings of subsequent new combination names to reflect how taxa have been rearranged into new genera or different specific or subspecific levels. The new combination names are listed in lighter gray text following each associated primary name, arranged more or less chronologically from oldest to most recently created combinations, but without attributing authorship or date of first use of the new combination. We have attempted to list all known subsequent combination names, but these listings may be incomplete. A few older ex errore misspelled names are included in these listings.
Table 1. Modern named freshwater turtles and tortoises that have gone extinct since 1500 AD (7 species, 3 subspecies, 10 taxa), with approximate or known extinction dates. For species that went extinct during Holocene and Pleistocene times prior to 1500 AD, see separate supplementary checklist and review (TEWG 2015) and Fig. 1.

Kinosternidae
- *Kinosternon hirtipes megacephalum*
 - Vesca Mud Turtle
 - Mexico (Coahuila); ca. 1970

Testudinidae
- *Aldabrachelys gigantea daudini*
 - Daudin’s Giant Tortoise
 - Seychelles (Mahé?); ca. 1850
- *Chelonooides abingdonii*
 - Pinta Giant Tortoise, Abingdon Island Giant Tortoise
 - Ecuador (Galápagos: Pinta [Abingdon]); 24 June 2012
- *Chelonooides niger*
 - Floreana Giant Tortoise, Charles Island Giant Tortoise
 - Ecuador (Galápagos: Floreana [Charles]); ca. 1850
- *Cylindraspis indica*
 - Réunion Giant Tortoise
 - Réunion; ca. 1840
- *Cylindraspis inepta*
 - Mauritius Giant Domed Tortoise
 - Mauritius (Mauritius); ca. 1735
- *Cylindraspis pelastes*
 - Rodrigues Domed Tortoise
 - Mauritius (Rodrigues); ca. 1800
- *Cylindraspis triserrata*
 - Mauritius Giant Flat-shelled Tortoise
 - Mauritius (Mauritius); ca. 1735
- *Cylindraspis vosmaeri*
 - Rodrigues Giant Saddleback Tortoise
 - Mauritius (Rodrigues); ca. 1800

Pelomedusidae
- *Pelusios castaneus seychellensis*
 - Seychelles Mud Turtle
 - Seychelles (Mahé); ca. 1950

Figure 1. While beyond the time-frame of extinctions for modern turtles, it is worth noting the findings of White et al. (2010), who documented the continued existence nearly into modern times of an extraordinary giant tortoise, apparently of the extinct terrestrial horned family Meiolanidae, on Efate Island, Vanuatu, in the southwestern Pacific Ocean. The species persisted until as recently as only 3100–2800 ybp (1150–850 BC) with a further calibrated age of 2890–2760 ybp (940–810 BC) [see TEWG 2015]. White et al. named it *Meiolania damelipi* and provided clear evidence of human butchering and consumption of the species, further corroborated and expanded by Hawkins et al. (2016). This exploitation represented the final anthropogenic extinction event for this spectacularly unique and evolutionarily distinct deep lineage of giant terrestrial cheloniens. For a more complete analysis of turtle extinctions caused by humans and/or climate change during the Pleistocene and Holocene, see our companion publication by the Turtle Extinctions Working Group (2015). No complete skeletons of *M. damelipi* are known, but the related *Meiolania platyceps* from Lord Howe Island, Australia, which went extinct in the Late Pleistocene, has been beautifully reconstructed (photo above) by the American Museum of Natural History (Burke et al. 1983).

Original and synonymized taxon names (including higher-category names) are listed using their original spelling and genus-species combination as used by the author at the time of first publication of the name. Our synonymies for genus- and species-level taxa follow, to our best efforts, the strict and established nomenclatural rules established by the fourth edition of the International Code of Zoological Nomenclature (ICZN 1999).

However, for the higher-level suprageneric categories used in this checklist, we have also provided some synonyms and previously-used names for the same or included groupings whose usage may not necessarily correspond to nomenclatural guidelines under the ICZN. Since the ICZN does not regulate names above the superfamily rank, our listings of these names are intended to document historical use to aid understanding and resolving the difficult questions of what names are most appropriately used for these suprageneric categories and to what author they should be attributed.

For example, the names we list under the Order-level name for turtles (Testudines) are not all strict synonyms, as some were proposed at different levels of groupings, from “Family” to Order to various supra-ordinal categories. Many were utilized primarily for including various fossil turtle-like ancestors in an expanded concept of turtles, including some rank-free Phylocode names. The names we list in other infra-ordinal suprageneric categories are not always strict synonyms either, as based on nomenclatural acceptability or availability of the utilized group name, but instead provide a partial historical record for names previously used for the same or similar grouping.

Our checklist includes all currently recognized named taxa (species and subspecies) of modern turtles (extant after 1500 AD). By “currently recognized” we mean those taxa that have not been demonstrably refuted or justifiably synonymized in published literature, or whose description or recommended resurrection has yet to receive wide community acceptance. We have attempted to describe all recent published taxonomic recommendations in our annotations, even though we have not included all proposed changes in the checklist.

Since there are sometimes also different interpretations for some genera and polytypic species as to which
Table 2: The top turtle-rich countries for all turtle species and taxa (species and subspecies) per country, including tortoises, freshwater and terrestrial turtles, and nesting sea turtles.

<table>
<thead>
<tr>
<th>Species</th>
<th>Taxa (sp. & ssp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA, 62</td>
<td>USA, 89</td>
</tr>
<tr>
<td>Mexico, 49</td>
<td>Mexico, 65</td>
</tr>
<tr>
<td>Brazil, 36</td>
<td>India, 41</td>
</tr>
<tr>
<td>China, 35</td>
<td>Indonesia, 38</td>
</tr>
<tr>
<td>Ecuador, 35</td>
<td>China, 37</td>
</tr>
<tr>
<td>Indonesia, 34</td>
<td>Australia, 36</td>
</tr>
<tr>
<td>Colombia, 33</td>
<td>Brazil, 36</td>
</tr>
<tr>
<td>India, 33</td>
<td>Vietnam, 36</td>
</tr>
<tr>
<td>Australia, 32</td>
<td>Ecuador, 35</td>
</tr>
<tr>
<td>Vietnam, 32</td>
<td>Colombia, 34</td>
</tr>
<tr>
<td>Bangladesh, 30</td>
<td>Thailand, 33</td>
</tr>
<tr>
<td>Myanmar, 30</td>
<td>Myanmar, 31</td>
</tr>
<tr>
<td>Thailand, 30</td>
<td>Bangladesh, 30</td>
</tr>
<tr>
<td>Malaysia, 24</td>
<td>Malaysia, 25</td>
</tr>
<tr>
<td>Venezuela, 23</td>
<td>Venezuela, 25</td>
</tr>
<tr>
<td>South Africa, 21</td>
<td>South Africa, 23</td>
</tr>
<tr>
<td>Congo (DRC), 19</td>
<td>Laos, 19</td>
</tr>
<tr>
<td>Laos, 18</td>
<td>Congo (DRC), 18</td>
</tr>
<tr>
<td>Guatemala, 16</td>
<td>Portugal, 18</td>
</tr>
<tr>
<td>Honduras, 16</td>
<td>Honduras, 17</td>
</tr>
<tr>
<td>Mozambique, 16</td>
<td>Tanzania, 17</td>
</tr>
<tr>
<td>Nepal, 16</td>
<td>Guatemala, 16</td>
</tr>
<tr>
<td>Papua New Guinea, 16</td>
<td>Mozambique, 16</td>
</tr>
<tr>
<td>Tanzania, 16</td>
<td>Panama, 16</td>
</tr>
<tr>
<td>Angola, 15</td>
<td>Papua New Guinea, 16</td>
</tr>
<tr>
<td>Cameroon, 15</td>
<td>Peru, 16</td>
</tr>
<tr>
<td>Kenya, 15</td>
<td>Cameroon, 15</td>
</tr>
<tr>
<td>Panama, 15</td>
<td>Costa Rica, 15</td>
</tr>
<tr>
<td>Peru, 15</td>
<td>Nicaragua, 15</td>
</tr>
</tbody>
</table>

As of this edition of the checklist, all described genera include type species designations (original and subsequent), and all described species include verbatim original and subsequently restricted type localities. This has been undertaken through a comprehensive re-examination of all original literature rather than relying on secondary sources. As a result, many of these type designations and localities are somewhat different from those previously cited in Fritz and Havás (2007).

Comments on names that have undergone recent taxonomic change or phylogenetic analysis or are associated with instability or uncertainty or other changes are indicated by superscript numbers that refer to annotations at the end of this and earlier checklists. See the section on Annotations at the end of the checklist for all detailed explanations. A summary of all major taxonomic changes in this checklist as compared to our previous one is provided in Table 3; all minor changes are only included in the annotations.

Turtle taxa that have gone extinct within modern times (since 1500 AD) are labeled in bold as Extinct, and are also listed in Table 1. As of this checklist, this includes 7 species and 3 subspecies, or 10 taxa (2.1% of all modern turtle taxa) that are extinct.

Turtle taxa that were originally described based on Pleistocene or Holocene fossil, subfossil, or archeological material, but subsequently recognized as representing extant taxa or synonymized with modern turtle taxa, are included in the checklist and marked with a cross (†), and include stratigraphic horizon and location data. Fossil taxa synonymized with extant polytypic species are listed under the geographically most appropriate subspecies; however, such synonymizations may not be accurate for some Early Pleistocene or older fossils which could conceivably represent distinct chronospecies or extinct subspecies. For further details on extinct fossil turtle and tortoise taxa from the Pleistocene and Holocene, see TEWG (2015).

Those modern species and subspecies for which in-depth informational accounts have been published in this TFTSG monograph series on Conservation Biology of Freshwater Turtles and Tortoises (CBFTT), are indicated by a CBFTT Account heading, with interactive hyperlinks provided to the online published accounts in dark blue typeface. We will gradually publish CBFTT accounts for all non-marine turtle and tortoise species—accounts also include recognized subspecies within the account, but some subspecies have separate accounts and are so indicated. As of December 2016 we have published 100 CBFTT accounts covering 130 turtle and tortoise taxa; these are all available online as downloadable open-access doi-designated pdf’s on the TFTSG website at www.iucn-tftsg.org/cbftt/.

The checklist includes English common names for all taxa. We have tried to provide the most commonly used names, although occasionally we have provided two or more names. We do not support the practice of

TTWG Guidelines for Taxonomic Changes

Taxonomy is both a summary of scientific knowledge and a language for biological communication. As such, it is critical that taxonomic changes be carefully considered and based on strong, comprehensive underlying data to ensure that changes are stable and long-lasting. We fully recognize that taxonomy and the systematics research on which it is based, is a dynamic field and that change is a sign of healthy science. However, we also recognize that taxonomic and nomenclatural stability are of immense value to the wider community of biologists, conservationists, legislative authorities, and the public at large. Pauly et al. (2009) argued that taxonomy should aim for stability and monophyly; in cases where these two objectives are in conflict, well-supported monophyly prevails over stability. Given the dynamic nature of turtle taxonomy, we believe that a series of best practices can and should be followed that should lead to changes that are stable, informative, and long-lasting. We summarize these best practices both to identify many of the key points in our group discussions on newly-proposed name changes, and as a set of considerations for authors who are considering new name changes. We hope the community finds them useful. For additional discussion, see TTWG (2007a), Pauly et al. (2009), and Kaiser et al. (2013).

1. A proposed taxonomic change must meet the ICZN criteria for nomenclatural validity. Published names gain much greater credibility by being published in a peer-reviewed scientific journal or equivalent publication standard. These standards include the 2012 emendations of the Code (ICZN 2012) regarding accepted methods of electronic publication of new names.

2. Taxonomic changes above the species level should preferably be suggested and adopted only when a currently recognized higher taxon is demonstrably non-monophyletic. We share the view of the global systematics community that phylogeny should be reflected in higher taxonomic categories, and that changes should be proposed to “fix” a non-monophyletic grouping. As discussed in 5) below, non-monophyly should be based on multiple lines of statistically well-supported evidence. As pointed out by Pauly et al. (2009), the use of novel levels within a taxonomic hierarchy (subgenera, supergenera, etc.) allows for the recognition of new/previously known clades while still maintaining taxonomic stability within a group.

3. Taxonomic changes should incur the fewest possible name changes while resulting in a final set of monophyletic taxa. We share the view that taxonomic stability, and therefore the fewest possible nomenclatural changes, is always a desirable outcome.

4. Avoid naming monotypic higher groups when possible. As has been repeatedly stated in the literature, monotypic genera, families, etc. provide only very limited information on group membership, and therefore are less informative than alternative schemes where higher groups have multiple species within them. This may imply merging / lumping, rather than splitting, to resolve issues of non-monophyly. On the other hand, monotypic higher taxa emphasize the unique position of its contained (surviving) taxon. Monotypic higher taxa have been recognized among turtles for over two centuries, and many (though not all) contain additional extinct taxa as well as a single surviving species. We do not advocate eliminating traditionally recognized monotypic, and usually reciprocally monophyletic, higher taxa (since that would lead to taxonomic destabilization), but caution against proliferation of monotypic higher taxa.

5. Taxonomic arrangements that are supported by several independent character sets, provide strong statistical support for each, and report reasonable concordance between different datasets are more compelling than results from a single character set. Independence in evolutionary studies is a complex concept. In systematics, independence means that characters are not constrained to covary. For example, when multiple genetically independent nuclear genes, or nuclear genes and morphological characters, imply the same phylogenetic relationships or species boundaries, they presumably do so because both reflect the evolutionary history of the contained lineages. However, two mitochondrial genes are far less independent, since they are physically linked in the same non-recombining piece of mtDNA, and natural selection, drift, or any other process act simultaneously on that linked set of nucleotides. Single character (e.g., only mtDNA, or only geographic distribution patterns) may reflect the history of the species, or they may reflect the history of that one character. We strongly recommend that individual characters (each nuclear gene, composite set of mtDNA data, morphological, behavioral, and other characters) be analyzed separately to test for concordance among multiple independent data sets.

6. Independent datasets may or may not provide convincing evidence for monophyly, and thus for taxonomic changes. When one dataset conflicts strongly with several other independent ones, there may still be strong support for the hypothesis supported by multiple independent data sets. However, character conflict may often suggest that additional analyses or data are needed before taxonomic changes should be endorsed and accepted.

7. Sampling should be comprehensive at the appropriate level. Broad taxon sampling for species trees, with multiple specimens from across the geographic range of each taxon, can help avoid spuriously high statistical support values for apparent species (see Spinks et al. 2013 for a recent chelonian example).

8. Species delimitation studies should include broad geographic sampling of all relevant taxa. Comprehensive geographic sampling for each character from individuals across the ranges of all species being considered is often critically important to correctly diagnose new species. We recognize that comprehensive geographic sampling may be difficult for rare species, but every effort should be made to be as comprehensive as possible.

9. Studies that only evaluate a taxonomic or geographic subset of the relevant group, or only make changes to some taxa without evaluating the relevance of these changes to related taxa, are less likely to be convincing and stand the test of time, and therefore are less likely to be widely adopted. For example, a study that elevates a particular subspecies to species rank, without examining variation among the remainder of the species is unlikely to be adopted until further supporting and clarifying information is published.

10. The TTWG primarily reacts to taxonomic changes proposed in the published literature, although we also will take under consideration publications that are under review but not yet published if they add additional information to a proposed change. Any information that the TTWG members have access to can be used to argue for or against adoption of a new taxonomic arrangement proposed in a validly published publication, although in almost all cases we rely on information that is either published or under review in a peer-reviewed journal. The TTWG will not use information from an as-yet unpublished study or manuscript to initiate a taxonomic change. In very rare cases, the TTWG may decide to make a new nomenclatural act, such as creating new nomenclatural combinations.
designating “official” or “standard” common names for species, as that is the domain for scientific names. Instead, common names tend to evolve and vary from area to area and over time, as well as with language and cultural context. However, in the field of conservation, the use of reasonably widely recognized and appropriately descriptive common names is critically important for communication purposes, and so we include English common names here. Though also important for the global conservation community, and officially included in IUCN Red List and CITES documentation, we do not at this time include Spanish or French common names in this checklist. Indigenous vernacular names for certain species are often extensive and imprecise, and in general we do not list such names here, although a few commonly-used ones are listed.

We are introducing representative photos of nearly all species in this checklist, with the intention of adding images of all recognized taxa. We have started with many photos previously published in our CBFTT species accounts, as well as photos from our various Chelonian Research Foundation publications: *Chelonian Research Monographs* (CRM 1–6), our peer-reviewed journal *Chelonian Conservation and Biology* (CCB), our informal *Turtle and Tortoise Newsletter* (TTN) and *TurtleLog* (TL), the Turtle Conservation Fund (2002) (TCF) prospectus we co-published with Conservation International, and the Top 25+ Endangered Turtles publication we co-produced with the Turtle Conservation Coalition (2011) (TCC), all acknowledged as to sources. In addition, we have included many photos from the authorship team as well as many other contributing individuals. Photos are preferentially of wild animals from known recorded localities, but a few are from captivity, and most extinct species are from preserved museum specimens. We invite and urge our colleagues in the international turtle community to consider submitting additional identified quality portrait-style photos of missing taxa from known localities to us for consideration of inclusion in the next edition of this checklist.

Taxonomic Changes

A prime purpose of this checklist is to record taxonomic changes published in the literature, to evaluate the strength of the data supporting those proposed changes, and to recommend whether the community should adopt or reject the proposed changes. It is important to note that the recommendations we make here as the TTWG regarding the validity or non-validity of any included or excluded taxonomic names or systematic relationships are not prescriptive, nor are they official recommendations by the TFTSG or the IUCN, as such matters are generally best left to specialists working in these areas. However, we have tried to be consistent in our listing of what appear to be valid taxa and relationships, based on criteria of published scientific descriptions and proposed taxonomic changes accompanied by data and sound argumentation (TTWG 2007a).

Our hope is that through this process, the TTWG and the TFTSG may help stabilize and guide the fluid state of chelonian systematics and nomenclature, and provide a standard reference source for updated taxonomy, systematic relationships, distributions, and conservation status of all turtles and tortoises. The list should also provide an impetus for ongoing and future work aimed at clarifying and resolving areas of taxonomic disagreement and/or uncertainty, as well as documented distribution patterns.

The very first checklist (TTWG 2007b) was compiled on the ‘last published revision’ principle, though reflecting some alternative arrangements through our use of the ‘Xxxx or Yyy’ arrangement. As the checklist has developed over the years and is increasingly adopted as the taxonomic standard by other groups and entities (IUCN Red List, Reptile Database, and others), and informs nomenclatural deliberations in CITES, ITIS, and other institutions, the TTWG author team has increasingly felt a need to evaluate both the scientific merit and the wider implications of adopting proposed taxonomic novelties. Evaluations have always been on a case-by-case basis, bringing the diverse perspectives of the authorship team to bear on the merits of each proposed change. We have considered drafting criteria for adoption or rejection, but concluded that every case is unique, making it unrealistic and undesirable to rely on a single set of “rules”. Instead, we have formulated guidelines and considerations of what increases (or decreases) the scientific credibility of a proposed taxonomic novelty, and therefore the likelihood of its adoption into (or rejection from) the TTWG turtle checklist (see inset on p. 13).

We have previously (TTWG 2007a) presented proactive guidelines for researchers proposing taxonomic novelties; these remain valuable guidance also when we evaluate new published names or arrangements. But updating the checklist has required additional considerations, which we describe here. None of these are all-or-nothing decisions; instead, almost every proposed taxonomic novelty, and the underlying supporting data as presented in the publication, falls somewhere on a continuum between ‘adopt unreservedly’ and ‘reject outright’.

The collective weight of evidence supporting any proposed change (availability of the name; strength and nature of the supporting evidence; phylogenetic context; agreement with other studies; effect on taxonomic stability) is deliberated by the TTWG team (often very extensively and often with different philosophical views of the value of the underlying evidence). In order to provide a more comprehensive and international approach to TTWG deliberations and decisions, especially as regards issues of phylogenetic analysis, we have recently expanded our previous TTWG authorship team (Rhodin, Iverson, van Dijk, Shaffer, and Bour) to now also include Arthur Georges and Uwe Fritz, and we welcome them aboard. Our deliberations lead to conclusions on whether to:
Nomenclatural and taxonomic changes often have disruptive effects for legislation and other ‘users’ of checklists. A degree of disruption is inevitable as phylogenetic knowledge accumulates; but we are more likely to adopt proposed changes that have significant ‘disruptive’ effects on widely-used names if such changes are strongly supported by robust data; in contrast, we are inclined to suspend adoption of novel names and arrangements if they are based on weaker data sets or do not greatly improve our overall phylogenetic understanding.

We have noted for many years that the ICZN (2012) has emended its Code regarding accepted methods of electronic publication of new names. The revision permits electronic publication after 2011 only after the work (not the new name) is first registered in ZooBank (http://zoobank.org/; The Official Registry of Zoological Nomenclature) or other recognized online publication systems. It is important to note that decisions and recommendations within the TTWG are not always unanimous, and work (not the new name) is first registered in ZooBank (http://zoobank.org/; The Official Registry of Zoological Nomenclature) or other recognized online publication systems. It is important to note that decisions and recommendations within the TTWG are not always unanimous, and our checklist is not necessarily reflective of the individual taxonomic views or conclusions of all team members. In the accompanying text box (see p. 13), we summarize our guidelines and recommendations for making taxonomic changes.

Table 3. Summary of new or resurrected taxa (*) included in this 2017 checklist and major taxonomic changes from TTWG 2014. See the annotations for a full discussion of all these changes; minor changes associated only with overlooked or previously synonymized names or dates of authorship or other primarily nomenclatural changes are not listed here, but only in the annotations. This table does not include added synonymized fossil taxa, nomina nuda, or names not considered valid in the 2014 checklist (i.e., newly added synonyms).

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Macrochelys temminckii</td>
<td>Macrochelys temminckii + Macrochelys suwanniensis * (M. apalachiocole * = M. temmincki)</td>
</tr>
<tr>
<td>Kinosternon arizonense</td>
<td>Kinosternon stejnegeri * (+ Kinosternon arizonense †)</td>
</tr>
<tr>
<td>Kinosternon subrubrum steindachneri</td>
<td>Kinosternon steindachneri</td>
</tr>
<tr>
<td>Trachemys emolli</td>
<td>Trachemys grayi emolli</td>
</tr>
<tr>
<td>Trachemys ornata callinistris</td>
<td>Trachemys venusta callinistris</td>
</tr>
<tr>
<td>Trachemys verusta panamensis</td>
<td>Trachemys grayi panamensis</td>
</tr>
<tr>
<td>Enys or Actinemys marmorata</td>
<td>E. or A. marmorata + E. or A. pallida *</td>
</tr>
<tr>
<td>Enys orbicularis fratiuergenobsthi</td>
<td>Enys orbicularis occidentalis</td>
</tr>
<tr>
<td>Cuora aurocapitata</td>
<td>Cuora aurocapitata aurocapitata + C. a. dahieshahi *</td>
</tr>
<tr>
<td>Cuora trifasciata</td>
<td>Cuora trifasciata trifasciata + C. t. lateocephala *</td>
</tr>
<tr>
<td>+ Cuora cyclornata cyclornata * + C. c. meieri *</td>
<td></td>
</tr>
<tr>
<td>Malayemys subtrijuga</td>
<td>Malayemys subtrijuga + Malayemys khoratensis * (M. isan * = M. khoratensis)</td>
</tr>
<tr>
<td>Chelodina (Supremechelys) duboisi</td>
<td>Chelodina (McKennaelia) duboisi</td>
</tr>
<tr>
<td>Chelonoidis porteri</td>
<td>Chelonoidis porteri + Chelonoidis donfaustoi *</td>
</tr>
<tr>
<td>Chelonoidis vicina</td>
<td>Chelonoidis vicina + C. guntheri * + C. microphyes * + C. vandenburghi</td>
</tr>
<tr>
<td>Gopherus morafkai</td>
<td>Gopherus morafkai + Gopherus evgoodei *</td>
</tr>
<tr>
<td>Homopus</td>
<td>Homopus + Chersobius</td>
</tr>
<tr>
<td>Testudo</td>
<td>Testudo (Testudo) + Testudo (Agrionemys)</td>
</tr>
<tr>
<td>+ Testudo (Chersine)</td>
<td></td>
</tr>
<tr>
<td>Amyda cartilaginea</td>
<td>Amyda cartilaginea + A. cartilaginea cartilaginea, + A. c. maculosa * + Amyda c. or ornata ornata * + A. c. or o. phayrei *</td>
</tr>
<tr>
<td>Pelochelys cantorii</td>
<td>[Pelochelys (Ferreipelochelys)] + [Pelochelys divepalmeri]</td>
</tr>
<tr>
<td>+ [Pelochelys telstraoianum]</td>
<td></td>
</tr>
<tr>
<td>Cheledininae</td>
<td>Cheledininae + Pseudemydinarinae</td>
</tr>
<tr>
<td>Chelodina (Macrochelodina) expansa</td>
<td>[Chelodina (Supremechelys) expansa brisbanensis]</td>
</tr>
<tr>
<td>+ [Chelodina (Supremechelys) daboisii]</td>
<td></td>
</tr>
<tr>
<td>Elseya</td>
<td>Elseya (Elseya) + Elseya (Hamvarachelys)</td>
</tr>
<tr>
<td>+ Elseya (Pelomastax)</td>
<td></td>
</tr>
<tr>
<td>Elseya dentata</td>
<td>Elseya (Elseya) dentata + E. (E.) flaviventralis *</td>
</tr>
<tr>
<td>Elseya novaeguineae</td>
<td>Elseya (Hamvarachelys) novaeguineae + E. (H.) rhodini *</td>
</tr>
<tr>
<td>Flavemys</td>
<td>Mychelys</td>
</tr>
<tr>
<td>Flaviemys purvisi</td>
<td>Mychelys purvisi</td>
</tr>
<tr>
<td>Pelomedusa subrufa</td>
<td>Pelomedusa subrufa + P. barbata * + P. galeata *</td>
</tr>
<tr>
<td>+ P. gehafe * + P. kobe * + P. neumann * + P. ovalacea *</td>
<td></td>
</tr>
<tr>
<td>+ P. schweinfurthi * + P. somalica * + P. variabilis *</td>
<td></td>
</tr>
</tbody>
</table>

Taxonomic changes recommended by the TTWG often do not exactly correspond to the new name and combinations without significant improvement of our understanding of the overall relationships of the group of species. We have noted for many years that the ICZN (2012) has emended its Code regarding accepted methods of electronic publication of new names. The revision permits electronic publication after 2011 only after the work (not the new name) is first registered in ZooBank (http://zoobank.org/; The Official Registry of Zoological Nomenclature) or other recognized online publication systems. It is important to note that decisions and recommendations within the TTWG are not always unanimous, and our checklist is not necessarily reflective of the individual taxonomic views or conclusions of all team members. In the accompanying text box (see p. 13), we summarize our guidelines and recommendations for making taxonomic changes.

It is important to note that decisions and recommendations within the TTWG are not always unanimous, and our checklist is not necessarily reflective of the individual taxonomic views or conclusions of all team members. In the accompanying text box (see p. 13), we summarize our guidelines and recommendations for making taxonomic changes.

Table 3. Summary of new or resurrected taxa (*) included in this 2017 checklist and major taxonomic changes from TTWG 2014. See the annotations for a full discussion of all these changes; minor changes associated only with overlooked or previously synonymized names or dates of authorship or other primarily nomenclatural changes are not listed here, but only in the annotations. This table does not include added synonymized fossil taxa, nomina nuda, or names not considered valid in the 2014 checklist (i.e., newly added synonyms).
Distributions

We summarize distributions for all taxa in the checklist, listing all nations and territories in which they occur as native populations (see Table 2 for the top turtle-rich nations). For several larger nations we also list political or geographic subunits (e.g., states, provinces, regions, or larger islands). We attempt to also indicate nations or territories where species have been extirpated or where they occur as non-native introduced or invasive species, or where there are uncertainties as to occurrence.

For introductions, we attempt to distinguish between two forms: (1) modern introductions (since ca. 1500 AD) for those species that appear to have relatively well-established or potentially reproducing populations in extra-limital areas primarily as a result of relatively recent trade for food or pets or planned conservation introductions (labeled “introduced” or “modern”), and (2) earlier historic or prehistoric introductions for those species that appear to have native populations, but where population genetics studies find evidence of founder effects suggestive of possible introduction by humans, or other dispersal events, during the last ca. 2000–3000 years (labeled “prehistoric introduction?”). For freshwater and terrestrial turtles and tortoises, we compiled native and introduced distributions and locality records from a combination of multiple published and database sources. For native distributions we used Iverson (1992) and Fritz and Havaš (2007) as starting points, and then added data from other recent literature by numerous authors, data from our extensive database compiled from Iverson’s work by Buhlmann et al. (2009), further data from our published CBFTT species accounts, our TFTSG-organized CBFTT species workshop, and data from Iverson’s continuing intensive compilation of distribution records from the literature.

For introduced species, we used Kraus (2009) as a starting point and have added data from other publications and online sources and databases. We have attempted to list introductions that are based on recorded populations rather than just single animals (but not necessarily with evidence of reproduction), but have not been rigorous in this, as it can be difficult to determine what the actual situation may be in each recorded case.

Finally, we also solicited and received input from many members of the TFTSG for corrections and additions to all the native distributions and introductions data. Despite this effort, it is likely that we have committed errors of omission or commission, and we request that any corrections or updates be brought to our attention so that they can be included in future editions of this checklist.

For sea turtles, we compiled distributions from a combination of IUCN Red List data, CMS (Convention on Migratory Species) listings, and the extensive listings of nesting sites and foraging ranges that the IUCN/SSC Marine Turtle Specialist Group (MTSG) includes in its SWOT mapping application (The State of the World’s Sea Turtles) (http://seaturtlestatus.org/learn/maps/all), generously supplied to us by the MTSG. Based on these data, we list sea turtle distributions in three distributional categories: 1) nesting: native regularly nesting populations, 2) foraging: native permanently foraging or regularly migrating populations (but no evidence yet of regular nesting), and 3) vagrant: temporarily foraging or migrating animals not necessarily considered native.

GIS Maps

In the previous edition of the checklist, we added simple GIS range distribution maps for all species. All maps in this edition have now been enhanced and updated to also include specific locality points upon which the ranges are based, as well as adding detailed color-coded altitudinal elevations. Nearly all distributional ranges have been revised based on new data and improved geographic analysis, in general restricting the presumed range somewhat tighter around our recorded localities. The locality points have been obtained from a combination of data from Iverson (1992), edited and corrected localities from the EmysSystem maps (http://emys.geo.orst.edu/), locality data that Iverson has continued to collect systematically since 1992, CBFTT species accounts, IUCN Red Listing workshops, recent literature (although far from complete) compiled mainly by Iverson and Rhadin, and personal input from members of the TFTSG and other specialists. Maps now also include color-coded ranges for recognized subspecies.

Map production began with point locality datasets from Iverson (1992), based on the many museum-held voucher specimens and published records amassed by John Iverson over the years and updated on the Emysystem (http://emys.geo.orst.edu/). These datasets were then supplemented by newer data and converted into shapefiles and edited and corrected and updated for content by Iverson, Ross Kiester, Tom Akre, Kurt Buhlmann, Peter Paul van Dijk, Arthur Georges, Anders Rhodin, Russ
Mittermeier, and Whit Gibbons, and analyzed by Buhlmann et al. (2009).

The original maps created this way were based on constructing projected historical geographic ranges. This was done by selecting GIS-defined hydrologic unit compartments (HUCs, at relatively coarse level 6 hydroshed basins) with verified locality points, and then adding HUCs that connected known point localities in the same watershed or physiographic region and that had similar habitats and elevations as the verified HUCs. As such, these first maps represented assumed geographic ranges, but generally somewhat larger than reality, and required further verification and adjustment.

These distribution shapefiles were then further revised and formatted by Rhodin using ArcGIS Desktop 10.1 (www.esri.com) as part of the IUCN-associated BioFresh initiative (http://atlas.freshwaterbiodiversity.eu/), using finer geographic scales (hydroshed basins at levels 10 or 12). This allowed elimination of many higher-altitude regions from the projected ranges (notably in areas such as the Himalayan and Andean foothills and other mountainous regions), while keeping lower altitude HUC distributions in the same overall drainage basins, and in general tightening up and reducing many of the projected ranges. The maps have also been further revised through input of data provided by authors of published CBFTT accounts and participants in TFTSG-organized IUCN Red Listing workshops, but still represent projected and assumed historical ranges.

For some relatively cryptic, poorly known, or possibly questionable species, the ranges depicted in this checklist are at best general approximations of their potential distributions. Species that fall into this category include *Pelodiscus axenaria*, *P. parviformis*, *Cuora zhoui*, *Cyclemys enigmatica*, *Rafetus swinhoei*, *Meso-clemmys heliostemma*, *Chelodina gunalenii*, *C. kuchlingi*, and *Emydura tanybaraga*.

Other apparently widespread species with significant documented phylogeographic differentiation in the form of recognized subspecies or genetically-defined lineages and evolutionarily significant units (ESUs) may eventually warrant recognition as multiple taxa at the species level. Some species that fall into this category include *Kinosternon hirtipes*, *K. integrum*, *K. scorpioides*, *Terrapene carolina*, *Cuora amboinensis*, *Melanochelys trijuga*, *Chelonoidis carbonarius*, *Testudo graeca*, and *Phrynops geoffroanus*.

Native populations and recorded specimens are marked with yellow locality spots set in partially transparent distribution range polygons (using HUCs), using red polygons at 50% transparency for species and nominate subspecies, and other colors at 30–50% transparency for other subspecies. Populations that represent possible prehistoric introductions (whether genetically verified or hypothesized as such) or possible prehistoric or more recent natural range extensions are also indicated with yellow spots. A composite species richness map for all tortoise and freshwater turtle taxa is depicted in Fig. 2.
and enlarged regional detailed maps are included after the checklist on pp. 218–221.

Apparently introduced populations near the native range that are most likely of modern and recent historic origin are generally included, and are indicated by orange spots. Remote introduced populations are not included. Questionable locality records near the native range (possibly misidentified and/or regional trade specimens) are also indicated by orange spots. Extinct taxa (species or subspecies) are designated by red spots.

It is critically important to note that the maps published here depict projected and presumed historical geographic ranges (defined as historical area of occupancy, or AOO), as they are based on a combination of older historical museum and literature data (Iverson 1992) and more recent locality data, and do not in general reflect actual current areas of occupancy (AOO) of these species. Most turtle and tortoise species have had their historical ranges decrease considerably as a result of extensive habitat loss and degradation and/or overexploitation. For example, the ranges depicted here for Batagur trivittata and Geochelone platynota from Myanmar, and Psammobates geometricus from South Africa, show their historical ranges, rather than their current ranges, which have all been reduced by >90%. In general, all species assessed as Critically Endangered or Endangered on the IUCN Red List or TFTSG Draft Red List have had their current AOO ranges greatly decreased from historical extents.

Sea turtle maps were generated from GIS data generously supplied to us by the IUCN/SSC Marine Turtle Specialist Group (MTSG) and SWOT (The State of the World’s Sea Turtles), and show documented nesting sites as yellow dots and generalized foraging distributions for each species as shaded oceanic distributional ranges delimited as either regional management units (RMUs) or distinctive population segments (DPSs) (see Seminoff et al. 2015).

Conservation Status

We include current IUCN Red List conservation status for all species. The status categorizations listed here are current as of the IUCN Red List of Threatened SpeciesTM, version 2017.1 (www.iucnredlist.org). The TFTSG is the official global IUCN Red List Authority responsible for continuously updating IUCN Red List assessments of all tortoises and freshwater turtles, and this process is handled through multiple consensus-building workshops and consultations.

As many species on the Red List need updating, either because their previous evaluations are more than ten years old, or because of recent conservation status or taxonomic changes, we have also included the results of TFTSG Draft Red List assessments (through June 2017) to indicate their current provisional status, which should be released on the official IUCN Red List site in the near future. In addition, many species that were determined by the TFTSG to be Least Concern in 1996 were never formally listed (as per IUCN Red List protocol at the time), but the original determinations as prepared at that time are still available and are indicated here. For a few species from the South African region we have also added draft Red List assessments done in 2010 by the South African Reptile Conservation Assessment (SARCA) committee, subsequently published by Hofmeyr et al. (2014).

Finally, we include regulatory status listings on CITES (Convention on International Trade in Endangered Species of Wild Fauna and Flora) Appendices I, II, or III, current as of the 4 April 2017 listing (http://cites.org/eng/app/appendices.php). As such, this document brings together most important aspects of taxonomy, names, distribution, and conservation status of all turtles and tortoises of the world.

RESULTS AND DISCUSSION

Conservation Status

To assess and summarize the current conservation status of turtles and tortoises in the broadest strokes, we provide an update and analysis of the most current IUCN Red List (www.iucnredlist.org), as well as provide provisional conservation status of species still under evaluation. The official determinations of conservation status of turtles are provided to the IUCN Red List by the TFTSG, which is continuously producing draft assessments for previously unevaluated taxa as well as previously evaluated taxa needing updates (necessary every 10 years). Knowing the overall conservation status and percentage of threatened species of turtles is important in understanding how seriously they are endangered, and how they compare with other imperiled organisms. Mittermeier et al. (2015) provided an analysis of global Turtle Hotspots as part of such an evaluation.

The current IUCN Red List (version 2017.1) formally lists 251 turtle species, including 7 separate subspecies and 19 regional subpopulations, using a slightly different taxonomy from the one presented in this checklist. Of the 251 species listed, 8 are Extinct (EX) [includes Pelusios seychellensis, considered a subspecies in our checklist], 2 Extinct in the Wild (EW), 40 Critically Endangered (CR), 44 Endangered (EN), 65 Vulnerable (VU), 34 Near Threatened (NT), 1 Conservation Dependent (LR/cd; an old category being phased out), 45 Least Concern (LC), 11 Data Deficient (DD), and 1 Not Assessed (NA).

By IUCN Red List protocol, Threatened species are defined as those in the three categories of Critically Endangered, Endangered, and Vulnerable, meaning that 149 species are officially regarded as Threatened (59.4% of the 251 species listed), with 84 species (33.5% of those listed) considered Critically Endangered or Endangered.
Of the 356 species recognized as distinct (or possibly distinct) in our checklist, 105 are not yet officially listed on the IUCN Red List as species (although some are listed as subspecies). Most of these apparently “unassessed” species have in fact already been evaluated by the TFTSG, first in 1996, when Least Concern (LC) species were not formally listed (as some are now), and then more recently through a series of draft assessments. Of these species, the TFTSG evaluated 53 as Least Concern in 1996 (J.L. Behler and C. Hilton-Taylor, in litt.), and these are marked as such in this checklist.

Further status assessments have more recently been accomplished through an ongoing series of regional IUCN Red Listing workshops held by the TFTSG. These workshops have assessed both previously unassessed species and updated older previously evaluated species. Since 1999 the TFTSG has held Red Listing workshops in or for Asia, Mexico, the Mediterranean, India, Madagascar, Australia, New Guinea, USA, northern South America, southern South America, the Galápagos Islands, Asia a second time, Sub-Saharan Africa, and India a second time. Although not yet official IUCN Red List evaluations, we can use all these draft evaluations to determine overall threat rates to all turtles and tortoises. The current assessments that are based on the findings and results of these workshops, but have not yet been finalized and published on the IUCN Red List, are included in this checklist as ‘TFTSG Draft Red List’ status.

Combining the formal IUCN Red List assessments with draft TFTSG status evaluations for previously unlisted species and draft updated assessments for currently listed but outdated assessments, yields the following total current status numbers for all 356 species of turtles and tortoises: 7 Extinct (EX), 1 Critically Endangered (Possibly Extinct) [CR(PE)], 63 Critically Endangered (CR), 50 Endangered (EN), 65 Vulnerable (VU), 38 Near Threatened (NT), 81 Least Concern (LC), 35 Data Deficient (DD), and 16 Not Evaluated (NE). This yields 114 species (32.0%) that are Critically Endangered or Endangered, and 179 (50.3%) that are Threatened (Critically Endangered, Endangered, or Vulnerable). If we also include Extinct species among the Threatened categories (or more generally, “gone or nearly gone”), then 186 turtle species, or 52.2% of all currently recognized modern turtle and tortoise species, are either already extinct or threatened with extinction.

We can provisionally adjust these numbers to account for Data Deficient and Not Evaluated species which may also be Threatened. We follow the calculation method of determining percentage of Threatened species utilized by Hoffmann et al. (2010): the number of Threatened species (179) is divided by the number of data-sufficient species (305), i.e., the total number of species minus those Not Evaluated (NE) and minus those that are Data Deficient (DD). This assumes that DD and NE species will have the same percentage of Threatened species as data-sufficient species. Using this calculation methodology, 58.7% of all assessed data-sufficient turtles and tortoises are Threatened, and 61.0% are Threatened or Extinct. For comparison, using the same methods, Hoffmann et al. (2010) determined that 41% of amphibians, 33% of cartilaginous fishes, 25% of mammals, and 13% of birds were Threatened. Turtles were surpassed only by cycads, with 62% of their 300+ species Threatened.

No matter how we analyze these various percentages of threatened species, turtles and tortoises, with anywhere from ca. 50–59% of all their modern species Threatened, are among the most endangered of any of the major groups of vertebrate species, more than birds (ca. 13%), mammals (ca. 21–25%), cartilaginous and bony fishes (ca. 17–31%), or amphibians (ca. 30–41%), and paralleled among the larger vertebrate groups only by the primates (ca. 49%) (www.iucnredlist.org, Hoffmann et al. 2010).

As part of the process of determining the relative threatened status of the world’s tortoises and freshwater turtles, the Turtle Conservation Coalition (2011) published a consensus listing of “Turtles in Trouble: The World’s 25+ Most Endangered Tortoises and Freshwater Turtles—2011”, which listed the top ca. 50 most endangered species at that time. This document has since become widely cited, especially as a basis for justifying and supporting conservation grant proposals and action plans. As such, continuing to evaluate changes to this Top 25+ list, both in terms of improved status for those species benefitting from conservation efforts, and documenting potentially deteriorating survival prospects for other species, will be critically important for future conservation efforts for these highly threatened species. This continuing process is currently being undertaken by the TFTSG in collaboration with other turtle conservation organizations, notably Turtle Conservancy, Turtle Survival Alliance, Global Wildlife Conservation, Wildlife Conservation Society, Conservation International, and Chelonian Research Foundation.

Genetic Pollution

Aside from overt and highly impactful conservation threats such as overexploitation and habitat destruction, the global turtle fauna is also increasingly facing another insidious threat: genetic pollution caused by human-facilitated hybridization and introgression from introduced and invasive species (Rhymer and Simberloff 1996; Simison et al. 2013; Spencer et al. 2014; García-Díaz et al. 2015; Nori et al. 2017). This is not entirely new, but the current extent is unprecedented. Some taxa have historically already been affected. This is most probably true for Asian softshell turtles of the genus *Pelodiscus*. These turtles have been farmed and traded for centuries, with the corollary of translocating different species and local genetic lineages, leading to the admixture of different taxa and lineages in farms and in the wild (Fritz et al. 2010b; Suzuki and Hikida...
2014). Similarly, the historical introduction of *Mauremys reevesii* to Japan resulted in massive hybridization with the native *M. japonica* (Suzuki et al. 2014). Another historical case of human-mediated admixture of genetic lineages is known from European pond turtles (*Emys orbicularis*). Here, the non-native populations on the Balearic Islands, most probably introduced in Roman times (Valenzuela et al. 2016), are of admixed origin (Lenk et al. 1999). Another population with genetic signatures of an old or ancient introduction of *E. o. hellenica* was discovered near Rome (Lenk et al. 1999; Vamberger et al. 2015) within the range of another subspecies (*E. o. galloitalica*).

However, unlike in historical times, when only a few turtle species were affected, genetic pollution has become a major issue for nature conservation in recent years, facilitated by the massive pet and food trade and increased human mobility. Today, genetic pollution is also caused by well-meaning augmentation of endangered local turtle populations with genetically mismatched individuals (typically, but not exclusively, from non-coordinated actions by turtle enthusiasts), the release of surplus or abandoned genetically divergent pet turtles, and also by large-scale releases of confiscated turtle shipments, especially in Southeast Asia.

Examples of restocking with mismatched genetic individuals include endangered populations of *E. orbicularis* at the northern edge of its range (Fritz et al. 2004; Velo-Antón et al. 2011: genetic evidence for restocking with several different subspecies), and in southern France (Vamberger et al. 2015; Raemy et al. 2017: restocking with non-native *E. o. hellenica* instead of native *E. o. galloitalica*), also northern edge populations of *Mauremys leprosa* in southern France (Palaçios et al. 2015: restocking with *M. l. saharica* and northern African *M. l. leprosa* instead of European *M. l. leprosa*), of *M. rivulata* in Croatia (Vamberger et al. 2014: restocking with Cretan individuals), and of *Testudo graeca* in Doñana National Park in Spain (Graciá et al. 2017b: restocking with non-native *T. g. marokken-sis* from Morocco instead of *T. g. graeca* from Spain). Examples of genetic pollution caused by abandoned pet turtles include *Chrysemys picta bellii* from British Columbia introgressed by non-native subspecies (Jensen et al. 2014b) and Antillean *Trachemys* introgressed by red-eared sliders (*Trachemys scripta elegans*; Parham et al. 2013). Also some of the above-mentioned cases for European pond turtles refer at least partially to genetic pollution by abandoned pet turtles. Hybridization in the wild from released trade animals has been recorded in Taiwan for *Mauremys reevesii* and *M. sinensis* (Fong and Chen 2010).

This issue of potentially increasing genetic pollution needs to be kept in mind as conservationists devise management plans designed to reinforce or restore dwindling or extirpated populations of turtles impacted by overexploitation and habitat loss. The need to maintain well-defined and relatively pure non-hybrid genetic lineages, subspecies, and species is important and needs to be kept in focus.

Request for Updates

Please help the TTWG and the TFTSG keep this Turtles of the World Checklist and Atlas up-to-date by e-mailing any or all of us (addresses noted above) and including pdf’s of any relevant articles about new taxonomic or distributional information and/or revisions that should be included and annotated here in upcoming checklists, whether you are an author on a paper providing updated information, or have become aware of data that you believe should be included. Also please inform us of any errors or discrepancies in any of our data, especially for geographic distributions (native or introduced) in countries or states, and for cited references and names, so that we may update or correct them as necessary. For sea turtle distribution data, please also submit additions and corrections via the SWOT website. We want this checklist and atlas to be as accurate, up-to-date, and comprehensive as possible, and ask for your assistance to help us accomplish this goal.

The maps published here all represent work in progress, and will continue to be updated and revised in future checklists as we acquire new and improved locality data. We strongly encourage and welcome our readers and professional colleagues, especially field-based turtle specialists and other enthusiasts, to inform us about proposed corrections and changes to these maps, and to submit specific locality data on the presence or absence of species in various locations for consideration of incorporation into the next checklist.

We are especially interested in receiving new point locality data from presumed range areas not well represented by locality points on our maps, especially from gap areas in the presumed range, as well as verified range extensions. Please help us improve and update these maps by submitting any new locality information along with geographic coordinates and the associated citations to Rhodin at rhodincrf@aol.com.

Acknowledgments

We extend special thanks to James Parham, a major contributor and co-author on earlier versions of the checklist, and a source of incisive initial input and analytic debate. Specific thanks also for extensive detailed input from Holger Vetter, Peter Uetz, and Scott Thomson.

We thank various members of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group (TFTSG) as well as many other individuals who have provided pertinent data or references or localities for maps, or helped in various ways with input or review of this and earlier checklists: Rafael Acuña-Mesén, Kraig Adler, Leandro Alcalde, Matthew Aresco, Mark Auliya, Ernst
We also most gratefully acknowledge and very much appreciate the use of the many turtle and tortoise photos by the following photographers that enhance this checklist. We include both previously unpublished and republished photos from previous CRF publications, with each acknowledged and (if republished) identified as to its original source: Conservation Biology of Freshwater Turtles and Tortoises species accounts (CBFTT), Chelonian Conservation and Biology journal articles (CCB), Chelonian Research Monographs books (CRM 1–6), Turtle and Tortoise Newsletter (TTN), TurtleLog (TL), Turtle Conservation Fund 2002 prospectus (TCF), and the Turtle Conservation Coalition 2011 Top 25+ document (TCC). We strive to use primarily photos from natural native settings and to include locality data when available, although some photos are from captivity or the trade.

We include photos of 461 taxa (96.4% of all 478) by 188 contributors, but still lack photos of the following 17 taxa: Kinosternidae: Kinosternon hirtipes; Emydidae: Trachemys stejnergeri malonei, Trachemys venusta panamensis, Trachemys venusta uhrigi; Geoemydidae: Rhinoclemmys punctularia flammigera, Testudinidae: Testudo horsfieldii horsfieldii, Testudo horsfieldii bogdanovi, Testudo horsfieldii kuznetzowi; Trionychidae: Chitra chitra javanensis, Pelodiscus azurea; Chelidae: Platemyx platycelpha melanotona, Cheilodina gunaleni, Cheilodina maccordi roetenis; Pleomedesidae: Pelomedusa kobe, Pelomedusa schweinfurthi; Pelusios williamsi laurenti; and Pelusios williamsi lutescens.

We urge those of you who may have photos of any of these missing taxa to submit them for consideration of inclusion in the next checklist. We are also always looking for better quality photos with locality data for those taxa we have already illustrated; if you have photos that may offer such improvement, please submit them for consideration.

Distributional data on sea turtles from the IUCN/ SSC Marine Turtle Specialist Group (MTSG), SWOT (The State of the World’s Sea Turtles), and Seminoff et al. (2015) were gratefully received from Bryan Wallace, Jeffrey Seminoff, and Kyle Van Houtan.

The Panphil Foundation provided partial funding support for PPvD, and HBS was partially supported by a grant from the NSF (DEB-0817042). TFTSG-organized IUCN Red Listing workshops and other redlisting efforts have been generously supported by the Frankel Family Foundation, Conservation International, Turtle Conservancy, Moore Family Foundation, George Meyer and Maria Semple, Matt Frankel, Turtle Conservation Fund, Chelonian Research Foundation, Galapagos Conservation, U.S. Fish and Wildlife Service, Andrew Sabin Family Foundation, and Mohamed bin Zayed Species Conservation Fund.

Initial map production and GIS-analysis by the TFTSG and Chelonian Research Foundation was supported by the BioFresh Project of the IUCN Freshwater Biodiversity Unit, IUCN Species Programme, and Forschungsverbund Berlin e.V., Leibniz-Institut für Gewässerökologie und Binnenfischerei. We thank Kevin Smith, Savrina Carrizo, Will Darwall, Ackbar Jooitia, Marcelo Tognelli, Adrian Hughes, and Diego Jaffee of IUCN and Melita Vamberger for welcome technical assistance and helpful suggestions in our production of maps. We thank Bryan Wallace, Rod Mast, and Ei Fujioka of SWOT and Duke University for help with sea turtle maps. Ongoing support for map production and checklist preparation has come from Chelonian Research Foundation (CRF), the TFTSG, and Turtle Conservancy (TC). Publication costs have been shared by CRF, TC, TFTSG, Turtle Conservation Fund, Global Wildlife Conservation, and Surprise Spring Foundation.
CHECKLIST
MODERN TURTLE AND TORTOISE TAXA EXTANT SINCE 1500 AD

Phylogenetic Linnaean Classification of Suprageneric Categories as used in this Checklist

Testudines .. 356 spp., 478 taxa
• Cryptodira................................. 263 spp., 373 taxa
 ____Chelyridae 5 spp., 5 taxa
 ___Cheloniidae 7 spp., 7 taxa
 ____Cheloniinae 4 spp., 4 taxa
 ____Cheloninae 2 spp., 2 taxa
 ___Dermochelyidae 1 sp., 1 taxon
 __Kinosternoidea 28 spp., 39 taxa
 ____Dermatemydidae 1 sp., 1 taxon
 __Kinosternidae 27 spp., 38 taxa
 ____Kinosterninae 24 spp., 35 taxa
 ____Staurotypinae 3 spp., 3 taxa
 _Testudinoidea 190 spp., 278 taxa
 __Emydidae 53 spp., 91 taxa
 ____Dierochelyinae 42 spp., 66 taxa
 ____Emydinae 11 spp., 25 taxa
 __Platysternidae 1 sp., 3 taxa
 __Geoemydidae 71 spp., 96 taxa
 ____Geoemydinae 62 spp., 82 taxa
 ____Rhinoclemmysinae ... 9 spp., 14 taxa
 __Testudinidae 65 spp., 88 taxa
 _Trionychoidea 33 spp., 44 taxa
 ____Carettochelyidae 1 sp., 1 taxon
 __Trionychidae 32 spp., 43 taxa
 ____Cyclanorbinae 7 spp., 9 taxa
 ____Trionychinae 25 spp., 34 taxa
• Pleurodira............................... 83 spp., 105 taxa
 ____Chelidae 58 spp., 65 taxa
 ____Chelinae 20 spp., 21 taxa
 ____Hydromedusinae 2 spp., 2 taxa
 ____Chelodinae 35 spp., 41 taxa
 ____Pseudemydinae 1 sp., 1 taxon
 __Pelomedusidae 27 spp., 32 taxa
 __Podocnemididae 8 spp., 8 taxa

Alternative Phylogenetic Hierarchical Phylocode Classification (1)

Testudines
• Pleurodira
 __Pelomedusoides
 ___Pelomedusidae
 ___Podocnemididae
 _Chelidae
• Cryptodira
 __Durocryptodira
 ___Testudinoidea
 ____Emysternia
 ____Platysternidae
 ____Testuguria
 ____Geoemydidae
 ____Testudinidae
 __Americelydia
 ___Chelyroidea
 ____Kinosternoidea
 ____Dermatemydidae
 ____Chelyridae
 ____Cheloniidae
 ____Chelidae
 ___Dermochelyidae
 __Trionychia
 ___Trionychidae
 ____Carettochelyidae

While the TTWG continues to prefer and adhere to the Linnaean classification presented here to the left (a system fundamental to, and compliant with, the International Code of Zoological Nomenclature), we recognize that alternative, non-Code-compliant chelonian classification arrangements have also been proposed, and include the above Phylocode classification scheme presented by Crawford et al. (2015) as a recent example that has found adoption by some systematists.
Testudines Batsch 1788

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testudinata Klein 1751:96 (invalid pre-Linnaean name)</td>
<td>72</td>
</tr>
<tr>
<td>Testudines Linnaeus 1758:194 (vernacular)</td>
<td>72</td>
</tr>
<tr>
<td>Testudinata Klein in Behn 1760:tab.gen.</td>
<td>72</td>
</tr>
<tr>
<td>Testudines Batsch 1788:437</td>
<td>72</td>
</tr>
<tr>
<td>Testudinea Batsch 1796:179</td>
<td>72</td>
</tr>
<tr>
<td>Cheloniens Brongniart 1800a:196 (vernacular)</td>
<td>72</td>
</tr>
<tr>
<td>Chelonii Latreille 1800:xi</td>
<td>72</td>
</tr>
<tr>
<td>Chelonia Ross and Macartney 1802:tab.iii</td>
<td>72</td>
</tr>
<tr>
<td>Cataphractae Link 1807:51</td>
<td>72</td>
</tr>
<tr>
<td>Testudinata Oppel 1811:3</td>
<td>72</td>
</tr>
<tr>
<td>Perostia Rafinesque 1814:66</td>
<td>72</td>
</tr>
<tr>
<td>Cataphracta Hemprich 1820:101</td>
<td>72</td>
</tr>
<tr>
<td>Chelonea Fleming 1822:268</td>
<td>72</td>
</tr>
<tr>
<td>Fornicata Haworth 1825:373</td>
<td>72</td>
</tr>
<tr>
<td>Chelyneges Wagler 1828:861</td>
<td>72</td>
</tr>
<tr>
<td>Sterichrotas Ritgen 1828:269</td>
<td>72</td>
</tr>
<tr>
<td>Chelonites Burmeister 1837:730</td>
<td>72</td>
</tr>
<tr>
<td>Chelomeides Swainson 1839:112</td>
<td>72</td>
</tr>
<tr>
<td>Tylhopoda Mayer 1849:197</td>
<td>72</td>
</tr>
<tr>
<td>Testudina Fry 1850:21</td>
<td>72</td>
</tr>
<tr>
<td>Chersemydes Strauch 1862:16</td>
<td>72</td>
</tr>
<tr>
<td>Rynchochelones Dollo 1886:79</td>
<td>72</td>
</tr>
<tr>
<td>Chelonia Hoffmann 1890:372</td>
<td>72</td>
</tr>
<tr>
<td>Testudoformes Chang 1957:50</td>
<td>72</td>
</tr>
<tr>
<td>Chelonomorpha Kuhn 1960:30</td>
<td>72</td>
</tr>
<tr>
<td>Testudinomorpha Laurin and Reisz 1995:197</td>
<td>72</td>
</tr>
<tr>
<td>Pantestudines Joyce, Parham, and Gauthier 2004:996</td>
<td>72</td>
</tr>
</tbody>
</table>

Cryptodira Cope 1868b

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptoderes Duméril and Bibron 1834:354</td>
<td>72</td>
</tr>
<tr>
<td>Cryptodera Lichtenstein 1856:1</td>
<td>72</td>
</tr>
<tr>
<td>Cryptodera Cope 1868b:282</td>
<td>72</td>
</tr>
</tbody>
</table>

Chelydridae Gray 1831d

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chelydra Gray 1831d:4</td>
<td>72</td>
</tr>
<tr>
<td>Chelydraidse Swainson 1839:113</td>
<td>72</td>
</tr>
<tr>
<td>Chelydradse Gray 1869a:178</td>
<td>72</td>
</tr>
</tbody>
</table>

Chelydra Schweigger 1812

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chelydra Schweigger 1812:292</td>
<td>72</td>
</tr>
<tr>
<td>Type species: Chelydra serpentina Schweigger [= Testudo serpentina Linnaeus 1758], by subsequent designation by Fitzinger (1843:29).</td>
<td>72</td>
</tr>
<tr>
<td>Cheliusinus Rafinesque 1815:75 (nomen nudum)</td>
<td>72</td>
</tr>
<tr>
<td>Chelomura Fleming 1822:270 (senior homonym, not = Chelomura Rafinesque 1832)</td>
<td>72</td>
</tr>
<tr>
<td>Type species: Chelomura serpentina [= Testudo serpentina Linnaeus 1758], by original monotypy.</td>
<td>72</td>
</tr>
<tr>
<td>Ophtichelone Jarocki 1822:21</td>
<td>72</td>
</tr>
<tr>
<td>Type species: Ophtichelone serpentina [= Testudo serpentina Linnaeus 1758], by original monotypy.</td>
<td>72</td>
</tr>
<tr>
<td>Rapara Gray 1825:210</td>
<td>72</td>
</tr>
<tr>
<td>Type species: Rapara serpentina Gray [= Testudo serpentina Linnaeus 1758], by original monotypy.</td>
<td>72</td>
</tr>
<tr>
<td>Saurochelys Latreille 1825:92</td>
<td>72</td>
</tr>
<tr>
<td>Type species: Saurochelys “Tortue à longue queue” [= Testudo serpentina Linnaeus 1758], by original monotypy.</td>
<td>72</td>
</tr>
<tr>
<td>Cheliusinus Rafinesque 1832:64</td>
<td>72</td>
</tr>
<tr>
<td>Type species: Cheliusinus serpentina [= Testudo serpentina Linnaeus 1758], by original monotypy.</td>
<td>72</td>
</tr>
<tr>
<td>Emysaurus Duméril and Bibron 1835:348</td>
<td>72</td>
</tr>
<tr>
<td>Type species: Emysaura serpentina [= Testudo serpentina Linnaeus 1758], by original monotypy.</td>
<td>72</td>
</tr>
</tbody>
</table>

Chelydra acutirostris Peters 1862

South American Snapping Turtle

![South American Snapping Turtle](Image)

Chelydra rossignoni (Bocourt 1868)

Central American Snapping Turtle

![Central American Snapping Turtle](Image)
Belize, Guatemala, Honduras, Mexico (Campeche, Chiapas, Oaxaca, Tabasco, Veracruz)

Emysaurus rossignonii Bocourt 1868:121, Chelydra rossignonii, Chelydra serpentina rossignonii
Type locality: “marais de Pansos, près le Rio Polochic (Guatémala).”

Chelydra serpentina mexicanae Cope in Gray 1870c:64 (nomen nudum)

Chelydra serpentina (Linnaeus 1758) (08:5)
North American Snapping Turtle, Common Snapping Turtle

Testudo serpentaria Wiedemann 1802:191 (nomen nudum)

Chelydra lacertina Schwarzegger 1812:293 (senior homonym, not = Gymnophyes lacertina Agassiz 1857a), Chelydra serpentina lacertina
Type locality: Not known. Restricted to “vicinity of New York City” [New York, USA] by Schmidt (1953:86).

Testudo serrata Pennant in Gray 1830e:14 (nomen nudum) and junior synonym, not = Testudo serrata Daudin 1801 or Testudo serrata Shaw 1802

Testudo longicauda Shaw in Gray 1831d:36 (nomen nudum)

Chelydra emarginata Agassiz 1857a:417

Devisia mythodes Ogilby 1905:11
Type locality: “Fly River, British New Guinea” [Papua New Guinea] [in error].

Chelydra laticarinata † Hay 1916a:72 (nomen suppressum, ICZN 1986) [Pleistocene, USA (Florida)]

Chelydra sculpta † Hay 1916a:73 (nomen suppressum, ICZN 1986) [Pleistocene, USA (Florida)]

Chelydra osceola Stejneger 1918:89 (nomen conservandum, ICZN 1986), Chelydra serpentina osceola
Type locality: “Clearwater, Pinellas County, Florida” [USA].
Macrochelys Gray 1856a \((07:3)^{(2)}\)

Macrochelys Gray 1856a:200

Type species: *Macrochelys temminckii* [= *Chelonura temminckii* Troost in Harlan 1835], by original monotypy.

Macroclemys Gray 1856b:48 (*nomen novum*)

Gypochelys Agassiz 1857a:248, 413

Type species: *Gypochelys lacertina* Agassiz 1857a [= subjective synonym of *Chelonura temminckii* Troost in Harlan 1835], by original monotypy.

Macroclemmys Strauch 1862:35 (*nomen novum*)

Macrochelys suwanniensis Thomas, Granatosky, Bourque, Krysko, Moler, Gamble, Suarez, Leone, Enge, and Roman 2014 \(^{(3)}\)

Suwannee Alligator Snapping Turtle

USA (Florida, Georgia)

IUCN Red List: Not Evaluated

CITES: Appendix III (USA)

Macrochelys maxhoseri Hoser 2013:56 (unavailable name pending ICZN decision; Rhodin et al. 2015) \(^{(4)}\)

Macrochelys suwanniensis Thomas, Granatosky, Bourque, Krysko, Moler, Gamble, Suarez, Leone, Enge, and Roman 2014:150

Type locality: “Santa Fe River and State Road 235, Alachua County, Florida (29.87872ºN, 82.33619ºW...elev. 23 m)” [USA].

Macrochelys temminckii (Troost in Harlan 1835) \((06:4, 14:1)^{(2)}\)

Western Alligator Snapping Turtle

USA (Alabama, Arkansas, Florida, Georgia, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Mississippi, Missouri, Oklahoma, Tennessee, Texas)

TFTSG Draft Red List: Vulnerable (2011)

CITES: Appendix III (USA)

Testudo planitia Gmelin 1789:1045 (junior homonym, not = *Testudo planitia* Meuschen 1778; *nomen suppressum*, ICZN 1963), *Chersine planitia*

Type locality: “Surinami” [Suriname] [in error].

Chelonura temminckii Troost in Harlan 1835:158 (*nomen conservandum*, ICZN 1963), *Emysaurus temminckii*, *Macrochelys temminckii*, *Macroclemys temminckii*, *Chelydra temminckii*, *Gypochelys temminckii*, *Macrochelys temminckii temminckii*

Type locality: “a tributary stream of the Mississippi, which enters that river above Memphis, in west Tennessee.” Emended to “Wolf River, Shelby County, Tennessee, USA” by Bour (1987b:343).

Gypochelys lacertina Agassiz 1857a:414 (junior homonym, not = *Chelydra lacertina* Schweigger 1812), *Macrochelys lacertina*, *Macroclemys lacertina*

Macrochelys temminckii muscati Hoser 2013:55 (unavailable name pending ICZN decision; Rhodin et al. 2015) \(^{(4)}\)

Macrochelys apalachicola Thomas, Granatosky, Bourque, Krysko, Moler, Gamble, Suarez, Leone, Enge, and Roman 2014:151 \(^{(3)}\)

Type locality: “Apalachicola River, Gadsden County, Florida” [USA].
Cheloniidae Oppel 1811

Cheloniidae Oppel 1811:8
Chelonopteria Rafinesque 1814:66
Cheloniidae Schmid 1819:14
Edigitata Haworth 1825:373
Oiacopodes Wagler 1828:861
Chelonidae Bonaparte 1831:64
Oeacopodes Burmeister 1837:731
Pterodactylia Mayer 1849:199
Chelonioidea Baur 1893b:673

Cheloniidae Oppel 1811 (695, 127, 128, 129)

Cheloniidae Gray 1825:212
Caretta Gray 1825:212
Mydae Ritgen 1828:269
Cheloniidae Gray 1825:212
Cheloniidae Cope 1868b:282
Chelonii Oppel 1811:8 (partim)
Chelonii Oppel 1811:8
Chelonii Oppel 1811:8
Chelonii Gray 1825

Caretta Rafinesque 1814 (12.6)

Caretta Rafinesque 1814:66
Type species: Caretta nasuta Rafinesque 1814 [= subjective synonym of Testudo caretta Linnaeus 1758], by original monotypy.
Thalassochelys Fitzinger 1835:121
Type species: Thalassochelys caouana Fitzinger [= Testudo caouana Lacepède 1789 (nomen suppressum) = Testudo caouana Bonnaterre 1789 = subjective synonym of Testudo caretta Linnaeus 1758], by subsequent designation by Fitzinger (1843:30).
Caouana Cocteau and Bibron 1838:31
Type species: Chelonia (Caouana) cephalo [= Testudo cephalo Schneider 1783 = subjective synonym of Testudo caretta Linnaeus 1758], by original designation.
Halichelys Fitzinger 1843:30
Type species: Thalassochelys (Halichelys) atra Fitzinger [= Caretta atra Merrem 1820 = subjective synonym of Testudo caretta Linnaeus 1758], by original designation.
Eremonia Gray 1873i:408
Type species: Eremonia elongata Gray [= Caouana elongata Gray 1844 = subjective synonym of Testudo caretta Linnaeus 1758], by original designation.

Caretta caretta (Linnaeus 1758) (10.5, 14.2) (5)
Loggerhead, Loggerhead Sea Turtle

(lines delimit Regional Management Units)

Nesting: Aruba, Australia (Queensland, Western Australia), Bahamas, Bangladesh, Belize, Bermuda, Bonaire, Brazil (Bahia, Espirito Santo, Rio de Janeiro, Sergipe), Cape Verde, Cayman Islands, China, Colombia, Costa Rica, Cuba, Curacao, Cyprus, Dominican Republic, Egypt, France, Greece, Haiti, Honduras, Israel, Italy, Japan, Lebanon, Libya, Madagascar, Mauritania, Mexico, Montserrat, Mozambique, Myanmar, New Caledonia, Oman, Panama, Papua New Guinea (Trobiand Islands), Saint Lucia, Saint Vincent and the Grenadines, Sierra Leone, South Africa, Spain, Sri Lanka, Syria, Tunisia, Turkey, Turks and Caicos, USA (Alabama, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Texas), US Virgin Islands, Vanuatu, Venezuela, Yemen

Foraging: Albania, Algeria, Anguilla, Antigua and Barbuda, Argentina, Bahrain, Barbados, British Virgin Islands, Canada, Chile, Comoros, Croatia, Djibouti, Dominica, Eritrea, Fiji, French Guiana, Gambia, Grenada, Guadeloupe, Guinea-Bissau, Guatemala, Guyana, India, Indonesia, Iran, Jamaica, Kenya, Malta, Martinique, Mauritius, Monaco, Montenegro, Morocco, Namibia, Netherlands Antilles (Bonaire, Saba, St. Eustatius), Nicaragua, North Korea, Pakistan, Peru, Philippines, Portugal, Puerto Rico, Qatar, Réunion, Saint Kitts and Nevis, Samoa, Saudi Arabia, Senegal, Seychelles, Sint Maarten, Slovenia, Solomon Islands, Somalia, South Korea, Sudan, Suriname, Taiwan, Tanzania, Tonga, Trinidad and Tobago, United Arab Emirates, Uruguay, USA (California, Hawaii, Oregon), Vietnam, Western Sahara
Vagrants: Angola, Benin, Brunei, Cambodia, Cameroon, Congo (DRC), Congo (ROC), Ecuador, El Salvador, Equatorial Guinea, Gabon, Ghana, Great Britain, Guinea, Iraq, Ireland, Ivory Coast, Kuwait, Liberia, Malaysia, Maldives, New Zealand, Nigeria, Thailand, Togo, Tuvalu

CITES: Appendix I, as Cheloniidae spp.

Testudo caretta Linnaeus 1758:197, Chelone caretta, Chelonia caretta, Thalassochelys caretta, Talassochelys caretta, Caouana caretta, Caretta caretta, Caretta caretta Caretta Type locality: “insulas Americanas.” Restricted to “Mari Mediterraneo, Atlantico” by Schoepff (1793:70); to “Bermuda Islands” by Smith and Taylor (1950a:315, 195b:16); and to “Bimini, British
Eretmochelys Fitzinger 1843
\textit{Eretmochelys} Fitzinger 1843:30

Type species: \textit{Chelonia (Eretmochelys) imbricata} Cuvier [= \textit{Testudo imbricata} Linnaeus 1766], by original designation.

Herpetomyctetes Gistel 1868:145

Type species: \textit{Herpetomyctetes imbricatus} [= \textit{Testudo imbricata} Linnaeus 1766], by original monotypy.

Onychochelys Gray 1873i:397

Type species: \textit{Onychochelys kraussii} Gray 1873i [= subjective synonym of \textit{Testudo imbricata} Linnaeus 1766], by original monotypy.

\textit{Eretmochelys imbricata} (Linnaeus 1766)
\textit{Hawksbill Turtle, Hawksbill Sea Turtle}

Nesting: Anguilla, Antigua and Barbuda, Aruba, Australia, Bahamas, Bangladesh, Barbados, Belize, Brazil, British Indian Ocean Territory, British Virgin Islands, Cameroon, Cayman Islands, China, Colombia, Congo (ROC), Costa Rica, Cuba, Curacao, Dominica, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, Fiji, French Guiana, French Southern Territories, Gabon, Grenada, Guadeloupe, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, India, Indonesia, Iran, Ivory Coast, Jamaica, Japan, Kenya, Liberia, Madagascar, Malaysia, Maldives, Martinique, Mexico (Campeche, Yucatán), Micronesia, Montserrat, Mozambique, Netherlands Antilles (Bonaire, Sint Eustatius), Nicaragua, Oman, Palau, Panama, Papua New Guinea, Philippines, Puerto Rico, Qatar, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, Samoa, São Tomé and Príncipe, Saudi Arabia, Senegal, Seychelles, Sint Maarten, Solomon Islands, Sri Lanka, Suriname, Taiwan, Tanzania, Thailand, Trinidad and Tobago, Turks and Caicos, UAE, United Arab Emirates, Wallis and Futuna, Yemen

Foraging: American Samoa, Argentina, Ascension, Bahrain, Benin, Bermuda, Brunei, Cambodia, Cook Islands, Djibouti, French Polynesia, Gambia, Ghana, Guam, Iraq, Israel, Kuwait, Mauritania, Mauritius, Mayotte, Myanmar, Nigeria, Northern Marianas Islands, Pakistan, Peru, Réunion, Sierra Leone, Singapore, Society Islands, Somalia, South Africa, Sudan, Togo, Tokelau, Tonga, Tuvalu, United Arab Emirates, Wallis and Futuna, Yemen

Vagrant: Algeria, Angola, Cape Verde, Chile, Comoros, Congo (DRC), Kiribati, Marshall Islands, Morocco, Namibia, Nauru, New Caledonia, North Korea, Pitcairn Island, Portugal, South Korea, Spain, Uruguay

CITES: Appendix I, as Cheloniidae spp.

\textit{Testudo imbricata} Linnaeus 1766:350, \textit{Chelone imbricata},

Conservation Biology of Freshwater Turtles and Tortoises • Chelonian Research Monographs, No. 7
Chelonia imbricata, Caretta imbricata, Eretmochelys imbricata, Herpysmastes imbricatus, Herpysmastes imbricata, Chelonius imbricatus, Eretmochelys imbricata imbricata

Testudo nasica borbonica Bonaparte 1789:21 (067)

Chelonia radiata Cuvier 1829:14

Type locality: Not designated.

Chelonia pseudomydas Lesson 1831b:299

Type locality: “l’Océan atlantique.” Restricted to “Bermuda Islands” by Smith and Taylor (1950a:315).

Chelonia pseudobovara Lesson 1831b:302

Type locality: “l’Océan atlantique.” Restricted to “Bermuda Islands” by Smith and Taylor (1950a:315).

Caretta bissa Rüppell 1835:4 (07:5, 09:9), Eretmochelys imbricata bissa

Type locality: “im rothen Meere...Abyssinien” [Red Sea...Ethiopia].

Eretmochelys squamata Agassiz 1857a:382, Caretta squamata, Eretmochelys imbricata squamata

Caretta squamosa Girard 1858:442 (nomen novum), Eretmochelys squamosa, Eretmochelys imbricata squamosa

Caretta rostrata Girard 1858:446

Type locality: “Fiejee Islands” [Fiji].

Onychochelys kraussi Gray 1873i:398

Type locality: “Ocean, French Guiana.”

Lepidochelys Fitzinger 1843 (12:8)

Lepidochelys Fitzinger 1843:30

Type species: Thalassochelys (Lepidochelys) olivacea Eschscholtz 1829a [= Chelonia olivacea Eschscholtz 1829a], by original designation.

Cephalochelys Gray 1873i:408

Type species: Cephalochelys oceanica Gray 1873i [= subjective synonym of Chelonia olivacea Eschscholtz 1829a], by original monotypy.

Colpochelys Garman 1880:124

Type species: Thalassochelys (Colpochelys) kempi Garman 1880, by original monotypy.

Lepidochelys kempi (Garman 1880)

Kemp’s Ridley, Kemp’s Ridley Sea Turtle, Atlantic Ridley

Nesting: Mexico (Tamaulipas, Veracruz), USA (Texas)

Foraging: USA (Alabama, Connecticut, Delaware, Florida, Georgia, Louisiana, Maryland, Massachusetts, Mississippi, New Jersey, New York, North Carolina, Rhode Island, South Carolina, Virginia)

Vagrant: Algeria, Anguilla, Bahamas, Bermuda, British Virgin Islands, Canada, Cayman Islands, Cuba, France, Ireland, Italy, Morocco, Portugal, Spain

CITES: Appendix I, as Cheloniidae spp.

Testudo viridisquamata Lacepède 1788:92, synopsis[table] (09:6) (partim, nomen dubium et suppressum, ICZN 1963)

Testudo viridisquamata Bonaparte 1789:20 (partim, nomen dubium)

Testudo bomarii Meyer 1790:82 (09:8) (partim, nomen dubium et novum et oblitum)

Testudo mydas minor Suckow 1798:30 (partim, nomen dubium et suppressum, ICZN 1963)

Type locality: “Amazonen-Flusse..[,]..Südsee..[,]..Cap Blanco in Mexico.” Restricted to “the island of Blanquilla...West Indies” [Venezuela] by Brongersma (1961:27).

Thalassochelys (Colpochelys) kempi Garman 1880:123 (nomen conservandum, ICZN 1963), Lepidochelys kempi, Colpochelys kempi, Caretta kempi, Lepidochelys olivacea kempi

Lepidochelys olivacea (Eschscholtz 1829a)

Olive Ridley, Olive Ridley Sea Turtle, Pacific Ridley

ICZN 1963)
Type locality: Not designated.

Chelonia olivacea Eschscholtz 1829a:15

Caretta caretta olivacea, *Caretta olivacea*, *Thalassochelys* (*Lepidochelys*) olivacea, *Caouana olivacea*, *Lepidochelys olivacea*, *Caretta caretta olivacea*, *Lepidochelys olivacea olivacea*, *Caretta olivacea olivacea*

Type locality: “Bai von Manilla” [Philippine].

Chelonia duxus Duméril et Bibron 1835:557 (nomen novum), *Lepidochelys duxus***

Caurauna rappelli Gray 1844:53 (nomen nudum)
Type locality: “India”?

Chelonia subcarinata Rüppell in Gray 1844:53 (nomen nudum)

Chelonia polyaspis Bleeker 1857b:239 (nomen nudum)

Type locality: “Batavia...Java” [Indonesia].

Chelonia duxia Bleeker in Gray 1864a:13 (nomen nudum)
Type locality: Not designated.

Chelonia chrysemys Gray 1837:408

Type locality: “West Coast of America – Mexico?”

Thalassochelys tarapanca Philippi 1887:85, *Thalassochelys* *tarapanca*

Type locality: “Iquique...Chile.”

Thalassochelys controversa Philippi 1899:731

Type locality: “Quinteros...Chile.”

Caretta remigava Hay 1908a:194, *Lepidochelys olivaceae remigava*

Type locality: “Ventosa Bay, Gulf of Tehuantepec, Oaxaca, Mexico.”

Cheloniidae Oppel 1811 (127)

Cheloniidae Oppel 1811:8 (partim)
Cheloniidae Gray 1825:212
Mydae Ritgen 1828:269
Cheloniidae Cope 1868b:282

Chelonia Brongniart 1800 (95, 124)

Chelonia Brongniart 1800b:89
Type species: *Chelonia mydas* [= Testudo mydas Linnaeus 1758], by subsequent designation by Bell (1828c:516).

**Chelone Brongniart 1805:510 (nomen novum)

Chelona Fleming 1828:149 (nomen novum)

Mydas Cocteau and Bibron 1838:22

Type species: *Chelona (Mydas) viridis* [= Testudo viridis Schneider 1783 = subjective synonym of Testudo mydas Linnaeus 1758], by tautonymy.

Mydasae Gervais 1843:457

Type species: *Chelona (Mydasae) mydas* [= Testudo mydas Linnaeus 1758], by tautonymy.

Euchelona Tschudi 1846:22

Type species: *Chelona (Euchelona) midas* Schweigger [= Testudo mydas Linnaeus 1758], by original monotypy.

Megemys Gistel 1848:8 (nomen novum)

Euchelys Girard 1858:447

Type species: *Euchelys macropus* Girard [= Testudo macropus Walbaum 1782 = subjective synonym of Testudo mydas Linnaeus 1758], by original monotypy.

Midas Herrera 1901:68 (nomen novum et suppressum, ICZN 1922)

Testudo mydas minor Suckow 1798:30 (partim, nomen dubium et suppressum, ICZN 1963)

Type locality: “Amazonen-Flusse...[&], Südsee...[&]...Cap Blanco in Mexico.” Restricted to “the island of Blanquilla...West Indies” [Venezuela] by Brongersma (1961:27).

Chelonia multisulcata Kuhl 1820:78 (nomen suppressum,
Chelonia mydas (Linnaeus 1758)
Green Turtle, Green Sea Turtle

Nesting: American Samoa, Angola, Anguilla, Antigua and Barbuda, Aruba, Ascension, Australia (Northern Territory, Queensland, Western Australia), Bahamas, Bangladesh, Barbados, Belize, Brazil, British Virgin Islands, Cayman Islands, China, Cocos (Keeling) Islands, Colombia, Comoros, Congo (ROC), Costa Rica, Cuba, Curacao, Cyprus, Dominica, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, French Guiana, French Polynesia, French Southern Territories, Gabibia, Grenada, Guadeloupe, Guam, Guinea-Bissau, Guyana, Haiti, Honduras, India, Indonesia, Iran, Jamaica, Japan, Kenya, Lebanon, Madagascar, Malaysia, Martinique, Mauritania, Mayotte, Mexico (Baja California, Campeche, Michoacan, Quintana Roo, Sinaloa, Sonora, Tabasco, Tamaulipas, Veracruz, Yucatan), Micronesia, Montserrat, Mozambique, Myanmar, Netherlands Antilles (Bonaire, Sint Eustatius), Nicaragua, Oman, Pakistan, Panama, Papua New Guinea, Peru, Philippines, Puerto Rico, Reunion, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, Sao Tome and Principe, Saudi Arabia, Senegal, Seychelles, Sint Maarten, Sri Lanka, Suriname, Syria, Taiwan, Tanzania, Thailand, Trinidad and Tobago, Turkey, Turks and Caicos, USA (Florida, Hawaii), US Virgin Islands, Vanuatu, Venezuela, Vietnam, Yemen

Foraging: Argentina, Bahrain, Benin, Bermuda, British Indian Ocean Territory, Brunei, Cambodia, Cameroon, Cape Verde, Chile, Christmas Island, Congo (DRC), Cook Islands, Djibouti, Fiji, Gabon, Ghana, Greece, Guatemala, Guinea, Iraq, Israel, Ivory Coast, Kuwait, Liberia, Libya, Maldives, Marshall Islands, Mauritius, Namibia, New Caledonia, Nigeria, Niue, Palau, Qatar, Samoa, Sierra Leone, Singapore, Somalia, South Africa, Sudan, Timor-Leste, Togo, Tonga, United Arab Emirates, Uruguay, Wallis and Futuna, Western Sahara

Vagrant: Algeria, Canada, Italy, Kiribati, Malta, Northern Mariana Islands, Morocco, Nauru, New Zealand, Portugal, Saint Helena, Slovenia, Solomon Islands, Spain, Tokelau, Tuamotu, Tunisia, Tuvalu

CITES: Appendix I, as Cheloniidae spp.

Testudo mydas Linnaeus 1758: 197, Chelonia mydas, Chelone mydas, Caretta mydas, Mydas mydas, Mydasa mydas, Chelonia (Euchelonida) midas, Euchelonia mydas, Mege-myds mydas, Chelonia mydas mydas
Type locality: “insulas Pelagi: insulam Ascensionis.” Restricted to “Insel Ascension” by Mertens and Muller (1928:23).

Testudo macropus Wallbaum 1782: 112 (unavailable name), Euchelys macropus, Chelone macropus

Testudo viridis Schneider 1783: 299, Chelonia viridis, Chelone viridis, Chelonia (Mydys) viridis, Mydas viridis, Chelonia mydas viridis
Type locality: Not designated. Restricted to “Charleston, South Carolina” [USA] by Smith and Taylor (1950a:360).

Testudo japonica Thunberg 1787: 178, Chelone japonica
Type locality: “Japan.”

Testudo marina vulgaris Lacepede 1788: 54, synopsis [table] 496 (nomen suppressum, ICZN 2005a)
Type locality: “contrées équatoriales.”

Testudo viridissquamosa Lacepede 1788: 92, synopsis [table] 496 (partim, nomen dubium et suppressum, ICZN 1963)
Type locality: “la mer du Sud, auprès du cap Blanco, de la nouvelle Espagne.” Restricted to “Bocas del Toro, Panama, Golf von Mexico” by Wermuth (1956:405); and to “the island of Blanquilla...West Indies” [Venezuela] by Brongersma (1961:27).

Testudo viridissquamosa Bonnaterre 1789: 20 (partim, nomen dubium)

Testudo macropus Gmelin 1789: 1038
Type locality: Not designated.

Testudo babari Meyer 1790: 82 498 (partim, nomen dubium et novum et oblitum)

Testudo chloronota Cuvier 1800: 107

Testudo rugosa Van-Ernest in Daudin 1801: 37 (senior homonym, not = Testudo rugosa Shaw 1802)
Type locality: “la mer des Indes...près de la ligne à environ trois degrés des îles Maldives.”

Testudo cepediana Daudin 1801: 50
Type locality: Not designated.

Chelonia virgata Schweigger 1812: 291, Caretta virgata, Chelonia (Mydys) virgata, Mydas virgata, Chelone virgata
Type locality: “mari sub zona torrida.” Restricted to “Bermuda Islands” by Smith and Taylor (1950a:315).

Caretta cepedii Merrem 1820: 18 (nomen novum)

Caretta scutulata Merrem 1820: 18, Chelonia scutulata
Type locality: “Oceano-Atlantico.”

Caretta thunbergii Merrem 1820: 19 (nomen novum)
Type locality: “Japonia” [Japan].

Chelonia castanea Eschscholtz 1829a: 11 144 (7) (nomen oblitum)
Type locality: “karabischen Meer: küste von Sarimam.”

Chelonia grisea Eschscholtz 1829a: 13 144 (7), Chelonia griseam
Type locality: “kaspiiche Meer” [Caspian Sea] [in error].

Chelonia maculosa Cuvier 1829: 13, Chelone maculosa
Type locality: Not designated. Restricted to “Ascension Island” by Smith and Taylor (1950a:315).

Chelonia lachrymata Cuvier 1829: 13
Type locality: Not designated.

Chelonia midas Wagler 1830b: 133 (nomen novum)
Conservation Biology of Freshwater Turtles and Tortoises • Chelonian Research Monographs, No. 7

Chelonia bicornata Lesson 1831b:301
Type locality: “l’Océan atlantique.”

Chelonia marmorata Duméril and Bibron 1835:546, Chelone marmorata
Type locality: “l’Ascension.”

Chelonia formosa Girard 1858:456
Type locality: “Feejee Islands” [Fiji].

Chelonia tenuis Girard 1858:459
Type locality: “Honden Island, Paumotu Group; Tahiti and Eimeo; Rosa Island.” Rosa Island identified by Hirth (1980:1) as Rose Atoll, American Samoa.

Chelonia albiventer Nardo 1864:1420
Type locality: “Adriatico...prossimata del porto di Malamocco” [Italy].

Chelonia agassizii Bocourt 1868:122, Chelonia mydas agassizii
Type locality: “embouchure du Nagualate...Pacific (Guatémala)” [mouth of Rio Nagualate, Pacific coast of Guatemala].

Chelonia lata Philippi 1887:84
Type locality: “Valparaíso...Is. Chiloé” [Chile].

Chelonia mydas carrinerea Caldwell 1962:4
Type locality: “waters adjacent to Isla Angel de la Guarda, Bahia de Los Angeles, central Gulf of California, Mexico.”

Testudo nigrita Tamayo 1962:358 (nomen nudum)

Natator McCulloch 1908 (12:8)
Natator McCulloch 1908:127
Type species: Natator tessellatus McCulloch 1908 [= subjective synonym of Chelonia depressa Garman 1880], by original monotypy.

Natator depressus (Garman 1880)
Flatback, Flatback Sea Turtle

Nesting: Australia (Northern Territory, Queensland, Western Australia)
Foraging: Indonesia (Papua), Papua New Guinea (Southern)
Vagrant: Indonesia (Java, Lesser Sundas), Timor-Leste
IUCN Red List: Data Deficient (1996)
CITES: Appendix I, as Cheloniiidae spp.

Chelonia depressa Garman 1880:124, Chelonia depressus, Natator depressus
Type locality: “East Indies and North Australia.” Restricted to “North Australia” by Loveridge (1934:261).

Natator tessellatus McCulloch 1908:127
Type locality: “near Fort Darwin, North Australia.”

Dermochelidae Fitzinger 1843 (12:9)
Sphargidae Gray 1825:212
Sphargidina Bonaparte 1831:64
Dermatochelydae Fitzinger 1843:30
Atheceae Copé 1871:235
Athecata Lydekker 1889:223
Dermochelidae Lydekker 1889:223

Dermochelys Blainville 1816
Chelonia Rafinesque 1814:66 (nomen oblitum)
Chelyra Rafinesque 1815:74 (nomen nudum)
Dermochelys Blainville 1816:119 (“111”)
Type species: Dermochelys coriacea [= Testudo coriacea Vandelli 1761], by subsequent monotypy by Boulenger (1889:10), in accordance with ICZN Article 67.2.2.

Sphargis Merrem 1820:19
Type species: Sphargis marmoralis Merrem 1820 [= subjective synonym of Testudo coriacea Vandelli 1761], by original monotypy.

Coriuda Fleming 1822:271
Type species: Coriuda coriacea [= Testudo coriacea Vandelli 1761], by original monotypy.

Scylla Wagler 1828:861 (nomen novum)
Dermochelis Cuvier 1829:14 (nomen novum)
Dermatochelys Wagler 1830b:133 (nomen novum) (9)
Chelyra Rafinesque 1832:64
Type species: Chelyra coriacea [= Testudo coriacea Vandelli 1761], by original designation.

Dermochelys coriacea (Vandelli 1761) (12:9, 14:6, 14:7) (10)
Leatherback, Leatherback Sea Turtle

(line delimits Regional Management Units)
Nesting: Angola, Anguilla, Antigua and Barbuda, Aruba, Australia (Northern Territory), Bahamas, Bangladesh, Barbados, Benin, Brazil, British Virgin Islands, Cameroon, Colombia, Congo (ROC), Costa Rica, Cuba, Curacao,
Dominica, Dominican Republic, Ecuador, El Salvador, Equatorial Guinea, French Guiana, Gabon, Ghana, Grenada, Guadeloupe, Guatemala, Guyana, Haiti, Honduras, India, Indonesia (Java, Papua), Ivory Coast, Jamaica, Malaysia, Martinique, Mexico (Baja California Sur, Guerrero, Jalisco, Michoacán, Oaxaca), Mozambique, Netherlands Antilles (Bonaire, Sint Eustatius), Nicaragua, Panama, Papua New Guinea (Northern), Puerto Rico, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, São Tomé and Príncipe, Sierra Leone, Sint Maarten, Solomon Islands, South Africa, Sri Lanka, Suriname, Thailand, Togo, Trinidad and Tobago, USA (Florida), US Virgin Islands, Vanuatu, Venezuela, Vietnam

Foraging: Albania, Algeria, Argentina, Belize, Brunei, Cambodia, Canada (British Columbia, New Brunswick, Newfoundland, Nova Scotia), Chile, China, Comoros, Congo (DRC), Croatia, Cyprus, Egypt, Fiji, France, Gambia, Great Britain, Greece, Guinea, Guinea-Bissau, Ireland, Israel, Italy, Japan, Kenya, Kiribati, Lebanon, Liberia, Libya, Madagascar, Malta, Marshall Islands, Mauritania, Mauritius, Micronesia, Montenegro, Morocco, Myanmar, Namibia, Nauru, New Zealand, Nigeria, North Korea, Palau, Peru, Philippines, Portugal, Russia, Samoa, Senegal, Seychelles, Slovenia, South Korea, Spain, Syria, Taiwan, Tanzania, Tonga, Tunisia, Turkey, Turks and Caicos, Tuvalu, Uruguay, USA (Alaska, California, Connecticut, Delaware, Georgia, Hawaii, Maine, Maryland, Massachusetts, New Jersey, New York, North Carolina, Oregon, Rhode Island, South Carolina, Washington)

Vagrant: Bahrain, Denmark, Djibouti, Eritrea, Iceland, Iran, Iraq, Kuwait, Maldives, Norway, Oman, Pakistan, Qatar, Saudi Arabia, Somalia, Sudan, Sweden, United Arab Emirates, Yemen

CITES: Appendix I

Testudo coriacea Vandelli 1761:1 (senior homonym), *Chełonia coriacea*, *Chelonia coriacea*, *Dermochelys coriacea*, *Coriudo coriacea*, *Scytina coriacea*, *Sphargis coriacea*, *Dermochelys coriacea coriacea*, *Chelyra coriacea*

Type locality: “maris Tyrrheni oram in agro Laurentiano” [Italy]. Restricted to “Palermo, Sicily” [Italy] by Smith and Taylor (1950a:315, 1950b:13); to “la côte romaine (Italie), Mer Tyrrhénnienne, Méditerranée occidentale” [Italy] by Fretey and Bour (1980:198); and to “Laurentum, between Lido di Ostia and Tor Paterno, shore of the Tyrrhenian Sea, Italy” by Bour and Dubois (1984:359).

Testudo coriacea Linnaeus 1766:350 (junior homonym)

Testudo arcuata Catesby 1771:40

Testudo lyra Lacepède 1788:111, synopsys[table] **nomen suppressum**, ICZN 2005a

Type locality: “Mediterranée.”

Testudo lyra Bonnaterre 1789:22, *Chełonia lyra*

Testudo tuberculata Pennant in Schoepf 1801:123, *Sphargis tuberculata, Dermochelydis tuberculata*

Type locality: Not designated. Restricted to “Palermo, Sicily” [Italy] by Smith and Smith (1980:244).

Chelonias lutaria Rafinesque 1814:66

Type locality: “Sicil.” [Italy, Italy].

Sphargis mercurialis Merrem 1820:19 (nomen novum et suppressum, ICZN 1956)

Type locality: “Mare mediterraneo et Oceano atlantico.”

Dermochelis atlantica LeSueur in Cuvier 1829:14 (nomen nudum), *Dermochelys atlantica, Dermatochelys atlantica*

Dermatoclydis porcarii Wagler 1830c:explicatio tabularum (nomen novum) (1846:78)

Testudo coriacea marina Ranzani 1832:3 (1847)

Sphargis coriacea schlegeli Garman 1884:303, *Dermochelys schlegeli, Dermochelys coriacea schlegeli, Sphargis schlegeli*

Sphargis angusta Philippi 1899:730, *Dermochelys angusta*

Type locality: “cerca de Tocopilla” [Chile].
Kinosternoidea Joyce, Parham, and Gauthier 2004

Kinosternoidea Joyce, Parham, and Gauthier 2004:1003

Dermatemydidae Gray 1870e

Dermatemydae Gray 1870c:714

Dermatemydidae Baur 1888b:595

Dermatemyx Gray 1847

Dermatemyx Gray 1847:55

Type species: *Dermatemyx mawii* Gray 1847, by original monotypy.

Chloremys Gray 1870c:50

Type species: *Chloremys abnormis* [= *Dermatemyx abnormis* Cope 1868a = subjective synonym of *Dermatemyx mawii* Gray 1847], by original monotypy.

Limnochelone Werner 1901b:297

Type species: *Limnochelone micrura* Werner 1901b [= subjective synonym of *Dermatemyx mawii* Gray 1847], by original monotypy.

Kinosternidae Agassiz 1857a

Kinosternidae Agassiz 1857a:249

Kinosternidae Hay 1892:560

Kinosterninae Agassiz 1857a

Kinosterninae Agassiz 1857a:249

Kinosterninae Lindholm 1929:277

Kinosternon Spix 1824

Monoclida Rafinesque 1815:75 (nomen nudum)

Uronyx Rafinesque 1815:75 (nomen nudum)

Kinosternon Spix 1824:17 (nomen conservandum, ICZN 1989)

Type species: *Kinosternon longicaudatum* Spix 1824 [= subjective synonym of *Testudo scorpioides* Linnaeus 1766], by subsequent designation by Bell (1828c:515).

Kinosternum Bonaparte 1830:166 (nomen novum)

Uronyx Rafinesque 1832:64

Type species: *Uronyx retziana* Rafinesque 1832 (= subjective synonym of *Testudo scorpioides* Linnaeus 1766), by original monotypy.

Uronyx Rafinesque 1832:64

Type species: *Uronyx scorpioides* (= *Testudo scorpioides* Linnaeus 1766), by original monotypy.

Swanka Gray 1844:32

Type species: *Swanka scorpioides* Gray (= *Testudo scorpioides* Linnaeus 1766), by original monotypy.

Thyrosternum Agassiz 1857a:418, 427

Type species: *Thyrosternum pensilvanica* (= *Testudo pensilvanica* Gmelin 1789 = subjective synonym of *Testudo subrubra* Bonnaterre 1789), by subsequent designation by Lindholm (1929:277).

Platyhyra Agassiz 1857a:420, 429

Type species: *Platyhyra flavescens* Agassiz 1857a, by original monotypy.

Cinosternon Herrera 1901:35 (nomen novum et suppressum, ICZN 1922)

Cryptochelys Iverson, Le, and Ingram 2013:933 (partim)

Type species: *Cryptochelys leucomystes* (= *Cinosternon leucomystes* Duméril and Bibron in Duméril and Duméril 1851), by original designation.

Emys mawii Gray 1847:55

Emys mawii, *Dermatemyx maweii*

Type locality: “South America.” Restricted to “Alvarado, Veracruz, Mexico” by Smith and Taylor (1950a:316, 1950b:19); restriction reversed by Dunn and Stuart (1951:59).

Emys berardii Duméril and Bibron in Duméril and Duméril 1851:11

Pyctemyx berardi, *Clemmys berardi*, *Dermatemyx berardi*

Type locality: “Alvarado, Veracruz, Mexico” by Smith and Taylor (1950a:316, 1950b:19).

Emys abnormis Cope 1868a:120, *Chloremys abnormis*

Type locality: “Belize River, Yucatan” [Belize]. Restricted to “Belize [city], British Honduras” by Smith and Taylor (1950a:316, 1950b:19); restriction reversed by Dunn and Stuart (1951:59).

Emys salvinii Gray 1870c:50

Type locality: “Guatemala.”

Limnochelone micrura Werner 1901b:298

Type locality: “Alvarado, Veracruz, Mexico” by Smith and Taylor (1950a:316, 1950b:19).

Emys mawei Neill and Allen 1959:28 (nomen novum)

Type locality: “Belize River, Yucatan” [Belize]. Restricted to “Belize [city], British Honduras” by Smith and Taylor (1950a:316, 1950b:19); restriction reversed by Dunn and Stuart (1951:59).
Kinosternon abaxillare Baur in Stejneger 1925 (14:10) or
Kinosternon scorpioides abaxillare
Central Chiapas Mud Turtle

John B. Iverson / Rio Cintalapa, Chiapas, Mexico

Guatemala, Mexico (Chiapas)
IUCN Red List: Not Evaluated

Kinosternon acutum Gray 1831d (14:9) or
Cryptochelys acuta
Tabasco Mud Turtle

John B. Iverson / CBFTT / Belize

Belize, Guatemala, Mexico (Campeche, Chiapas, Tabasco, Veracruz)
CBFTT Account: Iverson and Vogt (2011)
IUCN Red List: Near Threatened (1996)

Kinosternon scorpioides acuta Gray 1831d:34, Kinosternon acutum, Cryptochelys acuta

Cinosternum berendtianum Cope 1865:189, Cinosternon berendtianum, Kinosternon berendtianum
Type locality: “Tabasco” [Mexico].

Cinosternum effeldtii Peters 1873:603, Cinosternum effeldtii
Type locality: “angeblich aus Mexico (Veracruz).” Restricted to “Cosamaloapan, Veracruz, Mexico” by Smith and Taylor (1950a:347).

Kinosternon alamosae Berry and Legler 1980
Alamos Mud Turtle

John B. Iverson / Sonora, Mexico

Mexico (Sinaloa, Sonora)
Kinosternon alamose Pritchard 1979:556 (nomen suppressum, ICZN 1985c)
Type locality: “vicinity of Alamos, Sonora, and the lower Rio Yaqui” [Mexico].

Kinosternon alamosae Berry and Legler 1980:1 (nomen conservandum, ICZN 1985c)
Type locality: “Rancho Carrizal, 7.2 km north and 11.5 km west of Alamos, Sonora, Mexico (27° 05' N, 109° 03' W).”

Kinosternon angustipons Legler 1965 or
Cryptochelys angustipons
Narrow-bridged Mud Turtle

Costa Rica, Nicaragua, Panama
IUCN Red List: Vulnerable B1+2c (1996)
Kinosternon angustipons Legler 1965:617, Cryptochelys angustipons
Type locality: “Los Diamantes, Limón Province, Costa Rica.”

Kinosternon baurii Garman 1891
Striped Mud Turtle

USA (Florida, Georgia, North Carolina, South Carolina, Virginia)

Kinosternon baurii Garman 1891:141, Kinosternon baurii, Kinosternon baurii baurii
Type locality: “the island Key West...Florida...&...Cuba.” Restricted to “Key West, Monroe County, Florida” [USA] by Uzzell and Schwartz (1955:33).

Kinosternon baurii palmarum Stejneger 1925:463,
Kinosternon baurii palmarum
Type locality: “Royal Palm State Park, Dade County, Florida” [USA]. Restricted to “Paradise Key, Dade County, Florida” [USA] by Uzzell and Schwartz (1955:34).

Kinosternon chimalhuaca Berry, Seidel, and Iverson in Rogner 1996 (07:7, 14:11)
Jalisco Mud Turtle

John B. Iverson / Rio Purificación, Jalisco, Mexico
Kinosternon chimalhuae Berry, Seidel, and Iverson in Rog-ner 1996:23

Type locality: “30 m southeast of Mexico Highway 80, 1.9 km north-east of Barra de Navidad, Jalisco, Mexico (19° 15' N, 104° 43' S).”

Kinosternon creaseri Hartweg 1934 or **Cryptochelys creaseri**

Creaser’s Mud Turtle

Kinosternon dunni Schmidt 1947 or **Cryptochelys dunni**

Dunn’s Mud Turtle

Mexico (Colima, Jalisco)

IUCN Red List: Least Concern (2007)

Kinosternon chimalhuae Berry, Seidel, and Iverson 1997:331

Type locality: “30 m southeast of Mexico Highway 80, 1.9 km northeast of Barra de Navidad, Jalisco, Mexico (19° 15' N, 104° 43' S).”

Mexico (Campeche, Quintana Roo, Yucatán)

IUCN Red List: Least Concern (2007)

Kinosternon creaseri Hartweg 1934, **Cryptochelys creaseri**

Type locality: “one mile south of the Hacienda, Chichen Itza, Yucatan” [Mexico].

Colombia (Chocó, Valle del Cauca [?])

CBFTT Account: Iverson, Carr, Castaño-Mora, Galvis-Rizo, Rentería-Moreno, and Forero-Medina (2012)

IUCN Red List: Vulnerable B1+2c (1996)

TFTSG Draft Red List: Vulnerable (2011)

Kinosternon dunni Schmidt 1947:109, **Cryptochelys dunni**

Type locality: “Pizarro, Choco, Colombia.”
Kinosternon durangoense Iverson 1979b (07:6)
Durango Mud Turtle

Mexico (Chihuahua, Coahuila, Durango)
IUCN Red List: Data Deficient (2007)

Kinosternon flavescens durangoense Iverson 1979b:219, Kinosternon durangoense
Type locality: “8 km from Ceballos, in Lago de los Palomas, Durango, Mexico.”

Kinosternon flavescens Agassiz 1857a:430
Yellow Mud Turtle

Mexico (Chihuahua, Coahuila, Nuevo Leon, Tamaulipas, Veracruz?), USA (Arizona, Arkansas?, Colorado, Illinois, Iowa, Kansas, Missouri, Nebraska, New Mexico, Oklahoma, Texas)

Platythyra flavescens Agassiz 1857a:430, Cinosternon flavescens, Cinosternum flavescens, Kinosternum flavescens, Kinosternon flavescens, Kinosternon flavescens flavescens

Kinosternon flavescens spooneri Smith 1951:195,
Kinosternon spooneri
Type locality: “Henderson County State Forest, 7 miles north of Oquawka, Illinois” [USA].

Kinosternon herrerai Stejneger 1925 (14:9) or **Cryptochelys herrerai**
Herrera’s Mud Turtle

Mexico (Hidalgo, San Luis Potosi, Tamaulipas, Veracruz)

Kinosternon herrerai Stejneger 1925:462, Cryptochelys herrerai
Type locality: “Xochimilco, Valley of Mexico” [in error]. Restricted to “La Laja, Veracruz, Mexico” by Smith and Taylor (1950a:349, 1950b:24); and to “vicinity of Tampico” [Tamaulipas, Mexico] by Smith and Brandon (1968:54).
Kinosternon hirtipes Wagler 1830c (09:11)(9)
Rough-footed Mud Turtle

Mexico (Aguascalientes, Chihuahua, Coahuila, Distrito Federal, Durango, Guanajuato, Jalisco, México, Michoacán, Morelos, Zacatecas), USA (Texas)

Kinosternon hirtipes hirtipes Wagler 1830c (09:11)(9)

Valley of Mexico Mud Turtle

Mexico (Distrito Federal, México, Morelos)

Cinosternon hirtipes Wagler 1830b:137 (nomen nudum) (9)

Type locality: Not designated. Restricted to “Mexico” by Wagler (1833:unpaginated); to “Mazatlán, Sinaloa” [Mexico] [in error] by Smith and Taylor (1950a:343, 1950b:25); and to “lakes near Mexico City” [Mexico] by Schmidt (1953:89).

Kinosternon hirtipes chapalaense Iverson 1981
Lake Chapala Mud Turtle

Mexico (Jalisco, Michoacán)

Kinosternon hirtipes chapalaense Iverson in Pritchard 1979:557 (nomen nudum)

Kinosternon hirtipes chapalaense Iverson 1981:51
Type locality: “Lake Chapala, 0.25 mile off Chapala, Jalisco, Mexico [20° 18' N, 103° 12' W].”

Kinosternon hirtipes magdalense Iverson 1981
San Juanico Mud Turtle

Mexico (Michoacán)

Kinosternon hirtipes magdalense Iverson 1981:53
Type locality: “along the face of the dam at Presa San Juanico, Michoacán [ca. 19° 50' N, 102° 40' W].” [Mexico].

Kinosternon hirtipes megacephalum Iverson 1981 (Extinct, ca. 1970)
Viesca Mud Turtle

Mexico (Coahuila [extinct])

Kinosternon hirtipes megacephalum Iverson 1981:52,
Kinosternon hirtipes megalocephala, *Kinosternon megacephalum*

Type locality: “3.2 km SE Viesca [25° 21' N, 102° 48' W], Coahuila” [Mexico].
Kinosternon hirtipes murrayi Glass and Hartweg 1951
Mexican Plateau Mud Turtle

Mexico (Aguascalientes, Chihuahua, Coahuila, Durango, Guanajuato, Jalisco, México, Michoacán, Zacatecas), USA (Texas)

Kinosternon murrayi Glass and Hartweg 1951:50,
Kinosternon hirtipes murrayi
Type locality: “Harper Ranch, 37 miles south of Marfa, Presidio County, Texas” [USA].

Kinosternon hirtipes tarascense Iverson 1981
Pátzcuaro Mud Turtle

Mexico (Michoacán)

Kinosternon hirtipes tarascense Iverson 1981:52
Type locality: “Lago de Pátzcuaro, adjacent to city of Pátzcuaro [19°32' N, 101°36' W]” [Michoacán, México].

Kinosternon integrum Le Conte 1854
Mexican Mud Turtle

Mexico (Colima, Durango, Guanajuato, Guerrero, Hidalgo, Jalisco, Michoacán, Morelos, Nayarit, Oaxaca, Puebla, San Luis Potosí, Sinaloa, Sonora, Tamaulipas, Zacatecas)

Kinosternum integrum Le Conte 1854:183, Cinosternum integrum, Thyrosternum integrum, Thyrosternon integrum, Cinosternon integrum, Kinosternon integrum, Swanka integrum, Cinosternum scorpioides integrum, Kinosternon scorpioides integrum

Cinosternum rostellum Bocourt 1876a:391, Cinosternum rostellum
Type locality: “Guanajuato” [Mexico].

Cinosternon guanajuatense Dugès 1888:107 (nomen nudum)
Cinosternum scorpioides integrum mexicanus Siebenrock 1907:579 (unavailable name)

Kinosternon leucostomum Duméril and Bibron **in** Duméril and Duméril 1851

or

Cryptochelys leucostoma

White-lipped Mud Turtle

*Belize, Colombia (Antioquia, Atlántico, Bolívar, Boyacá, Caldas, Cauca, Cesar, Chocó, Córdoba, Cundinamarca, Huila [?], Magdalena, Nariño, Santander, Sucre, Tolima, Valle del Cauca), Costa Rica, Ecuador, Guatemala, Honduras, Mexico (Campeche, Chiapas, Oaxaca, Quintana Roo, Tabasco, Veracruz, Yucatán [?]), Nicaragua, Panama, Peru (Tumbes)

TFTSG Draft Red List: Least Concern (South America regional) (2011)

Kinosternon leucostomum leucostomum Duméril and Bibron in Duméril and Duméril 1851

Northern White-lipped Mud Turtle

*Belize, Colombia (Antioquia, Atlántico, Bolívar, Boyacá, Caldas, Cauca, Cesar, Chocó, Córdoba, Cundinamarca, Huila [?], Magdalena, Nariño, Santander, Sucre, Tolima, Valle del Cauca), Costa Rica, Ecuador, Guatemala, Honduras, Mexico (Campeche, Chiapas, Oaxaca, Quintana Roo, Tabasco, Veracruz, Yucatán [?]), Nicaragua, Panama, Peru (Tumbes)

Swanka maculata Gray 1869a:182

Type locality: “Mexico...Papalco Apoia; Vera Paz” [Mexico, Guatemala]. Restricted to “Cosamaloapan, Veracruz, Mexico” by Stejneger (1941:457).

Cinosternum brevigulare Günther 1885:17 (senior homonym, not = **Cinosternum brevigulare** Cope 1885)

Type locality: “Mexico, Playa Vicente” [Veracruz].

Cinosternum cobanum Günther 1885:18, **Cinosternon cobanum**

Kinosternon mopanum Neill 1965:117

Type locality: “Waha Leaf Creek, southern Stann Creek District, British Honduras” [Belize].

Kinosternon leucostomum postinguinale Cope 1887

Southern White-lipped Mud Turtle

*Belize, Guatemala, Honduras, Mexico (Campeche, Chiapas, Oaxaca, Quintana Roo, Tabasco, Veracruz, Yucatán [?]), Nicaragua, Panama, Peru (Tumbes)

Cinosternum brevigulare Cope 1885:389 (junior homonym, not = **Cinosternum brevigulare** Günther 1885), **Cinosternon brevigulare**

Type locality: “Tierra Caliente of Costa Rica at Sipurio, on the east coast.”

Cinosternum postinguinale Cope 1887:23 (**nomen novum**), **Kinosternon postinguinale**, **Kinosternon leucostomum postinguinale**

Type locality: “E. coast Costa Rica.”

Cinosternum spurrelli Boulenger 1913:1030, **Kinosternon spurrelli**, **Kinosternon leucostomum spurrelli**

Type locality: “Choco, Colombia...Peña Lisa, Condoto, altitude 300 feet.”
Kinosternon oaxacae Berry and Iverson 1980

Oaxaca Mud Turtle

Mexico (Guerrero, Oaxaca)

IUCN Red List: Data Deficient (2007); Previously: Near Threatened (1996)

Kinosternon oaxacae Pritchard 1979:557 (*nomen suppressum*, ICZN 1985c)

Type locality: "vicinity of Pochutla, Oaxaca" [Mexico].

Kinosternon oaxacae Berry and Iverson 1980:313 (*nomen conservandum*, ICZN 1985c)

Type locality: "11.6 km N. of Pochutla (San Pedro Pochutla), along Mexican Hwy. 175 (ca. 235 m), Oaxaca, Mexico (15°46' N, 96°28' W)."

Kinosternon scorpioides (Linnaeus 1766)

Scorpion Mud Turtle

Argentina (Formosa, Jujuy, Salta, Tucumán), Bolivia, Brazil (Acre, Alagoas, Amapá, Amazonas, Bahia, Ceará, Goiás, Maranhão, Mato Grosso, Minas Gerais, Pará, Paraíba, Pernambuco, Piauí, Rio Grande do Norte, Rondônia, Sergipe, Tocantins), Colombia (Amazonas, Antioquia, Arauca, Atlántico, Bolívar, Caldas, Caquetá, Casanare, Cesar, Chocó, Córdoba, Guainía, Magdalena, Meta, Norte de Santander, Putumayo, San Andrés, Sucre, Vainpés, Vichada), Costa Rica, Ecuador, El Salvador, French Guiana, Guatemala, Guyana, Honduras, Mexico (Campeche, Chiapas, Oaxaca, Quintana Roo, Tabasco, Tamaulipas, Veracruz, Yucatán), Nicaragua, Panama, Paraguay, Peru (Amazonas, Huánuco, Loreto, Madre de Dios, Ucayali), Suriname, Trinidad, Venezuela (Amazonas, Apure, Aragua, Bolívar, Cojedes, Falcón, Guárico, Lara, Monagas, Portuguesa, Sucre, Táchira, Trujillo, Yaracuy, Zulia)

CBFTT Account: Berry and Iverson (2011)

TFTSG Draft Red List: Least Concern (South America regional) (2011)

Kinosternon scorpioides scorpioides (Linnaeus 1766) (CBFTT 2012)

Scorpion Mud Turtle

Argentina (Formosa, Jujuy, Salta, Tucumán), Bolivia, Brazil (Acre, Alagoas, Amapá, Amazonas, Bahia, Ceará, Goiás, Maranhão, Mato Grosso, Minas Gerais, Pará, Paraíba, Pernambuco, Piauí, Rio Grande do Norte, Rondônia, Sergipe, Tocantins), Colombia (Amazonas, Antioquia, Arauca, Atlántico, Bolívar, Caldas, Caquetá, Casanare, Cesar, Chocó, Córdoba, Guainía, Magdalena, Meta, Norte de Santander, Putumayo, Sucre, Vainpés, Vichada), Ecuador, French Guiana, Guyana, Panama, Paraguay, Peru (Amazonas, Huánuco, Loreto, Madre de Dios, Ucayali), Suriname, Trinidad, Venezuela (Amazonas, Apure, Aragua, Bolívar, Cojedes, Falcón, Guárico, Lara, Monagas, Portuguesa,
Sucre, Táchira, Trujillo, Yaracuy, Zulia)

Testudo scorioides Linnaeus 1766:352, Emys scorioides, Chersine scorioides, Terrapene scorioides, Cinosternon scorioides, Kinosternum scorioides, Uromys scorioides, Terrapene scorioides, Cinosternon scorioides, Clemmys (Cinosternon) scorioides, Cinosternum scorioides, Cinosternum scorioides, Swanka scorioides, Swanka scorioides, Cinosternum scorioides, Cinosternum scorioides, Cinosternum scorioides, Cinosternum scorioides

Type locality: “Surinami” [Surinam].

Testudo tricarinata Retzius in Schoepff 1792:9 (senior homonym, not = Testudo tricarinata Bory de Saint-Vincent 1804), Terrapene tricarinata, Clemmys tricarinata

Type locality: Not known. Restricted to “Surinam” by Fritz and Havaš (2007:256).

Testudo retzii Daudin 1801:174 (nomen novum, ICZN 1989), Emys retzii, Terrapene retzii

Type locality: Not known. Restricted to “Surinam” by Fritz and Havaš (2007:256).

Kinosternon longicaudatum Spix 1824:17 (nomen conservandum, ICZN 1989), Cinosternon longicaudatum, Cinosternum longicaudatum, Thyrosternum longicaudatum, Swanka longicaudata

Type locality: “Brasiliam...ad campis aquosis” [Brazil].

Kinosternon brevicaudatum Spix 1824:18, Cinosternon brevicaudatum, Kinosternum brevicaudatum, Cinosternum brevicaudatum

Type locality: “Brasiliam...ad ripam fluminis Solimöens” [Brazil].

Kinosternon shavianum Bell 1825a:302, Cinosternon shavianum, Cinosternum shavianum, Thyrosternum shavianum, Swanka shavianum

Type locality: Not known.

Monoclida retziana Rafinesque 1832:64 (nomen novum), Testudo retziana

Cinosternon shavianum Bocourt 1876a:387 (nomen novum)

Cinosternum scorioides integrum brasiliana Siebenrock 1907:579 (unavailable name)

Type locality: “Südamerika” [Brazil].

Kinosternon scorioides pachyurum Müller and Hellmich 1936:100

Type locality: “Bolivien...Chaco...Villa Montes” [Bolivia].

Kinosternon scorioides seriei Freiberg 1936:169 (nomen novum)

Type locality: “El Tabacal (Salta)” [Argentina].

Kinosternon panamensis Schmidt 1946:5

Type locality: “Panama Railroad, Canal Zone” [Panama].

Kinosternon scorioides carajasensis Cunha 1970:1 (nomen novum)

Type locality: “compartimento da serra dos Carajás (serra Norte) Pará” [Brazil].

Kinosternon scorioides albogulare Duméril and Bocourt 1870

White-throated Mud Turtle

Duméril and Bocourt in Duméril and Bocourt 1870:6, Cinosternum scorioides albogulare, Swanka scorioides albogulare, Kinosternon scorioides albogulare

Type locality: “S. Jose (Costa Rica).”

Kinosternon scorioides cruentatum Duméril and Bibron in Duméril and Bocourt 1870:18

Red-cheeked Mud Turtle

Duméril and Bibron in Duméril and Bocourt 1870:16, Cinosternum scorioides cruentatum, Swanka scorioides cruentata, Thyrosternum scorioides cruentatum

Kinosternon mexicanum Le Conte 1854:182, Cinosternum mexicanum, Cinosternon mexicanum, Cinosternum mexicanum, Swanka mexicana

Kinosternon triliratum Le Conte 1860:6, Cinosternon triliratum, Swanka trilirata, Cinosternum triliratum

Kinosternon sonoriense Le Conte 1854

Sonora Mud Turtle

(subspecies: sonoriense = red, longiarguborale = purple)

Mexico (Baja California, Chihuahua, Sonora), USA (Arizona, California [extirpated], New Mexico)

IUCN Red List: Near Threatened (2013); Previously: Least
Concern [Not Listed] (1996)

Kinosternon sonoriense sonoriense Le Conte 1854
Sonora Mud Turtle

Mexico (Chihuahua, Sonora), USA (Arizona, California [extirpated], New Mexico)
Kinosternon sonoriense Le Conte 1854:184, Kinosternon sonoriense, Cinosternum sonoriense, Thyrosternum sonoriense, Cinosternum sonoriense, Kinosternon sonoriense sonoriense
Type locality: “Tucson...province of Sonora” [Mexico; now Arizona, USA].

Kinosternon hensici Le Conte 1860:4, Thyrosternum hensici, Cinosternon hensici, Cinosternum hensici, Swanka hensici
Type locality: “New Mexico” [USA]. Data with holotype is “Gila River, New Mexico”; incorrectly restricted to “vicinity of Las Cruces” [New Mexico, USA] by Schmidt (1953:91).

Kinosternon sonoriense longifemorale Iverson 1981
Sonoyta Mud Turtle

Mexico (Sonora, USA (Arizona)
Kinosternon sonoriense longifemorale Iverson 1981:43
Type locality: “artificial pond fed by springs, Sonoyta, Sonora, Mexico (31˚51’ N, 112˚50’ W).”

Kinosternon steindachneri Siebenrock 1906b
Florida Mud Turtle

Usa (Florida)
Kinosternon steindachneri Siebenrock 1906b:727, Kinosternon steindachneri, Kinosternon subrubrum steindachneri
Type locality: “Orlando in Florida” [USA].

Kinosternon stejnegeri (Hartweg 1938)
Arizona Mud Turtle

Mexico (Sonora), USA (Arizona)
Kinosternon stejnegeri (Hartweg 1938) (07:6, 09:10)
[previously listed as **Kinosternon arizonense** (07:6, 09:10)]

Kinosternon flavescens stejnegeri Hartweg 1938:1
Kinosternon flavescens stejnegeri
Type locality: “Benson Locality Quarry, two miles south of Benson, Arizona [Pliocene–Pleistocene, USA (Arizona)], Kinosternon flavescens arizonense**
Type locality: “Benson Locality Quarry, two miles south of Benson, Arizona.”
Kinosternon subrubrum (Bonnaterre 1789) [69]
Eastern Mud Turtle

USA (Alabama, Arkansas, Delaware, Florida, Georgia, Illinois, Indiana, Kentucky, Louisiana, Maryland, Mississippi, Missouri, New Jersey, New York, North Carolina, Oklahoma, Pennsylvania, South Carolina, Tennessee, Texas, Virginia)

Kinosternon subrubrum subrubrum (Bonnaterre 1789) [69]
Eastern Mud Turtle

USA (Alabama, Arkansas, Delaware, Florida, Georgia, Illinois, Indiana, Kentucky, Louisiana, Maryland, Mississippi, Missouri, New Jersey, New York, North Carolina, Oklahoma, Pennsylvania, South Carolina, Tennessee, Texas, Virginia)

Kinosternon subrubrum hippocrepis Gray 1856a:14 Type locality: “New Orleans, La.” [Louisiana, USA].

Sternothaerus Bell in Gray 1825 [7:9] (Bonnaterre 1789)

Sternothaerus Bell 1825a:305 (partim, nomen suppressum, ICZN 1989)

Type species: Sternothaerus leichianus Bell 1825a [= subjective synonym of Emys castaneus Schweigger 1812 = Pelusios castaneus], by subsequent designation by Bell (1828c:515); not Sternothaerus odoratus Bell [= Testudo odorata Latreille in Sonnini and Latreille 1801], by subsequent incorrect designation by Fitzinger (1843:290).

Sternothaerus Bell in Gray 1825:211 [Bell 1825b] (nomen conservandum, ICZN 1989)

Type species: Sternothaerus odoratus [= Testudo odorata Latreille in Sonnini and Latreille 1801], by subsequent designation by Stejneger (1902:237).

Aromochelys Gray 1856a:199 Type species: Aromochelys odorata [= Testudo odorata Latreille in Sonnini and Latreille 1801], by subsequent designation by Strauch (1862:38).

Ozotheca Agassiz 1857a:251,424 Type species: Ozotheca odorata [= Testudo odorata Latreille in Sonnini and Latreille 1801], by subsequent designation by Lindholm
Goniochelys Agassiz 1857a:420,423
Type species: *Goniochelys triquetra* Agassiz 1857a [= subjective synonym of *Aromochelys carinata* Gray 1856a], by subsequent designation by Lindholm (1929:277).

Sternotherus carinatus (Gray 1856a)
Razor-backed Musk Turtle

Sternotherus minor (Agassiz 1857a)
Loggerhead Musk Turtle

Type locality: “Lake Concordia, in Louisiana” [USA].
USA (Alabama, Florida, Georgia)

Type locality: “neighborhood of Mobile;...Columbus, Georgia;...and New Orleans” [USA]. Restricted to “Columbus, Georgia” [USA] by Schmidt (1953:88).

Sternotherus minor peltifer Smith and Glass 1947
Stripe-necked Musk Turtle

USA (Alabama, Georgia, Kentucky, Mississippi, Tennessee, Virginia)

Sternotherus peltifer Smith and Glass 1947:22, Sternotherus carinatus peltifer, Sternotherus minor peltifer, Sternothaeirus minor peltifer
Type locality: “Bassfield, Jefferson Davis County, 30 miles west of Hattiesburg, Miss.” [Mississippi, USA].

Sternotherus odoratus (Sonnini in Sonnini and Latreille 1801)
Musk Turtle, Stinkpot, Common Musk Turtle

Canada (Ontario, Québec), USA (Alabama, Arkansas, Connecticut, Delaware, Florida, Georgia, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Mississippi, Missouri, New Hampshire, New Jersey, New York, North Carolina, Ohio, Oklahoma, Pennsylvania, Rhode Island, South Carolina, Tennessee, Texas, Vermont, Virginia, West Virginia, Wisconsin)

Testudo odorata Latreille in Sonnini and Latreille 1801:122 (nomen conservandum, ICZN 1989), Emys odorata, Terrapene odorata, Cistuda odorata, Sternotherus odorata, Sternotherus odoratus, Kinosternum odoratum, Emys (Kinosternon) odoratum, Didelica odorata, Staurotypus odoratus, Clemmys (Sternotherus) odorata, Cistuda odorata, Sternotherus odoratus, Aromochelys odorata, Aromochelys odoratum, Cinosternum odoratum, Ozotheca odorata
Type locality: “les eaux dormantes de la Caroline” [USA]. Restricted to “vicinity of Charleston, South Carolina” [USA] by Schmidt (1953:87).

Testudo glutinata Daudin 1801:194, Emys glutinata, Clemmys glutinata

Terrapene bosci Merrem 1820:27, Sternotherus bosci

Kinosternum guttatum Le Conte 1854:185, Cinosternum guttatum, Aromochelys guttata

Ozotheca tristycha Agassiz 1857a:392,425, Aromochelys tristycha
Type locality: “Osage River, in Missouri, and in Williamson County, in Texas...near San Antonio,...Medina River, in Texas” [USA]. Restricted to “San Antonio” [Texas, USA] by Schmidt (1953:87).

Testudo glutinosa Agassiz 1857a:425 (nomen novum), Emys glutinosa

Staurotypinae Gray 1869a (14-13) or Staurotypidae

Staurotypina Gray 1869a:180
Staurotypinae Siebenrock 1907:531
Staurotypidae Bickham and Carr 1983:925

Claudius Cope 1865

Claudius Cope 1865:187
Type species: Claudius angustatus Cope 1865, by original monotypy.

Staurosternum Duméril in Bocourt 1868:122
Type species: Claudius megalcephalus Bocourt 1868 [= subjective synonym of Claudius angustatus Cope 1865], by original monotypy.

Claudius angustatus Cope 1865
Narrow-bridged Musk Turtle
Belize, Guatemala, Mexico (Campeche, Chiapas, Oaxaca, Quintana Roo, Tabasco, Veracruz)

IUCN Red List: Near Threatened (1996)

Claudius angustatus Cope 1865:187, *Claudius angustatum*
Type locality: “Tabasco, Mexico.”

Claudius megalocephalus Bocourt 1868:122
Type locality: “Mexico.” Restricted to “Tabasco, Mexico” by Smith and Taylor (1950a:345).

Claudius macrocephalus Gray 1873d:69 (*nomen novum*)
Claudius megacephalus Boulenger 1889:33 (*nomen novum*)
Claudius agassizii Smith and Taylor 1950a:345 (*nomen nudum*)

Staurotypus Wagler 1830b

Staurotypus Wagler 1830b:137
Type species: Staurotypus triporcata [*= Terrapene triporcata* Wiegmann 1828], by original monotypy.

Stauremys Gray 1864c:127
Type species: Staurotypus (Stauremys) salvinii Gray 1864c, by original monotypy.

Staurotypus salvinii Gray 1864c
Pacific Coast Giant Musk Turtle

Belize, Guatemala, Honduras, Mexico (Campeche, Chiapas, Oaxaca, Quintana Roo, Tabasco, Veracruz)

IUCN Red List: Near Threatened (1996)

Terrapene triporcata Wiegmann 1828:364, *Staurotypus triporcata, Staurotypus tripocatus, Staurotypus (Staurotypus) tripocatus, Emys (Kinosternon) tripocatus, Clemmys (Staurotypus) tripocatus*
Type locality: “Rio Alvarado” [Veracruz, Mexico].

Claudius pictus Cope 1872:26
Testudinoidea Fitzinger 1826
Testudinoidea Fitzinger 1826:5

Emydidae Rafinesque 1815 (09:12)(17)
Emydidae Rafinesque 1815:75
Emydas Schmid 1819:11
Emydidae Bell 1825a:302
Emydae Swainson 1839:113
Emidi Portis 1890:12

Deirochelyinae Agassiz 1857a (09:12)(17)
Deirochelyinae Agassiz 1857a:355
Deirochelyinae Gaffney and Meylan 1988:201

Chrysemys Gray 1844 (12:12)

Hydrochelys Wagler 1821:12 (12:12) (*nomen oblitum*)
Type species: *Hydrochelys picta* [= Testudo picta Schneider 1783], by original monotypy.

Chrysemys Gray 1844:27
Type species: *Emys* (*Chrysemys*) *picta* Schweigger [= Testudo picta Schneider 1783], by subsequent designation by Brown (1908:114).

Chrysemys dorsalis Agassiz 1857a (07:11, 10:6) (18)
or
Chrysemys picta dorsalis
Southern Painted Turtle

Chrysemys picta (Schneider 1783) (07:11, 10:6, 12:13)(18)
Painted Turtle

![Map of Chrysemys picta](image)

Introduced: Germany, Indonesia, Philippines, Spain, USA (California)

USA (Alabama, Arkansas, Illinois, Kentucky, Louisiana, Mississippi, Missouri, Oklahoma, Tennessee, Texas)

Introduced: USA (Florida)

IUCN Red List: Least Concern (2013), as *Chrysemys picta dorsalis*

Chrysemys dorsalis Agassiz 1857a:439,440 (07:11, 10:6), *Chrysemys cinerea dorsalis*, *Chrysemys marginata dorsalis*, *Chrysemys bellii dorsalis*, *Chrysemys picta dorsalis*

Type locality: "Mississippi and Louisiana...Lake Concordia" [USA], Restricted to "vicinity of New Orleans" [Louisiana, USA] by Schmid (1953:100), but see Ernst (1967:133).
Chrysemys picta picta (Schneider 1783) (07:11, 12:13)
Eastern Painted Turtle

Testudo picta Schneider 1833:348, Emys picta, Clemmys picta, Terrapene picta, Emys (Chrysemys) picta, Chrysemys picta picta, Pseudemys picta

Testudo cinerea Bonnaterre 1789:25, Emys cinerea, Chrysemys cinerea, Chrysemys cinerea cinerea

Chrysemys bellii (Gray 1830e) (1057:18)
Western Painted Turtle

Emys bellii Gray 1830e:12 (1057), Clemmys (Clemmys) bellii, Emys (Chrysemys) bellii, Emys bellii, Chrysemys cinerea bellii, Chrysemys marginata bellii, Chrysemys bellii bellii, Chrysemys picta bellii
Type locality: Not known. Restricted to “West coast of North America; British Columbia” by Gray (1873a:147); to “Manhattan, Kansas” [Kansas, USA] by Smith and Taylor (1950:6:34); and to “Puget Sound, Washington” [USA] by Schmidt (1953:100).

Emys oregoniensis Harlan 1837:382, Chrysemys oregoniensis, Clemmys oregoniensis, Chrysemys oregonensis
Type locality: “fresh water ponds in the vicinity of the Oregon or Columbia River” [Oregon, USA].

Chrysemys nuttalii Agassiz 1857a:451 (nomen nudum)
Chrysemys nuttalii Agassiz 1857b:642 (nomen novum)
Type locality: “Minesota and westward to the junction of the Yellowstone and Missouri” [Minnesota, USA].

Chrysemys pulchra Gray 1873a:147
Type locality: “North America, Mississippi” [USA]. Restricted to “upper Mississippi River” [USA] by Schmidt (1953:100).

Chrysemys timida Hay † 1908b:345 [Pleistocene, USA (Nebraska)]
Type locality: “Equus beds of Sheridan County, Nebraska, not far from the Niobrara River” [USA].

Chrysemys treleasei Hurter 1911:235
Type locality: “east side of the Mississippi River, in Madison, St. Clair, and Monroe Counties, Ill.” [Illinois, USA].

Chrysemys picta marginata Agassiz 1857a
Midland Painted Turtle

Emys marginata Agassiz 1857a:262,439, Clemmys marginata, Chrysemys marginata marginata, Chrysemys bellii marginata, Chrysemys picta marginata
Type locality: “Racine, Wisconsin...Milwaukee, Wisconsin...Flint, Michigan...Ann Arbor, Michigan...Delphi, Indiana...Burlington, Iowa” [USA]. Restricted to “northern Indiana” [USA] by Schmidt (1953:99).
Deirochelys Agassiz 1857a
Deirochelys Agassiz 1857a:252,441
Type species: Deirochelys reticulata Schweigger [= Testudo reticulata Daudin 1801 = objective synonym of Testudo reticularia Latreille in Sonnini and Latreille 1801], by original monotypy.

Hirochelys Beyer 1900:21 (nomen novum)

Deirochelys reticularia (Latreille in Sonnini and Latreille 1801)
Chicken Turtle

(subspecies: reticularia = red, chrysea = purple, miaria = orange)
USA (Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, Missouri, North Carolina, Oklahoma, South Carolina, Texas, Virginia)

CBFTT Account: Buhlmann, Gibbons, and Jackson (2008)
TFTSG Draft Red List: Near Threatened (2011)

Deirochelys reticularia reticularia (Latreille in Sonnini and Latreille 1801)
Eastern Chicken Turtle

USA (Alabama, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Virginia)

Testudo reticularia Latreille in Sonnini and Latreille 1801:124, Emys reticularia, Clemmys reticularia, Deirochelys reticularia, Deirochelys reticularia reticularia
Type locality: "Caroline" [USA]. Restricted to "Charleston" [South Carolina, USA] by Harper (1940:711); to "vicinity of Charleston, South Carolina" [USA] by Schmidt (1953:104); and to "9 miles northwest of Charleston, Charleston County, South Carolina" [USA] by neotype designation by Schwartz (1956a:466).

Testudo retculata Daudin 1801:144 (nomen novum), Emys retculata, Clemmys (Clemmys) retculata, Deirochelys retculata, Hirochelys retculata, Chrysemys retculata, Chrysemys retculatus
Type locality: "Caroline" [USA]. Restricted to "vicinity of Charleston, South Carolina" [USA] by Schmidt (1953:104).

Deirochelys reticularia chrysea Schwartz 1956a
Florida Chicken Turtle

USA (Florida)

Deirochelys reticularia miaria Schwartz 1956a
Western Chicken Turtle

USA (Arkansas, Louisiana, Mississippi, Missouri, Oklahoma, Texas)

Graptemys Agassiz 1857a (12:14, 14:14) (19)
Graptemys Agassiz 1857a:252,436
Type species: Graptemys geographica [= Testudo geographica LeSueur 1817], by subsequent designation by Stejneger and Barbour (1917:117).

Neoclemmys Baur in Lindeman 2013:20 (nomen nudum)
Megaloclemmys Baur in Lindeman 2013:20 (nomen nudum)

Graptemys barbouri Carr and Marchand 1942 (19, 21)
Barbour's Map Turtle
Graptemys barbouri Carr and Marchand 1942:98, *Malaclemys barbouri*
Type locality: “Chipola River north of Marianna, Jackson County, Florida” [USA].

Graptemys caglei Haynes and McKown 1974 \(^{19,20}\)
Cagle’s Map Turtle

Graptemys ernsti Lovich and McCoy 1992 \(^{18,21}\)
Escambia Map Turtle

Graptemys flavimaculata Cagle 1954 \(^{114,15}\) \(^{19}\)
Yellow-blotched Map Turtle, Yellow-blotched Sawback
Graptemys flavimaculata Cagle 1954:167, *Graptemys oculifera flavimaculata, Malaclemys flavimaculata*
Type locality: “Pascagoula River, 13 miles S.W. of Lacedale, George Co., Mississippi” [USA]. Emended to “Pascagoula River at Old Benndale Crossing (T3S, R8W, Sec. 1), George County” [Mississippi, USA] by Cliburn (1971:17).

Graptemys geographica (LeSueur 1817) (08:18, 12:14) (*nomen novum*)
Northern Map Turtle, Common Map Turtle

Testudo geographica LeSueur 1817:86, *Emys geographica, Terrapene geographica, Clemmys (Clemmys) geographica, Clemmys geographica, Graptemys geographica, Malacoclemmys geographica, Malacoclemmys geographus, Malaclemys geographica, Malaclemys geographicus, Malaclemys geographicus, Graptemys geographicus*
Type locality: “marsh, on the borders of Lake Erie” [USA]. Restricted to “peninsula of Presque Isle and adjacent Presque Isle Bay in Erie County, Pennsylvania” [USA] by Lindeman (2009:97).

Emys lesueurii Gray 1830:e:12 (08:18, 10:7), *Graptemys lesueurii, Malacoclemmys lesueurii, Malaclemys lesueurii lesueurii*
Type locality: “North America.”

Emys megacephala Holbrook 1836:51
Type locality: “Cumberland river...[&]...in the neighbourhood of Nashville, Tennessee” [USA].

Emys macrocephala Agassiz 1857a:436 (*nomen novum*)

Graptemys gibbonsi Lovich and McCoy 1992 (10:8) (*nomen novum*)
Pascagoula Map Turtle
Graptemys nigrinoda Cagle 1954 (19, 22)
Black-knobbed Map Turtle, Black-knobbed Sawback

USA (Alabama, Mississippi)

CBFTT Account: Blankenship, Butterfield, and Godwin (2008)
IUCN Red List: Least Concern (2013); Previously: Near Threatened (1996)

CITES: Appendix III (USA), as *Graptemys* spp.

Malaclemmys oculifera Baur 1890a:262, *Graptemys oculifera*, *Malaclemys lesueurii oculifera*, *Graptemys pseudogeographica oculifera*, *Graptemys oculifera oculifera*, *Malaclemys oculifera*
Type locality: “Mandeville, La.” [Louisiana, USA]. Emended to “Pearl River, 26 miles east of Mandeville” [Louisiana, USA] by Cagle (1953b:138).

Graptemys ouachitensis Cagle 1953a (12, 14, 15, 16, 18)
Ouachita Map Turtle

USA (Alabama, Arkansas, Georgia (?), Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Minnesota, Mississippi, Missouri, Ohio, Oklahoma, Tennessee, Texas, West Virginia, Wisconsin)

CITES: Appendix III (USA), as *Graptemys* spp.
Graptemys pseudogeographica ouachitensis Cagle 1953a:10, Malaclemys pseudogeographica ouachitensis, Graptemys ouachitensis, Graptemys ouachitensis ouachitensis
Type locality: “Ouachita River, four miles northeast of Harrisonburg, Louisiana” [USA].

Graptemys pearlensis Ennen, Lovich, Kreiser, Selman, and Qualls 2010 (10:11) (19)
Pearl River Map Turtle

Graptemys pseudogeographica pseudogeographica (Gray 1831d) (12:14, 12:15) (19, 23)
False Map Turtle

Graptemys pseudogeographica kohnii (Baur 1890a) (12:14, 12:15) (19, 23)
Mississippi Map Turtle

Emys pseudogeographica Gray 1831d:31, Clemmys pseudogeographica, Graptemys pseudogeographica, Malaclemmys pseudogeographica, Malaclemys pseudogeographica, Malaclemys pseudogeographica, Malaclemys pseudogeographica, Malaclemys pseudogeographica, Malaclemys pseudogeographica pseudogeographica
Type locality: Not designated. Restricted to “Etats-Unis, Indiana, rivière Wabash, entre Mont Vernon et Chaumetown (= Shawneetown)...près du confluent de la Wabash et de l’Ohio” [USA] by Bour and Dubois (1983:45).
Type locality: “Bayou Lafourche, La.; Bayou Teche, St. Martinsville, La.” [Louisiana, USA].

Graptemys pulchra Baur 1893c (14:17)(19)
Alabama Map Turtle

USA (Alabama, Georgia, Mississippi)

CBFTT Account: Lovich, Godwin, and McCoy (2014)
IUCN Red List: Near Threatened (2013); Previously: Least Concern (1996)

CITES: Appendix III (USA), as *Graptemys* spp.

Graptemys pulchra Baur 1893c:675, *Malacoclemmys pulchra*, *Malaclemys lesueurii pulchra*, *Malaclemys pulchra*, *Graptemys pulchra pulchra*
Type locality: “Montgomery, Alabama” [USA].

Graptemys alabamensis Baur in Lindeman 2013:20 (14:17) (nomen nudum)

Graptemys versicolor Baur in Lindeman 2013:20 (14:17) (nomen nudum)

"*Graptemys sabiniensis* Cagle 1953a (07:12, 12:15, 14:18) (19), or

Graptemys ouachitensis sabiniensis
Sabine Map Turtle

USA (Texas)

CBFTT Account: Lindeman, Stuart, and Killebrew (2016)
IUCN Red List: Least Concern (2013); Previously: Near Threatened (1996)

CITES: Appendix III (USA), as *Graptemys* spp.

Graptemys pseudogeographica versa Stejneger 1925:463,

Graptemys versa, *Malaclemys versa*
Type locality: “Austin, Texas” [USA].
Malaclemys Gray 1844

**Malaclemys** Gray 1844:28

Type species: _Malaclemys concentrica (= Testudo concentrica Shaw 1802 = subjective synonym of Testudo terrapin Schoepff 1793),_ by original monotypy.

Malaclemmys Agassiz 1857a:392,437 (*nomen novum*)

Euchyloclemmys Sclater 1858:292 (*nomen novum*)

Euchyloclemmys Sclater in Gray 1863c:181 (*nomen novum*)

Malaclemmys Gray 1870c:41 (*nomen novum*)

Malaclemys terrapin (Schoepff 1793) (115) (24)

Diamondback Terrapin

(subspecies: **terrapin** = red, **centrata** = purple, **littoralis** = orange, **macropolitana** = pink, **pleata** = brown, **rhizophorarum** = green, **tequesta** = gray; orange dot = trade)

Bermuda, USA (Alabama, Connecticut, Delaware, Florida, Georgia, Louisiana, Maryland, Massachusetts, Mississippi, New Jersey, New York, North Carolina, Rhode Island, South Carolina, Texas, Virginia)

IUCN Red List: Near Threatened (1996)

TFTSG Draft Red List: Vulnerable (2011)

CITES: Appendix II

Malaclemys terrapin terrapin (Schoepff 1793)

Northern Diamondback Terrapin

USA (Connecticut, Delaware, Massachusetts, New Jersey, New York, North Carolina, Maryland, Rhode Island, Virginia)

Testudo terrapin Schoepff 1793:64, _Emys terrapin, Clemmys terrapin, Malaclemys terrapin, Malacoclemmys terrapin, Malaclemys terrapin terrapin_

Type locality: “America septentrionali...in foris Philadelphiae...et...aquis subdulcibus Insulae Longae” [USA]. Restricted to “probably Delaware Bay” [Delaware and New Jersey, USA] by Hay (1905:16); and to “coastal waters of Long Island” [New York, USA] by Schmidt (1953:95).

Testudo concentrica Shaw 1802:43, _Emys concentrica, Malaclemys concentrica, Malaclemmys concentrica, Malaclemmys centra tercenta concentrica, Malaclemys centrata concentrica, Malaclemys terrapin concentrica_

Type locality: “North America...sold in the markets at Philadelphia” [Pennsylvania, USA]. Restricted to “probably Delaware Bay” [Delaware or New Jersey, USA] by Hay (1905:16).

Testudo ocellata Link 1807:52

Emys concentrica polita Gray 1830c:11 (1017)

Type locality: Not designated.

Emys palustris Le Conte 1830:113 (nomen novum and junior homonym, not = _Testudo palustris_ Gmelin 1789), _Emys palustris, Malacoclemmys palustris_

Type locality: “New-York to Florida, and even in the West Indies, in salt water” [USA].

Emys macrocephalus Gray 1844:26 (junior homonym, not = _Emys macrocephala_ Spix 1824), _Emys macrocephala_

Malaclemys terrapin centrata (Latreille in Sonnini and Latreille 1801) (115)

Carolina Diamondback Terrapin

Bermuda, USA (Georgia, Florida, North Carolina, South Carolina)

Testudo centrata Latreille in Sonnini and Latreille 1801:145, _Emys centrata, Clemmys (Clemmys) centrata, Malaclemys centrata, Malaclemys centra tercenta centrata, Malaclemys terrapin centrata, Malaclemys terrapin terrapin centrata_

Type locality: “les grands marais de la Caroline” [USA]. Restricted to “neighborhood of Charleston, South Carolina” [USA] by Hay (1905:14).

Emys concentrica livida Gray 1831d:27, _Emys livida_

Type locality: “America Boreali.” Restricted to “vicinity of Charleston, South Carolina” [USA] by Schmidt (1953:96).
Malaclemys terrapin littoralis Hay 1905
Texas Diamondback Terrapin

Malaclemys terrapin rhizophorarum Fowler 1906
Mangrove Diamondback Terrapin

Malaclemys terrapin macrospilota Hay 1905
Ornate Diamondback Terrapin

Malaclemys terrapin pileata (Wied 1865)
Mississippi Diamondback Terrapin

Malaclemys terrapin tequesta Schwartz 1955
Eastern Florida Diamondback Terrapin

USA (Texas)
Malaclemys littoralis Hay 1905:18, Malaclemys centrata littoralis, Malaclemys pileata littoralis, Malaclemys terrapin littoralis
Type locality: “Rockport, Texas” [USA].

USA (Florida)
Malaclemys macrospilota Hay 1905:16, Malaclemys centrata macrospilota, Malaclemys pileata macrospilota, Malaclemys terrapin macrospilota
Type locality: “Charlotte Harbor, Florida” [USA].

USA (Florida)
Malaclemys terrapin pileata (Wied 1865:17, Malaclemys pileata, Malaclemys centrata pileata, Malaclemys pileata pileata, Malaclemys terrapin pileata
Type locality: “Sümpfen mit salzigem Wasser an der Mündung des Mississippi bei New-Orleans” [Louisiana, USA]; Emended to “New Orleans, Louisiana” [USA] by Hay (1905:17).

USA (Florida)
Malaclemys terrapin tequesta Schwartz 1955:158
Type locality: “Miami Beach, Dade County, Florida” [USA].

USA (Florida)
Malaclemys terrapin rhizophorarum Fowler 1906:112, Malaclemys terrapin rhizophorarum, Malaclemys terrapin rhizophorarum
Type locality: “Boca Grande Key, Florida” [USA].

Malaclemys terrapin fordorum Wood 1994:1 (nomen nudum)

USA (Florida)
Malaclemys terrapin tequesta Schwartz 1955:158
Type locality: “Miami Beach, Dade County, Florida” [USA].
Pseudemys Gray 1856a (09:13, 12:16, 14:20)

Pseudemys Gray 1856a:197

Type species: *Pseudemys concinna* [= *Testudo concinna* Le Conte 1830], by subsequent designation by Baur (1893a:221).

Ptychemys Agassiz 1857a:252,431

Type species: *Ptychemys concinna* [= *Testudo concinna* Le Conte 1830], by subsequent designation by Brown (1908:114).

Nectemys Agassiz 1857b:642 (*nomen novum*)

Pseudemys alabamensis Baur 1893a

Alabama Red-bellied Cooter

(orange dots = waifs on offshore islands)

USA (Alabama, Mississippi)

CBFTT Account: Leary, Dobie, Mann, Floyd, and Nelson (2008)

IUCN Red List: Endangered B1+2c (1996)

TFTSG Draft Red List: Endangered (2011)

Pseudemys alabamensis Baur 1893a:224, *Pseudemys rubriventris* alabamensis, *Chrysemys (Pseudemys) alabamensis*, *Chrysemys rubriventris* alabamensis

Type locality: "Mobile bay, Ala." [Alabama, USA].

Pseudemys alabamensis Beyer 1900:20 (*nomen nudum*)

Pseudemys concinna (Le Conte 1830) (07:13, 09:13, 10:9) (25)

Eastern River Cooter

USA (Alabama, Arkansas, Florida, Georgia, Illinois, Indiana, Kansas, Kentucky, Louisiana, Mississippi, Missouri, North Carolina, Ohio, Oklahoma, South Carolina, Tennessee, Texas, Virginia, West Virginia)

CBFTT Account: Ward and Jackson (2008)

Pseudemys concinna concinna (Le Conte 1830) (07:13, 09:13, 10:9) (25)

River Cooter

USA (Alabama, Arkansas, Florida, Georgia, Illinois, Indiana, Kansas, Kentucky, Louisiana, Mississippi, Missouri, North Carolina, Ohio, Oklahoma, South Carolina, Tennessee, Texas, Virginia, West Virginia)

Testudo concinna Le Conte 1830:106 (junior homonym, not *=Emys concinna* Guérin 1829 [*nomen oblitum*]) (39)

Emys (Testudo) concinna, *Terrapene concinna*, *Clemmys (Clemmys) concinna*, *Pseudemys concinna*, *Ptychemys concinna*, *Chrysemys concinna*, *Pseudemys floridana concinna*, *Pseudemys concinna concinna*, *Chrysemys concinna concinna*

Type locality: "rivers of Georgia and Carolina, where the beds are rocky...never...below Augusta on the Savannah, or Columbia on the Congaree" [USA]. Restricted to "vicinity of Columbia, South Carolina" [USA] by Schmidt (1953:101).

Emys annulifera Gray 1830e:12 (*067*), *Trachemys annulifera*

Type locality: Not known. Restricted to “Columbia, South Carolina” [USA] by Schmidt (1953:101).

Emys hieroglyphica Holbrook 1836:47, *Pseudemys hieroglyphica*, *Ptychemys hieroglyphica*, *Clemmys hieroglyphica*, *Chrysemys hieroglyphica*, *Pseudemys floridana hieroglyphica*, *Pseudemys concinna hieroglyphica*, *Chrysemys concinna hieroglyphica*

Type locality: “Cumberland river” [probably Tennessee, USA].

Emys mobilensis Holbrook 1838a:53, *Ptychemys mobilensis*, *Clemmys mobilensis*, *Pseudemys mobilensis*, *Chrysemys mobilensis*, *Pseudemys floridana mobilensis*, *Pseudemys concinna mobilensis*, *Chrysemys concinna mobilensis*

Type locality: “Alabama...in the neighbourhood of Mobile” [USA].

Emys labyrinthica Duméril and Bibron in Duméril and Duméril 1851:13, *Clemmys labyrinthica*, *Pseudemys labyrinthica*, *Chrysemys labyrinthica*

Type locality: “Wabash-River (États-Unis)” [Indiana, USA].

Ptychemys hoyi Agassiz 1857a:433, *Pseudemys concinna hoyi*, *Pseudemys floridana hoyi*, *Chrysemys floridana hoyi*

Type locality: Not designated. Restricted to “vicinity of Springfield, Missouri” [USA] by Schmidt (1953:101).

Emys orthonyx Wied 1865:23

Type locality: “südlichen Gewässern bei New-Orleans” [Louisiana, USA].

Pseudemys vioscana Brimley 1928:66
Type locality: “Lake Des Allemands, La.” [Louisiana, USA].

Pseudemys elonae Brimley 1928:67
Type locality: “a pond in Guilford County, North Carolina, not far from Elon College, in the Cape Fear drainage” [USA].

Pseudemys concinna metteri Ward 1984:34
Type locality: “Old Fort Cobb, Caddo County, Oklahoma” [USA].

Pseudemys concinna suwanniensis Carr 1937 (07:15, 09:13)
Suwannee Cooter

Usa (Florida, Georgia)

Pseudemys floridana suwanniensis Carr 1937:4, _Pseudemys concinna suwanniensis_, _Chrysemys concinna suwanniensis_, _Pseudemys concinna suwanniensis_
Type locality: “Suwannee River at Manatee Springs, Levy-Dixie County line, Florida” [USA].

Pseudemys floridana (Le Conte 1830) (07:14, 09:13, 10:9) or **Pseudemys concinna floridana** or **Pseudemys floridana floridana**
Coastal Plain Cooter

Mexico (Chihuahua [?], Coahuila, Nuevo Leon, Tamaulipas), USA (New Mexico, Texas)

CBFTT Account: Pierce, Stuart, Ward, and Painter (2016)

Pseudemys concinna gorzugi Ward 1984:29, _Pseudemys gorzugi_
Type locality: “3 1/2 mi. W Jimenez, Río San Diego, Coahuila, México, 850 feet altitude.”
Pseudemys nelsoni Carr 1938a
Florida Red-bellied Cooter

Pseudemys floridana persimilis † Hay 1916a:71 (nomen dubium et oblitum) [Pleistocene, USA (Florida)]
Type locality: “Vero, St. Lucie County, Florida” [USA].

Pseudemys floridana peninsularis Carr 1938b:105, Chrysemys floridana peninsularis, Pseudemys peninsularis
Type locality: “Crystal Springs, Pasco County, Florida” [USA].

Pseudemys peninsularis Carr 1938b
Peninsula Cooter

Pseudemys rubriventris (Le Conte 1830)
Northern Red-bellied Cooter

Testudo rubriventris Le Conte 1830:101, Terrapene rubriventris, Emys rubriventris, Clemmys (Clemmys) rubriventris, Chrysemys rubriventris, Pseudemys rubriventris, Pseudemys rubriventris rubriventris,
Chrysemys rubriventris rubriventris

Type locality: “rivers from New-Jersey to Virginia, chiefly...in such as are rocky; in the Delaware, near Trenton” [USA]. Restricted to “in the Delaware, near Trenton” [New Jersey, USA] by Baur (1893a:224).

Emys irrigata Bell in Duméril and Bibron 1835:276, *Emys irrigita*

Emys rivulata Gray 1844:22 (junior homonym, not = *Emys rivulata* Valenciennes in Bory de Saint-Vincent 1833)

Type locality: “N. America.” Restricted to “vicinity of Trenton, New Jersey” [USA] by Schmidt (1953:103).

Pseudemys extincta † Hay 1908b:356 (nomen dubium) [Early Pleistocene, Blancan, USA (Florida)]

Type locality: “Hillsboro County, Florida...probably the Peace Creek formation” [USA].

Pseudemys rubriventris bangsi Babcock 1937:293, *Chrysemys rubriventris bangsi*, *Pseudemys bangsi*

Pseudemys texana Baur 1893a (12:16)

Texas Cooter

USA (Texas)

Trachemys Agassiz 1857a (07-18, 09-14, 11-6, 14-21, 14-22, 14-25) (26)

Trachemys agassizii Gray 1856b (11:6) (26)

or

Trachemys callirostris (Gray 1856b) (11:6) (26)

or

Trachemys venusta callirostris

Colombian Slider

and Smith 1980:434), Rhodin and Carr (2009:14) demonstrated that *Testudo scabra* Linnaeus 1758 was synonymous with *Rhinoclemmys punctularia* [= *Testudo punctularia* Daudin 1801] and declared *T. scabra* a nomen oblitum, validating Lindholm’s designation.

Callichelys Gray 1863c:179,181

Type species: *Callichelys ornata* (= *Emys ornata* Gray in Griffith and Pidgeon 1830), by original designation.

Redamia Gray 1870c:35

Type species: *Redamia olivacea* (= *Emys olivacea* Gray 1856b = subjective synonym of *Pseudemys stejnegeri* Schmidt 1928), by original monotypy.

Trachemys adiutrix Vanzolini 1995 (11:6) (27) or **Trachemys dorbigni adiutrix**

Maranhao Slider

Brazil (Maranhão, Piauí)

IUCN Red List: Endangered B1+2c (1996)

TFTSG Draft Red List: Near Threatened (2011)

Trachemys adiutrix Vanzolini 1995:111, *Trachemys dorbigni adiutrix*

Type locality: “Brasil: Maranhão: Santo Amaro, 02º33' S, 43º14' W” [Brazil]
(subspecies: callirostris = red, chichiriviche = purple; orange dot = trade or introduced)

Colombia (Antioquia, Atlántico, Bolívar, Cesar, Córdoba, Cundinamarca, La Guajira, Magdalena, Santander, Sucre), Venezuela (Carabobo, Falcón, Yaracuy, Zulia)

CBFTT Account: Bock, Páez, and Daza (2010)

IUCN Red List: Not Evaluated

TFTSG Draft Red List: Vulnerable (2011)

Trachemys callirostris callirostris (Gray 1856b) (07:19, 11:6) (26)

Trachemys venusta callirostris

Colombian Slider

Colombia (Antioquia, Atlántico, Bolívar, Cesar, Córdoba, Cundinamarca, La Guajira, Magdalena, Santander, Sucre), Venezuela (Zulia)

Emys callirostris Gray 1856b:25, Callichelys callirostris, Pseudemys callirostris, Chrysemys ornata callirostris, Pseudemys scripta callirostris, Pseudemys ornata callirostris, Chrysemys callirostris, Chrysemys scripta callirostris, Trachemys scripta callirostris, Trachemys californica callirostris

Trachemys callirostris chichiriviche (Pritchard and Trebbau 1984) (07:19, 11:6) (26)

Trachemys venusta chichiriviche

Venezuelan Slider

Venezuela (Carabobo, Falcón, Yaracuy)

Pseudemys scripta chichiriviche Pritchard and Trebbau 1984:191, Trachemys scripta chichiriviche, Trachemys ornata chichiriviche, Trachemys callirostris chichiriviche

Type locality: “Lago de Tacarigua, Edo. Falcón, Venezuela (68º15’ W, 11º4’ N).”

Trachemys decorata (Barbour and Carr 1940) (14:21)

Hispaniolan Slider

Dominican Republic, Haiti

IUCN Red List: Vulnerable B1+2c (1996)

Pseudemys decorata Barbour and Carr 1940:409, Pseudemys terrapen decorata, Chrysemys (Trachemys) decorata, Chrysemys terrapen decorata, Trachemys decorata, Trachemys stejnegeri decorata

Type locality: “Fond Parisien, Haiti.”

Trachemys decussata (Bell in Griffith and Pidgeon 1830) (14:22)

Cuban Slider

Cayman Islands [historic introduction?], Cuba, Jamaica [prehistoric introduction?]

Trachemys decussata decussata (Bell in Griffith and Pidgeon 1830)

Eastern Cuban Slider

Cuba, Jamaica [prehistoric introduction?]

Emys rugosa Shaw 1802:28 (partim, nomen dubium and junior homonym, not = Testudo rugosa Van-Ernest in Daudin 1801), Emys rugosa, Trachemys rugosa, Clemmys rugosa, Pseudemys rugosa, Pseudemys rugosa rugosa, Pseudemys terrapen rugosa, Chrysemys terrapen rugosa, Trachemys terrapen rugosa

Type locality: Not designated. Restricted to “Rio Jobabo drainage in eastern Cuba” by Mittleman (1947:176).

Emys decussata Bell in Griffith and Pidgeon 1830:76

Pychemys decussata, Clemmys decussata, Pseudemys decussata, Pseudemys rugosa decussata, Pseudemys terrapen decussata, Chrysemys (Trachemys) decussata, Chrysemys decussata decussata, Chrysemys terrapen decussata, Trachemys decussata, Trachemys decussata decussata

Type locality: Not designated. Restricted to “North America” by Gray (1830e:11); to “America Boreali” by Gray (1831d:28); to “Cuba, exclusive of the drainage systems of the Rio Jobabo and the Caribbean slope of Pinar del Rio Province” by Mittleman (1947:176); and to “Westindien” by Mertens and Wermuth (1955:366).

Emys vermiculata Gray 1844:25

Emys jamao Duméril 1861b:435 (nomen nudum)

Emys jamao Vilaró 1867a:121

Type locality: Not designated. [Cuba].

Emys gnatho Vilaró 1867b:204

Type locality: Not designated. [Cuba].

Pseudemys decussata plana Barbour and Carr 1940:405,
Pseudemys terrapen plana, Chrysemys terrapen plana, Trachemys decussata plana

Type locality: “Rio Jobabo, Western Oriente, Cuba.”

Trachemys decussata angusta (Barbour and Carr 1940)

Western Cuban Slider

Cayman Islands [historic introduction?], Cuba

Pseudemys decussata angusta Barbour and Carr 1940:402,
Pseudemys rugosa angusta, Pseudemys terrapen angusta, Chrysemys terrapen angusta, Trachemys decussata angusta, Trachemys decorata angusta

Type locality: “Taco River, Pinar del Rio, Cuba.”

Pseudemys granti Barbour and Carr 1941:59, Pseudemys terrapen granti, Pseudemys decussata granti, Pseudemys stejnegeri granti, Chrysemys terrapen granti, Chrysemys decussata granti, Trachemys decussata granti, Trachemys granti, Trachemys stejnegeri granti

Type locality: “Grand Cayman” [Cayman Islands].

Trachemys dorbigni (Duméril and Bibron 1835)

D’Orbigny’s Slider

Argentina (Buenos Aires, Corrientes, Entre Rios), Brazil (Rio Grande do Sul, Santa Catarina), Uruguay

Introduced: Brazil (Bahia, Goiás, Minas Gerais, Paraná, Rio de Janeiro, São Paulo, Sergipe, Tocantins)

Trachemys dorbignyi (Duméril and Bibron 1835:272, *Clemmys dorbigni, Pseudemys dor- bigni, Chrysemys (Trachemys) dorbigni, Pseudemys scripta dorbigni, Pseudemys dor- bigni dorbigni, Chrysemys dorbigyni dorbigni, Chrysemys scripta dorbigyni, Trachemys scripta dorbigni, Trachemys dorbigyni dorbigni*

Type locality: “Buenos-Ayres” [Argentina].

Clemmys (Rhinoclemmys) orbignyi Fitzinger 1835:124 (*nomen novum*), *Emys orbignyi*

Clemmys dorbignyi Boulenger 1886b:424 (*nomen novum*), *Emys dorbignyi, Pseudemys dorbignyi, Pseudemys dorbigyni dorbignyi, Pseudemys scripta dorbignyi, Chrysemys dorbignyi, Emys dorbignyi, Pseudemys dorbignyi dorbignyi, Pseudemys scripta dorbignyi, Chrysemys scripta dorbignyi, Trachemys scripta dorbignyi, Trachemys dorbigyni dorbignyi*

Pseudemys dorbigyni brasiliensis Freiberg 1969:301 (*nomen novum*), *Pseudemys dorbigyni brasiliensis, Pseudemys scripta brasiliensis, Chrysemys dorbigyni brasiliensis, Chrysemys scripta brasiliensis, Trachemys scripta brasiliensis, Trachemys dorbigyni brasiliensis*

Type locality: “río Guaíba, Porto Alegre, Brasil.”

Trachemys gaigeae (Hartweg 1939)

Big Bend Slider

Mexico (Chihuahua, Coahuila, Durango), USA (New Mexico, Texas)

CBFTT Account: Stuart and Ward (2009)

Trachemys gaigeae gaigeae (Hartweg 1939) (07:18)

Big Bend Slider

Type locality: “Boquillas, Río Grande River, Brewster County, Texas” [USA].
Emys grayi Bocourt 1868:121 (senior homonym, not = Emys grayi Günther 1869), Callichelys grayi, Chrysemys grayi, Pseudemys grayi, Pseudemys ornata grayi, Pseudemys scripta grayi, Chrysemys scripta grayi, Trachemys scripta grayi, Trachemys ornata grayi, Trachemys venusta grayi, Trachemys grayi grayi
Type locality: “Tembouchure du Nagualate, dans le Pacifique (Guatémala).”

Callichelys concinna Gray 1873a:148 (28)
Type locality: “San Mateo, Tehuantepec” [Oaxaca, Mexico].
Emys umbra Bocourt 1876b:26 (nomen novum), Pseudemys umbra, Clemmys umbra, Chrysemys umbra, Pseudemys scripta umbra

Trachemys grayi emolli (Legler 1990) (07:18, 11:6, 14:23) (26)
Nicaraguan Slider

Costa Rica, El Salvador, Honduras, Nicaragua
Pseudemys scripta emolli Legler 1990:90-91, Trachemys scripta emolli, Trachemys ornata emolli, Trachemys emolli, Trachemys venusta emolli, Trachemys grayi emolli
Type locality: “Río Tepetate, 2.5 km northeast of Granada, Granada Province, Nicaragua.”

Trachemys grayi panamensis McCord, Joseph-Ouni, Hagen, and Blanck 2010 (10:10, 11:6) (26)
Panamanian Slider
Costa Rica, Panama
Trachemys venusta panamensis McCord, Joseph-Ouni, Hagen, and Blanck 2010:46, Trachemys scripta panamensis
Type locality: “Chiva-Chiva Road (trail), 1 km from Gaillané (Gaillard) Highway (Fort Clayton entrance), north of Miraflores Lake, Pacific-side Panama Canal Zone, Panama Province, Panama.”

Trachemys nebulosa (Van Denburgh 1895) (07:14)
Baja California Slider

(subspecies: nebulosa = red, hiltoni = purple)

Mexico (Baja California Sur, Sinaloa, Sonora)
IUCN Red List: Not Evaluated

Trachemys nebulosa hiltoni (Van Denburgh 1895) (07:18)
Baja California Slider

Costa Rica, El Salvador, Honduras, Nicaragua
Pseudemys scripta emolli Legler 1990:90-91, Trachemys scripta emolli, Trachemys ornata emolli, Trachemys emolli, Trachemys venusta emolli, Trachemys grayi emolli
Type locality: “Río Tepetate, 2.5 km northeast of Granada, Granada Province, Nicaragua.”

Trachemys grayi panamensis McCord, Joseph-Ouni, Hagen, and Blanck 2010 (10:10, 11:6) (26)
Panamanian Slider
Costa Rica, Panama
Trachemys venusta panamensis McCord, Joseph-Ouni, Hagen, and Blanck 2010:46, Trachemys scripta panamensis
Type locality: “Chiva-Chiva Road (trail), 1 km from Gaillané (Gaillard) Highway (Fort Clayton entrance), north of Miraflores Lake, Pacific-side Panama Canal Zone, Panama Province, Panama.”

Trachemys nebulosa (Van Denburgh 1895) (07:14)
Baja California Slider

(subspecies: nebulosa = red, hiltoni = purple)

Mexico (Baja California Sur, Sinaloa, Sonora)
IUCN Red List: Not Evaluated

Trachemys nebulosa hiltoni (Van Denburgh 1895) (07:18)
Baja California Slider

Costa Rica, El Salvador, Honduras, Nicaragua
Pseudemys scripta emolli Legler 1990:90-91, Trachemys scripta emolli, Trachemys ornata emolli, Trachemys emolli, Trachemys venusta emolli, Trachemys grayi emolli
Type locality: “Río Tepetate, 2.5 km northeast of Granada, Granada Province, Nicaragua.”

Trachemys grayi panamensis McCord, Joseph-Ouni, Hagen, and Blanck 2010 (10:10, 11:6) (26)
Panamanian Slider
Costa Rica, Panama
Trachemys venusta panamensis McCord, Joseph-Ouni, Hagen, and Blanck 2010:46, Trachemys scripta panamensis
Type locality: “Chiva-Chiva Road (trail), 1 km from Gaillané (Gaillard) Highway (Fort Clayton entrance), north of Miraflores Lake, Pacific-side Panama Canal Zone, Panama Province, Panama.”

Trachemys nebulosa (Van Denburgh 1895) (07:14)
Baja California Slider

(subspecies: nebulosa = red, hiltoni = purple)
Trachemys ornata (Gray *in* Griffith and Pidgeon 1830)
Ornate Slider

(orange dots = possibly introduced)

Mexico (Jalisco, Nayarit, Sinaloa)
Possibly Introduced: Mexico (Guerrero?, Michoacán?)
IUCN Red List: Vulnerable B1ab(iii)+2ab(iii) (2007)

Type locality: Not designated. Restricted to “South America” by Gray (1830c:12); and to “America Meridionali...Mazetland” [Mazatlán, Sinaloa, Mexico] by Gray (1831d:30).

Trachemys scripta (Thunberg *in* Schöpf 1792)
Pond Slider, Common Slider

(subspecies: *scripta* = red, *elegans* = purple, *troostii* = orange; overlap = intergrades; orange dots = introduced *elegans*)

Mexico (Nuevo Leon, Tamaulipas), USA (Alabama, Florida, Georgia, North Carolina, South Carolina, Virginia)
Introduced: Multiple global locations, most apparently *Trachemys scripta elegans* (see below)
IUCN Red List: Least Concern (2013); Previously: Near Threatened (1996)

Trachemys scripta scripta (Thunberg *in* Schöpf 1792)
Yellow-bellied Slider

USA (Alabama, Florida, Georgia, North Carolina, South Carolina, Virginia)
Introduced: South Korea, USA (Florida)

Testudo scripta Thunberg *in* Schöpf 1792:16 (nomen conservandum, ICZN 1985b), *Emys scripta*, *Trachemys scripta*, *Chrysemys scripta*, *Pseudemys scripta*, *Chrysemys scripta scripta*, *Pseudemys scripta scripta*, *Trachemys scripta scripta*

Type locality: Not known. Restricted to “Charleston, South Carolina” [USA] by Schmidt (1953:102).

Testudo serrata Daudin 1801:148 (senior homonym, not = *Testudo serrata* Shaw 1802), *Emys serrata*, *Terrapene serrata*, *Clemmys* (*Clemmys*) serrata, *Pseudemys serrata*

Type locality: “la Caroline” [South Carolina, USA].

Emys occipitatis Gray *in* Griffith and Pidgeon 1830:75 [Gray 1830c]

Type locality: Not designated.

Emys vittata Gray 1830e:11 (107)

Type locality: “North America?”

Emys euglypha † Leidy 1889:97 (nomen dubium) [Pleistocene, USA (Florida)], *Trachemys euglypha*, *Pseudemys euglypha*

Type locality: “Florida...Arcadia, on Peace Creek” [USA].

Trachemys sculpta † Hay 1908b:351 (nomen dubium) [Pleistocene, USA (Florida)], *Pseudemys sculpta*

Type locality: “Hillsboro County, Florida...probably the Peace Creek beds” [USA].

Trachemys delicata † Hay 1916a:66 (nomen dubium) [Pleistocene, USA (Florida)], *Pseudemys delicata*

Type locality: “Near Labelle, Lee County, Florida” [USA].
Trachemys scripta elegans (Wied 1839)
Red-eared Slider

Mexico (Nuevo Leon, Tamaulipas), USA (Alabama, Arkansas, Florida, Georgia, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Mississippi, Missouri, Nebraska, New Mexico [eastern], Ohio, Oklahoma, Tennessee, Texas, West Virginia)

Introduced: Argentina, Australia (New South Wales, Queensland, Victoria), Austria, Bahamas, Bahrain, Belgium, Bermuda, Bulgaria, Brazil, British Virgin Islands, Cambodia, Canada (Ontario), Cayman Islands, Chile, China (Hong Kong), Colombia, Cyprus, Czech Republic, Denmark, Dominican Republic, Ecuador, Egypt, Finland, France, French Polynesia, Germany, Great Britain, Greece, Guadeloupe, Guam, Guyana, Honduras, Hungary, Indonesia (Java, Kalimantan, Papua, Sulawesi, Sumatra), Iran (Mazandaran, Tehran), Ireland, Israel, Italy (mainland, Ryukyu Archipelago), Latvia, Malaysia (Peninsular, East), Martinique, Mexico, Micronesia, Myanmar, Netherlands, Netherlands Antilles, New Zealand, Nicaragua, Northern Mariana Islands [Saipan], Palau, Panama, Philippines (Cebu, Luzon, Mindanao), Poland, Portugal, Puerto Rico, Réunion, Russia, Saudi Arabia, Seychelles (Mahé), Singapore, Sint Maarten, Slovak, Slovenia, South Africa, South Korea, Spain (Balearic Islands, Continental), Sri Lanka, Suriname, Sweden, Switzerland, Taiwan, Thailand, Trinidad, Turkey, USA (Arizona, California, Colorado, Connecticut, Delaware, Florida, Hawaii, Maine, Maryland, Massachusetts, Michigan, New Jersey, New Mexico [western], New York, North Carolina, Ohio, Oregon, Pennsylvania, South Carolina, Virginia, Washington), US Virgin Islands, Vietnam

Emys concinna Guérin 1829:pl.1,f.3 (nomen oblitum and senior homonym, not = Emys concinna Le Conte 1830)

Type locality: Not designated.

Emys elegans Wied 1839:176,213, Trachemys elegans, Clemmys elegans, Pseudemys elegans, Chrysemys elegans, Chrysemys scripta elegans, Chrysemys palustris elegans, Pseudemys troostii elegans, Pseudemys scripta elegans

Type locality: “Gegend von Harmony...in dem Wabasch und Fox-River” [Indiana, USA]. Emended to “in Fox Rivers bei New-Harmony aus einem nebenflusse des Wabasch” [Indiana, USA] by Wied (1865:41).

Emys holbrooki Gray 1844:23, Trachemys holbrooki

Type locality: “N. America, Louisiana” [USA].

Emys sanguinolenta Gray 1856b:26, pl.15, f.1

Type locality: Not designated.

Emys petrolei † Leidy 1868:176 [Late Pleistocene, Rancho-labrean, USA (Texas)], Pseudemys petrolei, Chrysemys petrolei, Chrysemys scripta petrolei, Trachemys petrolei, Pseudemys scripta petrolei, Trachemys scripta petrolei

Type locality: “Harden Co., Texas” [USA].

Trachemys lineata Gray 1873a:147

Pseudemys bisornata † Cope 1878:228 [Pleistocene, USA (Texas)], Pseudemys bisornata, Chrysemys scripta bisornata, Pseudemys scripta bisornata, Trachemys scripta bisornata, Trachemys bisornata

Type locality: “South-western Texas” [USA]. Restricted to “Atascosa County, Texas” [USA] by Hay (1908b:354).

Trachemys trulla † Hay 1908b:355 (nomen dubium) [Pleistocene, USA (Texas)], Pseudemys trulla

Type locality: “Hardin County, Texas” [USA].

Trachemys scripta troostii (Holbrook 1836)

Cumberland Slider

USA (Tennessee, Virginia)

Introduced: Latvia

Emys troostii Holbrook 1836:55, Trachemys troostii, Clemmys troostii, Pseudemys troostii, Chrysemys troostii, Pseudemys scripta troostii, Pseudemys troostii troostii, Chrysemys scripta troostii, Trachemys scripta troostii

Type locality: “Cumberland river” [Tennessee, USA].

Emys cumberlandensis Holbrook 1840:55

Type locality: “Cumberland...Cumberland river” [USA].

Trachemys stejnegeri (Schmidt 1928)

Central Antillean Slider

(subspecies: stejnegeri = red, malonei = purple, vicina = orange)

Bahamas (Inagua), Dominican Republic, Haiti, Puerto Rico

Introduced: Dominica, Guadeloupe

IUCN Red List: Near Threatened (1996)

TFTSG Draft Red List: Near Threatened (2011)
Trachemys stejnegeri stejnegeri (Schmidt 1928)
Puerto Rican Slider

USA (Puerto Rico)

Emys olivacea Gray 1856b:30 (junior homonym, not = *Emys olivacea* Schweigger 1812), *Clemmys olivacea*, *Redamia olivacea*, *Chrysemys olivacea*
Type locality: "N. America?"

Pseudemys stejnegeri Schmidt 1928:147, *Pseudemys palustris stejnegeri*, *Pseudemys stejnegeri stejnegeri*, *Pseudemys terrapen stejnegeri*, *Pseudemys decussata stejnegeri*, *Chrysemys decussata stejnegeri*, *Chrysemys terrapen stejnegeri*, *Trachemys stejnegeri*, *Trachemys stejnegeri stejnegeri*
Type locality: “San Juan, Porto Rico” [Puerto Rico, USA].

Trachemys stejnegeri malonei (Barbour and Carr 1938)
Inagua Slider

Bahamas (Inagua)

Pseudemys malonei Barbour and Carr 1938:76, *Pseudemys palustris malonei*, *Pseudemys terrapen malonei*, *Chrysemys malonei*, *Chrysemys terrapen malonei*, *Trachemys stejnegeri malonei*, *Trachemys malonei*
Type locality: “ponds near Northwest Point, Great Inagua Island, B.W.I.” [Bahamas].

Trachemys stejnegeri vicina (Barbour and Carr 1940)
Dominican Slider

Dominican Republic, Haiti

Pseudemys stejnegeri vicina Barbour and Carr 1940:408, *Pseudemys terrapen vicina*, *Pseudemys decussata vicina*, *Chrysemys decussata vicina*, *Chrysemys stejnegeri vicina*, *Chrysemys terrapen vicina*, *Trachemys stejnegeri vicina*
Type locality: “Sanchez, San Domingo” [Dominican Republic].

Trachemys taylori (Legler 1960)
Cuatro Ciénegas Slider

Mexico (Coahuila)

IUCN Red List: Endangered A4e, B1ab(iii,v)+2ab(iii,v) (2007)
Pseudemys scripta taylori Legler 1960:75, *Chrysemys scripta taylori*, *Chrysemys gaigeae taylori*, *Chrysemys taylori*, *Trachemys scripta taylori*, *Trachemys nebulosa taylori*, *Trachemys ornata taylori*, *Trachemys taylori*
Type locality: “16 km. S Cuatro Ciénegas, Coahuila, México.”

Trachemys terrapen (Bonnaterre 1789)
Jamaican Slider

Uwe Fritz / Montego Bay, Jamaica
Bahamas (Cat Island, Eleuthera [prehistoric introduction?]), Jamaica

IUCN Red List: Vulnerable B1+2c (1996)

Testudo terrapen Lacepède 1788:129, synopsis [table] (nomen suppressum, ICZN 2005a)
Type locality: “aux Antilles, & particulièrement à la Jamaïque” [Jamaica].

Testudo terrapen Bonnaterre 1789:30, *Pseudemys terrapen*, *Chrysemys (Trachemys) terrapen*, *Chrysemys terrapen terrapen*, *Trachemys terrapen*, *Trachemys terrapen terrapen*. Type locality: “la Jamaïque” [Jamaica].

Testudo palustris Gmelin 1789:1041 (senior homonym, not = *Testudo palustris* Le Conte 1830), *Trachemys palustris*, *Pseudemys palustris*, *Chrysemys scripta palustris*, *Pseudemys palustris palustris*
Type locality: “aux Antilles, & particulièrement à la Jamaïque” [Jamaica].

Testudo fasciata Suckow 1798:40 (senior homonym, not = *Testudo fasciata* Daudin 1801)

Testudo rugosa Shaw 1802:28 (partim, nomen dubium and junior homonym, not = *Testudo rugosa* Van-Ernest in Daudin 1801), *Emys rugosa*, *Clemmys rugosa*, *Chrysemys scripta rugosa*, *Pseudemys rugosa*
Type locality: Not designated. Restricted to “Rio Jobabo drainage in eastern Cuba” by Mittelman (1947:176).

Emys rugosa livida Gray 1831:30
Type locality: “America septentrionali?”

Pseudemys felis Barbour 1935:205, *Pseudemys palustris felis*, *Pseudemys terrapen felis*, *Chrysemys decussata felis*, *Chrysemys felis*, *Chrysemys terrapen felis*, *Trachemys terrapen felis*, *Trachemys felis*
Type locality: “Tea Bay, Cat Island, Bahamas.”

Trachemys venusta (Gray 1856b) (07:18, 10:10, 11:6, 12:18, 14:23) (26)
Meso-American Slider

Belize, Guatemala, Mexico (Campeche, Chiapas, Oaxaca, Quintana Roo, Tabasco, Tamaulipas, Veracruz)

Emys venusta Gray 1856b:24 (12:18), *Callichelys venusta*, *Pseudemys scripta venusta*, *Chrysemys scripta venusta*, *Trachemys scripta venusta*, *Trachemys ornata venusta*, *Trachemys venusta venusta*
Type locality: “Southern States of America; Honduras.” Restricted to “Honduras” by lectotype designation by Smith and Smith (1980:495).

Emys valida Le Conte 1860:7, *Clemmys valida*
Type locality: “Honduras.”

Emys (Clemmys) salvini Günther 1885:4, *Pseudemys salvini*
Type locality: “Guatemala.”

Trachemys venusta cataspila (Günther 1885) (07:14, 10:10, 11:6) (26)
Huastecan Slider

Mexico (San Luis Potosi, Tamaulipas, Veracruz)

Emys ventricosa Gray 1856b:28 (nomen suppressum, ICZN 1985b), *Pseudemys ventricosa*
Type locality: Not known.

Emys (Clemmys) cataspila Günther 1885:4 (nomen conservandum, ICZN 1985b), *Pseudemys cataspila*, *Chrysemys ornata cataspila*, *Pseudemys scripta cataspila*, *Pseudemys ornata cataspila*, *Chrysemys scripta cataspila*, *Trachemys scripta cataspila*, *Trachemys ornata cataspila*, *Trachemys venusta cataspila*
Trachemys venusta iversoni McCord, Joseph-Ouni, Hagen, and Blanck 2010 (10:10, 11:6) (26)

Yucatan Slider

Mexico (Quintana Roo, Yucatan)

Trachemys venusta iversoni McCord, Joseph-Ouni, Hagen, and Blanck 2010:45

Type locality: “Cenote on the north side of the highway, 13.8 km east of Buctzotz, Yucatan, Mexico.”

Trachemys venusta uhrigi McCord, Joseph-Ouni, Hagen, and Blanck 2010 (10:10, 11:6, 14:23) (26)

Uhrig’s Slider

Colombia (Antioquia, Chocó), Costa Rica, Honduras, Nicaragua, Panama

Testudo panama Perry 1810:[unpaginated], pl.33 (12:18) (*nomen oblitum et dubium*)

Type locality: “countries of South America, adjoining to the Isthmus of Panama.”

Trachemys venusta uhrigi McCord, Joseph-Ouni, Hagen, and Blanck 2010:43

Type locality: “Río Chamelecón drainage 3 km south of San Pedro Sula, northwestern Caribbean coastal Honduras.”

Trachemys yaquia (Legler and Webb 1970) (07:18)

Yaqui Slider

Mexico (Sonora)

IUCN Red List: Vulnerable B1ab(iii)+2ab(iii) (2007)

Pseudemys scripta yaquia Legler and Webb 1970:158,

Chrysemys scripta yaquia, Pseudemys ornata yaquia

Emydinae Rafinesque 1815 (17)

Emidania Rafinesque 1815:75

Emydidae Bell 1825a:302

Emydinae Cope 1870b:123

Clemmys Ritgen 1828

Chelopus Rafinesque 1815:75 (*nomen nudum*)

Clemmys Ritgen 1828:270

Type species: *Clemmys punctata* [= *Testudo punctata* Schoepff 1792]

= subjective synonym of *Testudo guttata* Schneider 1792, by subsequent designation by Baur (1892:43).

Chelopus Rafinesque 1832:64

Type species: *Chelopus punctatus* [= *Testudo punctata* Schoepff 1792]

= subjective synonym of *Testudo guttata* Schneider 1792, by original monotypy.

Nanemys Agassiz 1857a:252,442

Type species: *Nanemys guttata* [= *Testudo guttata* Schneider 1792], by original monotypy.

Melanemys Shufeldt 1919:157

Type species: *Melanemys guttata* [= *Testudo guttata* Schneider 1792], by subsequent designation by Dunn (1920:8).

Clemmys guttata (Schneider 1792) (29)

Spotted Turtle

Canada (Ontario), USA (Connecticut, Delaware, Florida, Georgia, Illinois, Indiana, Maine, Maryland, Massachusetts, Michigan, New Hampshire, New Jersey, New York, North Carolina, Ohio, Pennsylvania, Rhode Island, South Carolina, Vermont, Virginia, West Virginia)

CITES: Appendix II
Testudo guttata Schneider 1792:264, Emys guttata, Geoclemmys guttata, Clemmys guttata, Geoclemmys guttata, Chelopus guttatus, Melanemys guttatus

Testudo punctata Schoepff 1792:25 (junior homonym, not = Testudo punctata Lacepède 1788 or Testudo punctata Bonnaterre 1789), Emys punctata, Clemmys punctata, Terrapene punctata, Chelopus punctatus
Type locality: “in paludosis Americae septentrionalis... Philadelphiam” [Pennsylvania, USA].

Testudo anonyma Schneider in Schoepff 1792:25 (nomen nudum)
Geoclemmys sebae Gray 1869a:188

Emys Duméril 1805
Emydies Brongniart 1805:27 (nomen suppressum, ICZN 1995b)
Emys Duméril 1805:76 (nomen conservandum, ICZN 1995b)
Type species: Emys europaea Schweigger [= Testudo europea] Schneider 1783 = subjective synonym of Testudo orbicularis Linnaeus 1758, by subsequent designation by Fitzinger (1843:29).

Hydrone Rafinesque 1814:66
Type species: Hydrone orbicularis [= Testudo orbicularis Linnaeus 1758], by subsequent designation by Loveridge and Williams (1957:201).

Emyda Rafinesque 1815:75 (nomen novum and senior homonym, not = Emyda Gray 1830e)
Lutremys Gray 1844:31
Type species: Cistudo (Lutremys) europaea [= Testudo europea] Schneider 1783 = subjective synonym of Testudo orbicularis Linnaeus 1758, by original monotypy.

Emys orbicularis (Linnaeus 1758)
European Pond Turtle

(subspecies: orbicularis = red, eiselti = purple, galloitalica = blue, helenica = brown, ingauna = pink, occidentalis = green, persica = tourmaline; unassigned E. orbicularis sensu lato = gray (Algeria, Tunisia, southern Turkey); overlap = intergrades; orange dots = introduced; red dots = extirpated)
Albania, Algeria, Armenia, Austria, Azerbaijan, Belarus, Belgium (extirpated), Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic (extirpated, reintroduced), Denmark (extirpated, reintroduced), Estonia (extirpated), France (Continental, Corsica [prehistoric introduction?]), Georgia, Germany, Greece, Hungary, Iran, Italy (Continental, Sardinia [prehistoric introduction]), Kazakhstan, Kosovo, Latvia, Lithuania, Luxembourg (extirpated), Macedonia, Moldova, Montenegro, Morocco, Netherlands (extirpated), Poland, Portugal, Romania, Russia, Serbia, Slovakia, Slovenia, Spain (Continental), Switzerland (extirpated, reintroduced), Syria, Tunisia, Turkey, Turkmenistan, Ukraine
Introduced: Spain (Balearic Islands)
Emys orbicularis orbicularis (Linnaeus 1758) (30:17) (36:38)
European Pond Turtle

Austria, Belarus, Belgium (extirpated), Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic (extirpated, reintroduced), Denmark (extirpated, reintroduced), Estonia (extirpated), France, Georgia, Germany, Hungary, Italy, Kazakhstan, Kosovo, Latvia, Lithuania, Luxembourg (extirpated), Moldova, Netherlands (extirpated), Poland, Romania, Russia, Serbia, Slovakia, Slovenia, Switzerland (extirpated), Turkey, Ukraine

Introduced: Spain (Balearic Islands)

Testudo orbicularis Linnaeus 1758:198 (nomen conservandum, ICZN 1995b), Hydronis orbicularis, Emys orbicularis or orbicularis

Testudo lutaria Linnaeus 1758:198, Emys lutaria, Hydronis lutaria, Emys lutaria, Clemmys (Clemmys) lutaria, Cistudo lutaria

Testudo terrestris Garsault 1764:pl.675 (10:13) (nomen oblitum and senior homonym, not = Testudo terrestris Fermin 1765 or Testudo terrestris Forskål 1775)
Type locality: Not designated.

Testudo europaea Schneider 1783:323, Emys europaea, Terrapene europaea, Cistudo europaea, Cistudo (Latreymys) europaea, Lutremys europaea

Testudo pulchella Schoepff 1801:113 (senior homonym, not = Emys pulchella sensu Schweigger 1812), Emys pulchella

Terrapene europaea Bell 1825a:306 (nomen novum)
Emys turfa † Meyer 1835:67 [Holocene, subfossil, Germany], Cistudo lutaria turfa
Type locality: “Enkheim unweit Frankfurt” [Germany].

Clemmys schlothoehnii † Fitzinger 1835:127 (nomen nudum) [Pleistocene, Germany]

Trionyx schlothoehnii † Fitzinger 1835:128 (nomen nudum) [Pleistocene, Germany]

Emys fossilis † Nilsson 1841:206 (nomen nudum), Emys lutaria fossilis

Emys lutaria borealis † Nilsson 1841:208 [Holocene, Boreal (Atlantic), subfossil, Sweden]

Type locality: “Grißwe of Brägpars pastorat...Skåne. [...] Göta kanal, Östergötland...vid Nordskogsvägen nära intill Svartjordshalan” [Grißwe in Brägpars’s Parish... Scania. [...] Göta Canal, East Götaland...along Nordskogs Road near Svartjords Hallan] [Sweden]. Restricted to “Schonen, Südschweden” [Sweden] by Fritz (1992:67).

Testudo (Emys) canstadiensis † Pleininger 1847:208 (30) [Pleistocene, Germany]
Type locality: “Württemberg...Canstadt” [Germany].

Cistudo anhaltina † Giebel 1866a:1 [Holocene, subfossil, Germany], Emys anhaltina
Type locality: “Ladtorf...Nord-deutschland” [Germany].

Emys lutaria taurica Mehnert 1890:537
Type locality: “Ufer des Dniepr, einige Meilen von seiner Ausmündung” [Ukraine].

Emys europaea sparsa Dürrer 1897

Emys europaea punctata Dürrer 1897:15

Emys europaea concolor Dürrer 1897:15

Emys orbicularis aralensis Nikolsky 1915:24
Type locality: “Lac. Aral” [Kazakhstan].

Emys orbicularis luteofusca Fritz 1989:145 (30:17)
Type locality: “See-Ebene westlich von Ereğli, Provinz Konya, Türkei” [Turkey].

Emys orbicularis colchica Fritz 1994:61 (30:17)
Type locality: “Batumi (Batumi)” [Georgia].

Emys orbicularis eiselti Fritz, Baran, Budak, and Amthauer 1998
Eiselt’s Pond Turtle, Turkish Pond Turtle

Type locality: “14 km NE of Fevzipaşa (about 450 m above sea level), Vilayet Gaziantep” [Turkey].

Emys orbicularis eiselti Fritz, Baran, Budak, and Amthauer 1998b:113
Type locality: “14 km NE of Fevzipaşa (about 450 m above sea level), Vilayet Gaziantep” [Turkey].
Emys orbicularis galloitalica Fritz 1995
Franco-Italian Pond Turtle

France (Continental, Corsica [prehistoric introduction?]), Italy (Continental, Sardinia [prehistoric introduction]), Spain (Continental)

Introduced: Spain (Balearic Islands)

Emys orbicularis (galloitalica) capolongoi Fritz 1995:204
Emys orbicularis capolongoi
Type locality: “Olbia (Sardinien)” [Italy].

Emys orbicularis (galloitalica) lanzai Fritz 1995:211
Emys orbicularis lanzai
Type locality: “Conca-Mündung bei Fontea, unweit Santa Lucia di Porto-Veccio (Korsika)” [France].

Emys orbicularis (galloitalica) galloitalica Fritz 1995:217
Emys orbicularis galloitalica
Type locality: “5 km östlich Collobrières, Département Var, Südfrankreich” [France].

Emys orbicularis hellenica Valenciennes in Bory de Saint-Vincent 1833
Hellenic Pond Turtle

Albania, Bosnia and Herzegovina, Croatia, Greece, Italy, Kosovo, Macedonia, Montenegro, Serbia, Slovenia

Emys hellenica Valenciennes in Bory de Saint-Vincent 1833:planches, pl.8
Cistuda hellenica, Emys orbicularis hellenica
Type locality: Not designated. Restricted to “plaine de Nisi que baigne le Parnesus au coeur de la Messénie” [Peloponnes, Greece] by Bibron and Bory de Saint-Vincent (1833:61).

Emys iberica Valenciennes in Bory de Saint-Vincent 1833:planches, pl.9
Emys iberica

Emys antiquorum Bory de Saint-Vincent 1835:Atlas, pl.9 [corrigenda] (nomen novum et nomen nudum)
Type locality: Not designated.

Emys (Emys) hofmanni Fitzinger 1835:123 (nomen novum), Emys orbicularis hoffmanni, Cistudo hoffmanni

Emys orbicularis atra Werner 1897:15
Type locality: “Dalmatien und Cephallonia” [Croatia and Greece].

Emys europaea maculosa Dürigen 1897:15

Emys orbicularis ingauna Jesu, Piombo, Salvidio, Lamagni, Ortale, and Genta 2004
Ligurian Pond Turtle

Morocco, Portugal, Spain

Emys orbicularis occidentalis Fritz 1993:136
Western Pond Turtle, Spanish Pond Turtle, Magreb Pond Turtle

Type locality: “Lagune von Medhiya unweit Kenitra, Marokko” [Morocco].

Emys orbicularis fritzjuergenobsti Fritz 1993:132
Type locality: “Castellón de la Plana, Spanien” [Spain].

Emys orbicularis hispanica Fritz, Keller, and Budde 1996:132
Type locality: “Doñana, Huelva” [Spain].
Emys orbicularis persica Eichwald 1831 (07:23, 07:24, 09:19)
Eastern Pond Turtle, Persian Pond Turtle

Armenia, Azerbaijan, Georgia, Iran (Ardabil, Gilan, Golestan, Mazandaran), Russia (Dagestan), Turkmenistan
Introduced: Iran (Alborz, Tehran)
Type locality: ”provincia Masanderan” [Mazandaran Province, Caspian Sea, Iran].

Emys europaea persica Eichwald 1831:196 (09:19), *Emys europaea persicae, Emys orbicularis persica*
Type locality: “provincia Masanderan” [Mazandaran Province, Caspian Sea, Iran].

Emys europaea iberica Eichwald 1831:196 (09:19), *Emys europaea ibericae, Emys orbicularis iberica*
Type locality: Not designated. Restricted to “in Iberiae convallibus paludosis et fluviis, Cyrum amnem petentibus” [in marshy Iberian valleys and rivers, Kura River creeks] [Georgia and Azerbaijan] by Eichwald (1840:47).

Emys orbicularis orientalis Fritz 1994:72
Type locality: “Bandar-e-Anzali (Enzeli), Prov. Gilan, Iran.”

Emys orbicularis kurae Fritz 1994:78 (09:19)
Type locality: “Bank (Bank Promisl) an der Kura-Mündung, Aserbaidschan” [Azerbaijan].

Emys orbicularis, ssp. indet. (14:26)
Testudo pargoti † Ceselli 1846:24 (*nomen oblitum*) [Late Pleistocene, Italy]
Type locality: “Viterbo...Viterbese...acque Caje” [Italy].

Emys major † Portis 1890:16 (14:26) (*nomen dubium*) [Late Pliocene to Early Pleistocene, Villafranchian, Italy]
Type locality: “Poderaccio sotto Persignano nella Valle Superiore dell’Amo” [Italy].

Emys latens † Portis 1890:16 (14:26) (*nomen dubium*) [Late Pliocene to Early Pleistocene, Villafranchian, Italy]
Type locality: “Colorobajo preso S. Giovanni” [Italy].

Emys tigris Salvator 1897:280 (*nomen nudum*)
Type locality: “Mercadal, Insel Menorca” [Balearic Islands, Spain].

Emys trinacris Fritz, Fattizzo, Guicking, Tripepi, Pennisi, Lenk, Joger, and Wink 2005
Sicilian Pond Turtle

Emys Duméril 1805 or
Actinemys Agassiz 1857a (07:22, 09:16, 10:12, 11:7, 14:24)
Type species: *Actinemys marmorata* [= *Emys marmorata* Baird and Girard 1852], by original designation.

Emys marmorata (Baird and Girard 1852) (07:22, 10:15)
Northern Pacific Pond Turtle, Northern Western Pond Turtle
Emys marmorata Baird and Girard 1852:177, Actinemys marmorata, Clemmys marmorata, Geoclemmys marmorata, Chelopus marmoratus, Melanemys marmorata, Clemmys marmorata marmorata, Actinemys marmorata marmorata, Emys marmorata, Emys marmorata marmorata
Type locality: “Puget Sound” [Washington, USA].

Emys nigra Hallowell 1854:91 (senior homonym, not = Emys nigra Blyth 1856)
Type locality: “Posa Creek, Lower California” [Kern County, California, USA].

Clemmys wosnessenskyi Strauch 1862:114, Geoclemmys wosnessenskyi
Type locality: “Rio Sacramento in Californien” [USA].

Clemmys hesperia † Hay 1903:238 [Pliocene, USA (Oregon)]
Type locality: “Rattlesnake beds, Rattlesnake Creek, Oregon” [USA].

Emys pallida (Seeliger 1945) (07:22, 10:15) (35) or
Actinemys pallida
Southern Pacific Pond Turtle, Southern Western Pond Turtle

Emys Dunéril 1805 or
Emydoidea Gray 1870c (07:23, 09:16, 10:12, 11:7, 14:24) (36)
Emydoidea Gray 1870c:19
Type species: Emydoidea blandingii [= Cistuda blandingii Holbrook 1838b], by original monotypy.

Neoemys Lindholm 1929:282 (nomen novum)

Emys blandingii (Holbrook 1838b) (36) or
Emydoidea blandingii
Blandings’s Turtle

Mexico (Baja California), USA (California)
CBFTT Account: Bury and Germano (2008) [as part of A. marmorata]
IUCN Red List: Vulnerable A1cd (1996), as part of A. marmorata
TFTSG Draft Red List: Vulnerable (2011), as part of A. marmorata
Clemmys marmorata pallida Seeliger 1945:158, Actinemys marmorata pallida, Emys marmorata pallida, Emys pallida, Actinemys pallida
Type locality: “Lower Coyote Creek, near Alamitos, Orange County, California” [USA].

Emys Dunéril 1805 or
Emydoidea Gray 1870c (07:23, 09:16, 10:12, 11:7, 14:24) (36)
Emydoidea Gray 1870c:19
Type species: Emydoidea blandingii [= Cistuda blandingii Holbrook 1838b], by original monotypy.

Neoemys Lindholm 1929:282 (nomen novum)

Emys blandingii (Holbrook 1838b) (36) or
Emydoidea blandingii
Blandings’s Turtle

Canada (Nova Scotia, Ontario, Québec), USA (Illinois, Indiana, Iowa, Maine, Massachusetts, Michigan, Minnesota, Missouri, Nebraska, New Hampshire, New York, Ohio, Pennsylvania, South Dakota, Wisconsin)
CBFTT Account: Congdon, Graham, Herman, Lang, Pappas, and Brecke (2008)

CITES: Appendix II
Testudo flap Bonnaterre 1789:26 (nomen oblitum)
Type locality: “Amérique, l’île de l’Ascension.”
Testudo meleagris Shaw 1793:147 (nomen suppressum, ICZN 1963), Lutremys meleagris, Emys meleagris
Type locality: “America” [USA].
Cistuda blandingii Holbrook 1838b:35 (nomen conservandum, ICZN 1963), Cistudo blandingii, Emys blandingii, Emydoidea blandingii, Neoemys blandingii
Type locality: “Fox river, a tributary of the Illinois” [Illinois, USA].
Emys twentei † Taylor 1943:250 [Pleistocene, USA (Kansas)]
Glyptemys Agassiz 1857a (07:21)

Type species: *Calemys muhlenbergii* [= *Testudo muhlenbergii* Schoepff 1801], by original designation.

Glyptemys Agassiz 1857a (252,443)

Type species: *Glyptemys insculpta* [= *Testudo insculpta* Le Conte 1830], by original designation.

Glyptemys insculpta (Le Conte 1830)

Wood Turtle

USA (Connecticut, Delaware, Georgia, Maryland, Massachusetts, New Jersey, New York, North Carolina, Pennsylvania, South Carolina, Tennessee, Virginia)

CITES: Appendix I

Testudo mühlenbergii Schoepff 1801:132, *Emys mühlenbergii*, *Emys mühlenbergii*, *Emys mühlenbergii*, *Clemmys mühlenbergii*, *Terrapene mühlenbergii*, *Clemmys mühlenbergii*, *Glyptemys mühlenbergii*, *Clemmys mühlenbergii*, *Emys mühlenbergii*, *Clemmys mühlenbergii*, *Glyptemys mühlenbergii*, *Clemmys mühlenbergii*, *Geoclemys mühlenbergii*, *Emys mühlenbergii*, *Clemmys mühlenbergii*, *Glyptemys mühlenbergii*, *Emys mühlenbergii*

Type locality: “Pensylvaniae rivulis” [USA]. Restricted to “Lancaster, Pennsylvania” [USA] by Stejneger and Barbour (1917:114).

Emys biguttata Say 1825:212 (10:16)

Emys bipunctata Say in Gray 1830e:10 (nomen novum)

Emys fusca LeSueur in Gray 1831d:25 (nomen nudum)

Clemmys nuchalis Dunn 1917:624

Type locality: “side of Yonahlossee Road, about 3 miles from Linville, North Carolina...altitude, 4200 feet” [USA].

Terrapene Merrem 1820 (14:27)

Didicla Rafinesque 1815:75 (nomen nudum)

Terrapene Merrem 1820:27

Type species: *Terrapene clausa* [= *Testudo clausa* Gmelin 1789 = subjective synonym of *Testudo carolina* Linnaeus 1758], by subsequent designation by Bell (1828c:514).

Cistuda Fleming 1822:270

Type species: “Box tortoise”, by original designation.

Didicla Rafinesque 1832:64

Type species: *Didicla clausa* [= *Testudo clausa* Gmelin 1789 =...
subjective synonym of *Testudo carolina* Linnaeus 1758], by original designation.

Cistudo Duméril and Bibron 1835:207 (*nomen novum*)

Type species: *Pyxidemys clausa* [= *Testudo clausa* Gmelin 1789 = subjective synonym of *Testudo carolina* Linnaeus 1758], by subsequent designation by Fitzinger (1843:29).

Emydidae Gray 1844:27

Type species: *Emys (Emydidae) kinosternoides* [= *Emys kinosternoides* Gray 1830 = subjective synonym of *Testudo carolina* Linnaeus 1758], by original monotypy.

Oncychotria Gray 1849:17

Type species: *Cistudo (Oncychotria) mexicana* Gray 1849, by original monotypy.

Pariemys Cope 1895:757

Type species: *Pariemys bauri* [= *Terrapene bauri* Taylor 1895], by original monotypy.

Toxaspis Cope 1895:757

Type species: *Toxaspis major* [= *Cistudo major* Agassiz 1857a], by original monotypy.

Cistudos Herrera 1901:36 (*nomen novum et suppressum, ICZN 1922*)

Terrapene carolina (Linnaeus 1758) (11:8, 14:27) (37)

Eastern Box Turtle, Common Box Turtle

Terrapene carolina (Linnaeus 1758) (11:8, 14:27) (37)

Eastern Box Turtle, Woodland Box Turtle

Canada (Ontario [extirpated]), USA (Alabama, Connecticut, Delaware, Georgia, Illinois, Indiana, Kentucky, Maine, Maryland, Massachusetts, Michigan, Mississippi, New Hampshire, New Jersey, New York, North Carolina, Ohio, Pennsylvania, Rhode Island, South Carolina, Tennessee, Virginia, West Virginia)

Testudo carolina Linnaeus 1758:198 (senior homonym, not = *Testudo carolina* Le Conte 1830), *Terrapene carolina*, *Testudo carolinensis*, *Emys (Cistudo) carolinensis*, *Terrapene carolinensis*, *Cistudo carolinensis*, *Terrapene carolina*

Type locality: “Carolina” [USA]. Restricted to “vicinity of Charleston, South Carolina” [USA] by Schmidt (1953:93).

Testudo carinata Linnaeus 1758:198, *Terrapene carinata*, *Cistudo carinata*

Type locality: “Calidis regionibus.” Restricted to “vicinity of Charleston, South Carolina” [USA] by Schmidt (1953:93).

Testudo brevicaudata Lacepède 1788:169, *Emys clausa*, *Emys clausa*, *Didicla clausa*, *Terrapene clausa*, *Cistudo clausa*, *Pyxidemys clausa*, *Cinosternum clausum*, *Emys (Pyxidemys) clausa*, *Pyxidemys clausa*, *Cinosternum clausum*

Type locality: “Carolina” [USA].

Testudo incarcerata Bonnaterre 1789:29

Testudo incerceratostria Bonnaterre 1789:29

Testudo clausa Gmelin 1789:1042, *Emys clausa*, *Emys clausa*, *Didicla clausa*, *Terrapene clausa*, *Cistudo clausa*, *Pyxidemys clausa*, *Cinosternum clausum*

Testudo virgulata Latreille 1801:100, *Emys virgulata, Terrapene virgulata*

Type locality: “les grands bois de la Caroline” [USA]. Restricted to “Charleston, South Carolina” [USA] by Schmidt (1953:94).

Emys schneideri Schweigger 1812:317, *Emys (Pyxidemys) schneideri*

Monocida kentukensis Rafinesque 1822:5 (*nomen suppressum, ICZN 1984*)

Type locality: “United States...Kentucky.”

Didicla erythrps Rafinesque 1822:5 (*nomen nudum*)

CITES: Appendix II, as *Terrapene* spp.

Terrapene carolina (Linnaeus 1758) (11:8, 14:27) (37, 38)

Eastern Box Turtle, Woodland Box Turtle

Canada (Ontario [extirpated]), USA (Alabama, Connecticut, Delaware, Georgia, Illinois, Indiana, Kentucky, Maine, Maryland, Massachusetts, Michigan, Mississippi, New Hampshire, New Jersey, New York, North Carolina, Ohio, Pennsylvania, Rhode Island, South Carolina, Tennessee, Virginia, West Virginia)

Testudo carolina Linnaeus 1758:198 (senior homonym, not = *Testudo carolina* Le Conte 1830), *Terrapene carolina*, *Testudo carolinensis*, *Emys (Cistudo) caroliniae*, *Terrapene caroliniae*, *Cistudo carolina*, *Cistudo carolinensis*, *Terrapene carolina*

Type locality: “Carolina” [USA]. Restricted to “vicinity of Charleston, South Carolina” [USA] by Schmidt (1953:93).

Testudo carinata Linnaeus 1758:198, *Terrapene carinata*, *Cistudo carinata*

Type locality: “Carolina” [USA].

Testudo brevicaudata Lacepède 1788:169, synopsis[37]

(nomen suppressum, ICZN 2005a), *Testudo brevicaudata*

Type locality: “Caroline” [USA].

Testudo incarcerata Bonnaterre 1789:29

Type locality: “Philadelphie...L’Amérique septentrionale” [Pennsylvania, USA].

Testudo incerceratostria Bonnaterre 1789:29

Testudo clausa Gmelin 1789:1042, *Emys clausa*, *Emys clausa*, *Didicla clausa*, *Terrapene clausa*, *Cistudo clausa*, *Pyxidemys clausa*, *Cinosternum clausum*

Testudo virgulata Latreille 1801:100, *Emys virgulata, Terrapene virgulata*

Type locality: “les grands bois de la Caroline” [USA]. Restricted to “Charleston, South Carolina” [USA] by Schmidt (1953:94).

Emys schneideri Schweigger 1812:317, *Emys (Pyxidemys) schneideri*

Monocida kentukensis Rafinesque 1822:5 (*nomen suppressum, ICZN 1984*)

Type locality: “United States...Kentucky.”

Didicla erythrps Rafinesque 1822:5 (*nomen nudum*)

CBFTT Account: Kiester and Willey (2015)
Type locality: “United States.”

Terrapene maculata Bell 1825a:309, *Terrapene carolina maculata*

Terrapene nebulosa Bell 1825a:310, *Terrapene carolina nebulosa*

Testudo irregulata Daudin in Gray 1830e:7 (nomen nudum)

Emys (Cistuda) carolinae fusca Gray 1830e:7 (10:7), *Emys carolinae fusca, Cistuda carolinae fusca*
Type locality: “North America.”

Emys kinosternoides Gray 1830e:12 (10:7), *Emys (Emyoides) kinosternoides, Terrapene kinosternoides*

Cistudo carolinae cinosternoides Duméril and Bibron 1835:303 (nomen novum), *Cistudo cinosternoides, Terrapene cinosternoides*

Cistudo pickeringi Duméril 1855:199 (nomen nudum)

Cistudo eurypygia † Cope 1870b:124 (Pleistocene, USA [Maryland]), Terrapene eurypygia
Type locality: “Oxford Neck in Talbot Co., Maryland” [USA].

Toxaspis anguillulatus † Cope 1899:196 (Pleistocene, USA [Pennsylvania]), Terrapene anguillulatus
Type locality: “Port Kennedy, Upper Merion Township, Montgomery County, Pennsylvania” [USA].

Testudo munda † Hay 1920:86 (Pleistocene, USA [Tennessee])
Type locality: “Whitesburg, Hamblen County, Tennessee” [USA].

Terrapene carolina bauri Taylor 1895 (11:8, 14:27)(37) or *Terrapene bauri*

Florida Box Turtle
USA (Florida)

Terrapene bauri Taylor 1895:576, *Pariemys bauri, Cistudo bauri, Terrapene carolina bauri*

Terrapene innoxia † Hay 1916a:61 (Pleistocene, USA (Florida))
Type locality: “Vero, St. Lucie County, Florida” [USA].

Trachemys nuchocarinata † Hay 1916a:70 (nomen dubium) (Pleistocene, USA (Florida))
Type locality: “Florida Coast Line Canal, 20 miles north of St. Augustine” [Florida, USA].

Terrapene singletoni † Gilmore 1927:1 (Pleistocene, USA (Florida))
Type locality: “Two miles west of Melbourne, Brevard County, Fla.” [Florida, USA].

Terrapene carolina major (Agassiz 1857a) (11:8, 14:27)(37)
Gulf Coast Box Turtle
USA (Alabama, Florida, Georgia, Louisiana, Mississippi, Texas)

Cistudo major Agassiz 1857a:445, *Cistudo carolina major, Terrapene major, Toxaspis major, Terrapene carolina major*

Cistudo marshallii † Cope 1878:229 (Pliocene–Pleistocene, USA (Texas)), Terrapene marshallii
Type locality: “South-western Texas” [USA]. Restricted to “the Equus beds of Atascosa County, Texas” [USA] by Hay (1908b:362).

Terrapene putnami † Hay 1906:30 (Pliocene to Late Pleistocene, USA (Florida)), Terrapene carolina putnami Type locality: “Alafia River, Florida, about a mile from its mouth... into Tampa Bay” [USA].

Terrapene canaliculata † Hay 1907:850 (Pliocene–Early Pleistocene, USA (Georgia))
Type locality: “Whitemarsh Island or Skedaway Island, Georgia... southeast of Savannah” [USA].

Terrapene formosa † Hay 1916a:57 (Late Pleistocene, USA (Florida))
Type locality: “Ocala, Florida” [USA].

Terrapene antipex † Hay 1916a:58 (Late Pleistocene, USA (Florida))
Type locality: “Vero, St. Lucie County, Florida” [USA].

Terrapene carolina mexicana (Gray 1849) (10:29, 14:27)(39) or *Terrapene mexicana mexicana or Terrapene mexicana*

Mexican Box Turtle
Mexico (Nuevo León, San Luis Potosi, Tamaulipas, Veracruz)

Cistudo (Onychotria) mexicana Gray 1849:17, *Onychotria mexicana, Cistudo mexicana, Cistudo carolina mexicana,
Chelopus mexicanus, Terrapene mexicana, Terrapene mexicana mexicana, Terrapene carolina mexicana

Type locality: “Mexico.” Restricted to “Tampico, Tamaulipas” [Mexico] by Müller (1936:112).

Terrapene goldmani Stejneger 1933:119

Type locality: “Chijol or Chijoles, southeastern corner of San Louis Potosi, Mexico.”

Terrapene carolina triunguis (Agassiz 1857a) (11:8, 14:27)(37) or

Terrapene mexicana triunguis or

Terrapene triunguis

Three-toed Box Turtle

Terrapene carolina yucatana (Boulenger 1895b) (07:25, 14:27)(37) or

Terrapene mexicana yucatana or

Terrapene yucatana

Yucatan Box Turtle

Terrapene coahuila Schmidt and Owens 1944 (14:27)

Coahuilan Box Turtle

Terrapene nelsoni Stejneger 1925 (14:27)

Spotted Box Turtle

Cistudo yucatana Boulenger 1895b:330, Terrapene yucatana, Terrapene mexicana yucatana, Terrapene carolina yucatana

Type locality: “Mexico...North Yucatan.” Restricted to “Chichen Itzá, Yucatán, Mexico” by Smith and Taylor (1950a:351, 1950b:35).

Terrapene coahuila Schmidt and Owens 1944 (14:27)

Coahuilan Box Turtle

Terrapene nelsoni Stejneger 1925 (14:27)

Spotted Box Turtle

Cistudo yucatana Boulenger 1895b:330, Terrapene yucatana, Terrapene mexicana yucatana, Terrapene carolina yucatana

Type locality: “Mexico...North Yucatan.” Restricted to “Chichen Itzá, Yucatán, Mexico” by Smith and Taylor (1950a:351, 1950b:35).

Terrapene coahuila Schmidt and Owens 1944 (14:27)

Coahuilan Box Turtle

Terrapene nelsoni Stejneger 1925 (14:27)

Spotted Box Turtle

Mexico (Campeche, Quintana Roo, Yucatán)

Cistudo yucatana Boulenger 1895b:330, Terrapene yucatana, Terrapene mexicana yucatana, Terrapene carolina yucatana

Type locality: “Mexico...North Yucatan.” Restricted to “Chichen Itzá, Yucatán, Mexico” by Smith and Taylor (1950a:351, 1950b:35).

Terrapene coahuila Schmidt and Owens 1944 (14:27)

Coahuilan Box Turtle

Terrapene nelsoni Stejneger 1925 (14:27)

Spotted Box Turtle

Mexico (Coahuila)

CFTTT Account: Howeth and Brown (2011)

IUCN Red List: Endangered A2c+4c, B1ab(i,ii,iii,iv,v)+2b(i,ii, iii,iv,v) (2007); Previously: Endangered (1996)

CITES: Appendix I

Terrapene coahuila Schmidt and Owens 1944:101, Terrapene ornata coahuila, Terrapene coahuilae

Type locality: “Cuatro Ciénegas, Coahuila” [Mexico].

Terrapene coahuila Schmidt and Owens 1944 (14:27)

Coahuilan Box Turtle

Terrapene nelsoni Stejneger 1925 (14:27)

Spotted Box Turtle

Mexico (Coahuila)

CFTTT Account: Howeth and Brown (2011)

IUCN Red List: Endangered A2c+4c, B1ab(i,ii,iii,iv,v)+2b(i,ii, iii,iv,v) (2007); Previously: Endangered (1996)

CITES: Appendix I

Terrapene coahuila Schmidt and Owens 1944:101, Terrapene ornata coahuila, Terrapene coahuilae

Type locality: “Cuatro Ciénegas, Coahuila” [Mexico].
Terrapene nelsoni nelsoni Stejneger 1925
Southern Spotted Box Turtle

Mexico (Jalisco, Nayarit, Sinaloa)
Terrapene nelsoni Stejneger 1925:463, *Terrapene nelsoni nelsoni*
Type locality: “Pedro Pablo, Tepic, Mexico; 2500 feet altitude.”

Terrapene nelsoni klauberi Bogert 1943
Northern Spotted Box Turtle

Mexico (Chihuahua, Sinaloa, Sonora)
Terrapene klauberi Bogert 1943:2, *Terrapene nelsoni klauberi*
Type locality: “Rancho Guirocoba, approximately eighteen miles southeast of Alamos, Sonora, Mexico.”

Terrapene ornata (Agassiz 1857a) (12:20, 14:27)
Ornate Box Turtle, Western Box Turtle

Mexico (Chihuahua, Coahuila, Sonora), USA (Arizona, Arkansas, Colorado, Illinois, Indiana, Iowa, Kansas, Louisiana, Missouri, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, Wisconsin, Wyoming)
CITES: Appendix II, as *Terrapene* spp.

Terrapene ornata ornata (Agassiz 1857a) (12:20, 14:27)
Ornate Box Turtle, Western Box Turtle

USA (Arkansas, Colorado, Illinois, Indiana, Iowa, Kansas, Louisiana, Missouri, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, Wisconsin, Wyoming)
Cistudo ornata Agassiz 1857a:392,445, *Terrapene ornata*, *Terrapene ornata ornata*, *Terrapene carolina ornata*
Type locality: “Upper Missouri...and...Iowa” [USA]. Restricted to “Council Bluffs, Pottawatomie County, Iowa, USA” [in error] by Smith and Taylor (1950a:358, 1950b:36); and to “junction of the Platte and Missouri River” [Nebraska, USA] [in error] by Schmidt (1953:95); and corrected to “Burlington, Des Moines County, Iowa” [USA] by lectotype designation by Smith and Smith (1980:587).

Terrapene ornata cimarronensis Cragin 1894:37
Type locality: “Red beds country of the Cimarron Basin” [Kansas, USA].
Terrapene longinsulae † Hay 1908c:166 (12:20) [Upper Miocene or Lower Pliocene to possibly Pleistocene, USA (Kansas)], *Terrapene ornata longinsulae*
Type locality: “Long Island, Phillips County, Kansas” [USA].

Terrapene ornata luteola Smith and Ramsey 1952 (14:27)
Desert Box Turtle

Mexico (Chihuahua, Coahuila, Sonora), USA (Arizona, New Mexico, Texas)
Terrapene ornata luteola Smith and Ramsey 1952:45
Type locality: “17 miles south of Van Horn, Culberson County, Texas” [USA].
Platysternidae Gray 1869a
Platysternidae Gray 1869a:208

Platysternon Gray 1831c
Platysternon Gray 1831c:106
Type species: *Platysternon megacephalum* Gray 1831c, by original monotypy.

Platysternum Agassiz 1846:297 (*nomen novum*)

Platysternon megacephalum Gray 1831c
Big-headed Turtle

(subspecies: *megacephalum* = red, *peguense* = purple, *shiui* = blue; overlap = intergrades; orange dots = probable trade or introduced)

Cambodia, China (Anhui, Fujian, Guangdong, Guangxi, Hainan, Hong Kong, Hunan, Jiangxi, Yunnan, Zhejian), Laos, Myanmar, Thailand, Vietnam
TFTSG Draft Red List: Critically Endangered (2011)
CITES: Appendix I, as Platysternidae spp.

Platysternon megacephalum megacephalum Gray 1831c
Chinese Big-headed Turtle

Cambodia, China (Hainan), Laos, Myanmar, Thailand, Vietnam
Platysternon megacephalum megacephalum Megacephalum

Type locality: “Chinâ.” Restricted to “S. China” by Boulenger (1889:48).

Platysternon megacephalum peguense Gray 1870c
Burmese Big-headed Turtle

Cambodia, China (Hainan), Laos, Myanmar, Thailand, Vietnam
Platysternon megacephalum peguense

Type locality: “Pegu” [Myanmar].

Platysternon megacephalum vogeli Wermuth 1969:374
Type locality: “Provinz Chiang Mai, Nordwest-Thai”

Platysternon megacephalum tristernalis Schleich and Gruber 1984:68
Type locality: “zwischen Mung Lun und Simao, Ostufer des Me-kongflusses, südliches Yünnan (VR China).” [Menglun, Lancang Jiang, Yunnan].

Platysternon megacephalum shiui Ernst and McCord 1987
Vietnamese Big-headed Turtle

China (?) (Guangxi, Hainan), Vietnam
Platysternon megacephalum shiui

Type locality: “vicinity of Langson, Langson Province, Vietnam (26°50’N, 106°45’E).” GPS coordinates in error, corrected here to 21°50’N, 106°45’E.

Geoemydidae Theobald 1868a (07:29, 09:20, 12:21)

Geoemydidae Theobald 1868a:vi
Batagurina Gray 1869a:185
Bataguridae Gray 1870c:17

Geoemydinae Theobald 1868a (12:21)

Geoemydidae Theobald 1868a:vi
Batagurina Gray 1869a:185
Bataguridae Gray 1870c:17

Batagur Gray 1856b (07:30, 08:9)

Trionyx (Tetraonyx) Gray 1830e:19 (10:7) (junior homonym, not = *Tetraonyx* Latreille 1809 [= Coleoptera])

Type species: *Trionyx (Tetraonyx) cuvieri* Gray 1830e [= subjective synonym of *Emys baska* Gray 1830d], by original monotypy.

Batagur Lesson 1832:pl.7 (*nomen novum et oblitum*)

Type species: *Batagur longicollis* [= *Tetraonyx longicollis* Lesson 1831b = subjective synonym of *Emys baska* Gray 1830d], by original monotypy.

Batagur Gray 1856b:35

Type species: *Batagur baska* [= *Emys baska* Gray 1830d], by subsequent designation by Smith (1931:124).

Batagur (Kachuga) Gray 1856b:35

Type species: *Bataugur (Kachuga) lineata* [= *Emys kachuga* Gray 1831a, = subjective synonym of *Emys trivittatus* Duméril and Bibron 1835], by subsequent erroneous designation by Smith (1931:124).

Kachuga (Batagurella) Gray 1869a:200

Type species: *Kachuga (Batagurella) lineata* Gray 1869a [= subjective synonym of *Emys trivittatus* Duméril and Bibron 1835], by original monotypy.

Dongoka Gray 1869a:202

Type species: *Dongoka hardwickii* [= *Kachuga (Dongoka) hardwickii* Gray 1869a = subjective synonym of *Emys dhongoka* Gray 1832b], by subsequent designation by Lindholm (1929:278).

Dhongoka Gray 1870c:57 (*nomen novum*)

Type species: *Dhongoka hardwickii* [= *Kachuga (Dongoka) hardwickii* Gray 1869a = subjective synonym of *Emys dhongoka* Gray 1832b], by subsequent monotypy.

Callagur Gray 1870c:53

Type species: *Callagur picta* [= *Batagur picta* Gray 1862b = subjective synonym of *Emys borneensis* Schlegel and Müller 1845], by original monotypy.

Cantorella Gray 1870c:58

Type species: *Cantorella affinis* [= *Tetraonyx affinis* Cantor 1847], by original monotypy.

Dhougoka Gray 1873j:52 (*nomen novum*)

Type species: *Dhougoka affinis affinis* (Cantor 1847) [= *Kachuga (Dongoka) hardwickii* Gray 1869a = subjective synonym of *Emys dhongoka* Gray 1832b], by subsequent designation by Lindholm (1929:278).

Cachuga Lydekker 1889:123 (*nomen novum*)

Type species: *Cachuga affinis* (Cantor 1847) [= *Emys affinis* (Cantor 1847) = subjective synonym of *Emys borneensis* Schlegel and Müller 1845], by original monotypy.

Batagur affinis (Cantor 1847) (08:9)

Southern River Terrapin

(Subspecies: *affinis* = red, *edwardmolli* = purple)
Cambodia, Indonesia (Sumatra), Malaysia (Peninsular), Singapore (extirpated, reintroduced), Thailand, Vietnam (extirpated)

CBFTT Account: Moll, Platt, Chan, Horne, Platt, Praschag, Chen, and van Dijk (2015)

IUCN Red List: Critically Endangered A2bcd+4bcd (2016); Previously: Critically Endangered, as part of *Batagur baska* (2000).

CITES: Appendix I

Batagur affinis affinis (Cantor 1847) (08:9, 09:21)

Western Malay River Terrapin

Indonesia (Sumatra), Malaysia (Peninsular), Singapore (extirpated, reintroduced), Thailand

Tetraonyx affinis Cantor 1847:6, *Batagur affinis*, *Kachuga affinis*, *Kachuga (Dongoka) affinis*, *Cantorella affinis*, *Batagur affinis affinis*

Type locality: "sea off Pinang...along the sea-shore of Pinang...& estuaries and rivers on the Peninsula" [Malaysia].

Batagur siebenrocki † Jaekel 1911:76 [Pleistocene, *Pithecanthropus* Trinil Beds, Indonesia (Java)]

Type locality: "Pithecanthropus-schichten...Java...Trinil" [Indonesia].
Batagur affinis edwardmolli Praschag, Holloway, Georges, Päckert, Hundsdörfer, and Fritz 2009

Eastern Malay River Terrapin

Batagur affinis edwardmolli Praschag, Holloway, Georges, Päckert, Hundsdörfer, and Fritz 2009a:64

Type locality: “Sre Ambel River system, Koh Kong Province, Cambodia.”

Batagur baska (Gray 1830d) 07:31, 08:9

Northern River Terrapin

Batagur baska ranongensis Nutaphand 1979:181 (07:31), Batagur ranongensis, Batagur batagur ranongensis

Type locality: “mouth of rivers in Ranong Province” [Thailand].

Emys baska Gray 1830d:pl.75, Testudo baska, Emys batagur

Batagur borneoensis (Schlegel and Müller 1845) 07:30

Painted Terrapin

Emys borneoensis Schlegel and Müller 1845:30, Clemmys borneoensis, Callagur borneoensis

Type locality: “Borneo” [East Malaysia or Kalimantan, Indonesia].

Brunei, Indonesia (Kalimantan, Sumatra), Malaysia (Peninsular, East), Thailand

TFTSG Draft Red List: Critically Endangered (2011)

CITES: Appendix I, as Batagur spp.

Emys borneoensis Schlegel and Müller 1845:30, Clemmys borneoensis, Batagur borneoensis

Type locality: “Borneo” [East Malaysia or Kalimantan, Indonesia].

Batagur picta Gray 1862b:204, Callagur picta, Tetraonyx pictus, Callagur pictus

Type locality: “Borneo, Sarawak” [East Malaysia].
Clemmys grayi Strauch 1865:88 (nomen novum)
Kachuga major Gray 1873c:300
Type locality: "India?" Emended to "India" by Gray (1873j:51).
Kachuga brookeri Bartlett 1895a:29
Type locality: "Borneo" [East Malaysia or Kalimantan, Indonesia].

Batagur dhongoka (Gray 1832b) (07:30)
Three-striped Roofed Turtle

Batagur kachuga (Gray 1831a) (07:30)
Red-crowned Roofed Turtle

Emys dhongoka Gray 1832b:pl.60, Batagur (Kachuga) dhongoka, Batagur dhongoka, Clemmys dhongoka, Kachuga dhongoka
Type locality: "India." Restricted to "N. India" by Smith (1931:130).

Emys duvaucelii Duméril and Bibron 1835:334, Batagur duvaucelii
Type locality: "Bengale" [Bangladesh or India].

Kachuga (Dongoka) hardwickii Gray 1869a:202, Kachuga hardwickii, Dongoka hardwickii, Dongoka hardwickii
Type locality: "Nepal."

Batagur durandi † Lydekker 1885:192 [Late Pliocene (Pinjor) to Early Pleistocene (Tatrot), Siwaliks, India (Punjab)]
Type locality: "Siwalik Hills" [Punjab, India].

Emys lineata Gray 1830e:9 (10:7) (nomen oblitum), Clemmys (Clemmys) lineata, Batagur (Kachuga) lineata, Batagur lineatus, Kachuga lineata
Type locality: "India."

Emys kachuga Gray 1831a:pl.74, Batagur kachuga, Kachuga kachuga
Type locality: "India." Restricted to "N. India" by Smith (1931:131).

Batagur elliotti Gray 1862b:264, Batagur elliotti, Clemmys elliotti
Type locality: "Southern India, River Kistna" [Krishna River, Andhra Pradesh, India] [in error].

Kachuga fusca Gray 1870c:56 (partim)
Type locality: "India."

Batagur bakeri † Lydekker 1885:190 [Late Pliocene (Pinjor) to Early Pleistocene (Tatrot), Siwaliks, India (Punjab)]
Type locality: "Siwalik Hills" [Punjab, India].
Batagur trivittata (Duméril and Bibron 1835) (07:30)

Burmese Roofed Turtle

Myanmar

TFTSG Draft Red List: Critically Endangered (2011)

CITES: Appendix II, as *Batagur* spp.

Emys trivittata Duméril and Bibron 1835:331, *Batagur* trivittata, *Kachuga* trivittata

Type locality: “Bengale.” [India or Bangladesh]

Kachuga (Batagurella) peguensis Gray 1869a:200, *Kachuga* peguensis

Type locality: “India.” Restricted to “Pegu” [Myanmar] by Gray (1873j:50).

Kachuga trilineata Gray 1869a:200, *Kachuga* (Kachuga) trilineata

Type locality: “India.” Restricted to “Pegu” [Myanmar] by Bou-linger (1889:56).

Kachuga fusca Gray 1870c:56 (partim)

Type locality: “India.”

Batagur iravadica Anderson 1879;736, *Batagur* iravadicus, *Clemmys* iravadica

Type locality: “Pegu,...Bhamô in Upper Burma,...throughout the Irawady” [Myanmar].

Cuora Gray 1856a (07:32, 12:22) (40)

Cuora Gray 1856a:198

Type species: *Cuora amboinensis* [≡ *Testudo amboinensis* Riche in Daudin 1801], by subsequent designation by Stejneger (1907:503).

Cistoclemmys Gray 1863e:175

Type species: *Cistoclemmys flavomarginata* Gray 1863e, by original monotypy.

Pyxidea Gray 1863e:175

Type species: *Pyxidea mouhotii* [≡ *Cyclemys mouhotii* Gray 1862a], by original monotypy.

Cuora (Pyxiclemmys) Gray 1863e:176

Type species: *Cuora* (Pyxiclemmys) trifasciata [≡ *Sternothaerus trifasciata* Bell 1825a], by original monotypy.

Cuora amboinensis (Riche in Daudin 1801) (12:23) (41)

Southeast Asian Box Turtle

(subspecies: *amboinensis* = red, *couro* = purple, *kamaroma* = orange, *lineata* = pink, overlap = intergrades (Palawan); orange dot = introduced or trade)

Bangladesh, Bhutan, Brunei, Cambodia, India (Arunachal Pradesh, Assam, Nagaland, Nicobar Islands), Indonesia (Java, Kalimantan, Lesser Sundas, Moluccas, Sulawesi, Sumatra, Timor), Laos, Malaysia (Peninsular, East), Myanmar, Philippines (Bohol, Cebu, Leyte, Luzon, Mindanao, Mindoro, Negros, Palawan, Panay, Samar, Sulu Archipelago), Thailand, Timor-Leste (?), Vietnam

CBFTT Account: Schoppe and Das (2011)

TFTSG Draft Red List: Vulnerable (2011)

CITES: Appendix II, as *Cuora* spp.

Cuora amboinensis amboinensis (Riche in Daudin 1801) (12:23)

East Indian Box Turtle

Indonesia (Moluccas, Sulawesi), Philippines (Bohol, Cebu, Leyte, Luzon, Mindanao, Mindoro, Negros, Palawan, Panay, Samar)

Testudo melanocephala Van-Ernst in Daudin 1801:128 (nom. obtitum), *Emys melanocephala*, *Clemmys* (Clemmys) melanocephala

Testudo amboinensis Riche in Daudin 1801:309, *Emys amboinensis*, *Terrapene amboinensis*, *Kinosternon amboinense*, *Cistuda amboinensis*, *Cuora amboinensis*, *Cistudo
amboinensis, *Cyclemys amboinensis*, *Cuora amboinensis amboinensis*

Type locality: “Amboine” [Ambon, Moluccas, Indonesia].

Emys melanogaster Bleeker in Gray 1864a:12 (*nomen nudum*)

Emys gas trothaenia Bleeker in Gray 1873j:21 (*nomen nudum*)

Type locality: “Borneo.” Locality likely in error, probably “Batchian and Boero” [Bacan and Buru, Moluccas, Indonesia].

Cuora amboinensis couro (Lechenault in Schweigger 1812)

Indonesian Box Turtle

Emys couro Lechenault in Schweigger 1812:315, *Terrapene couro*, *Cuora amboinensis couro*

Type locality: “Java” [Indonesia].

Terrapene bicolor Bell 1826:485

Type locality: “Americâ septentrionali” [in error].

Emys (Cistuda) amboinensis leveriana Gray 1830e:7 (10:7), *Cistuda amboinensis leveriana*

Type locality: “Java and Penang” [Indonesia and Peninsular Malaysia].

Cuora amboinensis kamaroma Rummller and Fritz 1991 (12:23)

Malayan Box Turtle

Bangladesh, Bhutan, Brunei, Cambodia, India (Arunachal Pradesh, Assam, Nagaland, Nicobar Islands), Indonesia (Kalimantan), Malaysia (Peninsular, East), Laos, Myanmar (?), Philippines (Palawan [?], Sulu Archipelago [?]), Thailand, Vietnam

Cuora amboinensis kamaroma Rummller and Fritz 1991:39

Type locality: “circa 50 km nördlich von Bangkok, Thailand.”

Cuora amboinensis lineata McCord and Philippen 1998

Burmese Box Turtle

Myanmar

Cuora amboinensis lineata McCord and Philippen 1998:54

Type locality: “Myikyina, Kachin Province, Myanmar (Burma)”.

Cuora aurocapitata Luo and Zong 1988 (12:22) (42)

Yellow-headed Box Turtle

China (Anhui, Henan, Hubei, Zhejiang)

TFTSG Draft Red List: Critically Endangered (2011)

CITES: Appendix II, as *Cuora* spp.

Cuora aurocapitata aurocapitata Luo and Zong 1988 (12:22) (42)

Eastern Yellow-headed Box Turtle

China (Anhui, Zhejiang)

Cuora aurocapitata aurocapitata Luo and Zong 1988:13

Cuora pani aurocapitata, *Pyxiclemmys aurocapitata*, *Pyxiclemmys pani* aurocapitata, *Cuora aurocapitata aurocapitata*

Type locality: “Nanling County, Anhui” [China].
Cuora aurocapitata dabieshani Blanck, Protiva, Zhou, Li, Crow, and Tiedemann 2017 (42)
Western Yellow-headed Box Turtle

China (Anhui, Henan, Hubei)
Cuora aurocapitata dabieshani Blanck, Protiva, Zhou, Li, Crow, and Tiedemann 2017:16
Type locality: “Anhui province, China.”

Cuora bourreti Obst and Reimann 1994 (07:35, 09:22, 12:22)
Bourret’s Box Turtle

Laos, Vietnam
IUCN Red List: Critically Endangered A2bd+4bd (2016);
Previously: Endangered (1996) (as part of *Cuora trifasciata*);

Cuora cyclornata Blanck, McCord, and Le 2006a:133 (07:36, 09:23, 12:22)
Vietnamese Three-striped Box Turtle

(07:36, 09:23, 12:22) (48, 42)

Southern Vietnamese Three-striped Box Turtle

Laos, Vietnam
Cuora cyclornata cyclornata Blanck, McCord, and Le 2006a:133 (07:36, 09:23, 12:22)

Cuora cyclornata annamitica Blanck, Protiva, Zhou, Li, Crow, and Tiedemann 2017 (42)
Central Vietnamese Three-striped Box Turtle

Laos (?), Vietnam

Cuora cyclornata Blanck, McCord, and Le 2006a:133 (07:36, 09:23, 12:22) (48, 42)

Central Vietnamese Three-striped Box Turtle

Laos (?) Vietnam
Cuora cyclornata annamitica Blanck, Protiva, Zhou, Li, Crow, and Tiedemann 2017:12
Type locality: “Vietnam, Nghe An Province, Tan Ky district, near Ky Son Village.”

Cuora cyclornata meieri Blanck, McCord, and Le 2006a:142 (07:36, 09:23, 12:22)
Northern Vietnamese Three-striped Box Turtle

Cuora flavomarginata flavomarginata (Gray 1863e)
Yellow-margined Box Turtle

Cuora flavomarginata flavomarginata (Gray 1863e)
Yellow-margined Box Turtle

Cuora evelynae Ernst and Lovich 1990 (07:34, 08:21, 11:9, 12:22) (48)
Ryukyu Yellow-margined Box Turtle

China (Anhui, Fujian, Henan, Hubei, Hunan, Jiangsu, Jiangxi, Zhejiang), Japan (Ryukyu Archipelago)

Cuora evelynae Ernst and Lovich 1990 (08:21, 11:9)
Ryukyu Yellow-margined Box Turtle

China (Anhui, Fujian, Henan, Hubei, Hunan, Jiangsu, Jiangxi, Zhejiang), Taiwan

Cuora flavomarginata flavomarginata (Gray 1863e)
Yellow-margined Box Turtle

China (Guangxi), Vietnam

Cuora cyclornata meieri Blanck, McCord, and Le 2006a:142 (07:36, 09:23, 12:22)
Type locality: “Tam Dao, Provinz Vinh Phuc, Nord-Vietnam.”

China (Guangxi), Vietnam

Cuora cyclornata meieri Blanck, McCord, and Le 2006a:142 (07:36, 09:23, 12:22)
Type locality: “Tam Dao, Provinz Vinh Phuc, Nord-Vietnam.”

China (Anhui, Fujian, Henan, Hubei, Hunan, Jiangsu, Jiangxi, Zhejiang), Japan (Ryukyu Archipelago), Taiwan

Cistoclemmys flavomarginata Gray 1863e:175, **Cuora flavomarginata**, **Terrapene flavomarginata**, **Cyclemys flavomarginata**, **Cyclemys flavomarginata flavomarginata**, **Cuora flavomarginata flavomarginata**, **Geoemyda flavomarginata**, **Cistoclemmys flavomarginatas**, **Cistoclemmys flavomarginata flavomarginata**
Type locality: “China; Formosa...district of Tamsuy, N.W. Formosa” [Taiwan]. Restricted to “Tamsui, Formosa” [Taiwan] by Stejneger (1907:503).

Terrapene culturalia † Yeh 1961:59 [Holocene, Neolithic, subfossil, Lung-shan Period (Ying Dynasty), China (Shandong)], **Emydoidea culturalia**
Type locality: “Dawenkou, Taian, Shantung” [Shandong, China].
Cuora galbinifrons Bourret 1940
IndoChinese Box Turtle
Cuora galbinifrons Bourret 1940

Cuora mccordi Ernst 1988
McCord’s Box Turtle
Cuora mccordi Ernst 1988

Cuora mouhotii (Gray 1862a)
Keeled Box Turtle
Cuora mouhotii (Gray 1862a)
TFTSG Draft Red List: Critically Endangered (2011)
CITES: Appendix II, as *Cuora* spp.

Cuora mouhotii mouhotii (Gray 1862a)
Northern Keeled Box Turtle

Bangladesh, Bhutan, China (Guangxi, Hainan, Yunnan),
India (Arunachal Pradesh, Assam, Manipur, Meghalaya,
Mizoram, Nagaland), Laos, Myanmar, Thailand (?),
Vietnam

Cyclemys mouhotii Gray 1862a:157, *Pyxidea mouhotii*,
Cyclemys mouhotii, *Pyxidea mouhotii*, *Emys mouhotii*,
Geoemyda mouhotii, *Pyxidea mouhotii mouhotii*, *Cuora mouhotii*, *Cuora mouhotii mouhotii*
Type locality: “Lao Mountains, in Siam.” Restricted to “Luang
Prabang, Laos (19º54' N, 102º8' O)” by lectotype designation by
Fritz et al. (1998:40).

Cuora galbinifrons serrata Iverson and McCord 1992b:434
(partim, hybrid)
Type locality: “100 km east of Tungfang at Tainthien in central
Hainan Island, China.”

Cuora mouhotii obsti (Fritz, Andreas, and Lehr 1998)
Southern Keeled Box Turtle

Laos, Vietnam

Pyxidea mouhotii obsti Fritz, Andreas, and Lehr 1998a:35,
Cuora mouhotii obsti
Type locality: “Umgebung von Phú Lôc, Annam (Vietnam), 16º16’
N. 107º56’ E.”

Cuora pani Song 1984 (12:22)
Pan’s Box Turtle

China (Henan, Hubei, Shaanxi, Sichuan)
IUCN Red List: Critically Endangered A1d+2d (2000); Previ-
ously: Data Deficient (1996)
TFTSG Draft Red List: Critically Endangered (2011)
CITES: Appendix II, as *Cuora* spp.

**Cuora pani Song 1984:330, Cuora pani pani, Pyxiclemmys
pani pani**
Type locality: “Xujiaba (alt. 420 m) of Pingli County in Shaanxi
Province” [China].

Cuora chriskarannarum Ernst and McCord 1987:624
Type locality: “Ta Lau Shan, Yunnan Province, China (23º30’ N,
102º25’ E).”

Cuora picturata Lehr, Fritz, and Obst 1998 (07:35, 09:22, 12:22)
Southern Vietnam Box Turtle
Vietnam
IUCN Red List: Critically Endangered A2bd+4bd (2016);
Previously: Critically Endangered, as part of Cuora galbinifrons (2000)
CITES: Appendix II, as Cuora spp.
Cuora galbinifrons picturata Lehr, Fritz, and Obst 1998:7, Cistoclemmys galbinifrons picturata, Cuora picturata, Cistoclemmys picturata
Type locality: “südliches Annam (Vietnam).”

Cuora trifasciata (Bell 1825a) (07:36, 09:23, 12:22) (40, 42)
Chinese Three-striped Box Turtle, Golden Coin Turtle

(subspecies: trifasciata = red, luteocephala = purple; orange dots = trade)
China (Fujian, Guangdong, Guangxi, Hong Kong)
TFTSG Draft Red List: Critically Endangered (2011)
CITES: Appendix II, as Cuora spp.

Cuora trifasciata trifasciata (Bell 1825a) (07:36, 09:23, 12:22) (40, 42)
Chinese Three-striped Box Turtle

China (Fujian, Guangdong, Guangxi, Hong Kong)
Sternotherus trifasciatus Bell 1825a:305, Emys (Cistuda) trifasciata, Emys trifasciata, Cistuda trifasciata, Cistudo trifasciata, Cuora trifasciata, Pyxidemys trifasciata, Terrapene trifasciata, Cyclamys trifasciata, Cuora (Pyxiclemmys) trifasciata, Pyxiclemmys trifasciata, Cuora trifasciata trifasciata
Type locality: Not known. Restricted to “Luofu Shan Mountains, Guangdong, China” by Blanck et al. (2006:40).

Mauremys iversoni Pritchard and McCord 1991:140 (partim, hybrid)
Type locality: “People’s Republic of China: Fujian Province: vicinity of Nanping (20º38’ N, 118º10’ E).”

Clemmys guangxiensis Qin 1992:60 (partim, hybrid)
Type locality: “Nanning, Guangxi” [China].

Cuora trifasciata luteocephala Blanck, Protiva, Zhou, Li, Crow, and Tiedemann 2017 (42)
Hainan Three-striped Box Turtle

China (Hainan)
Sacalia pseudocellata Iverson and McCord 1992a:426 (partim, hybrid)
Type locality: “between Tungfang [19º03’ N, 108º56’ E] and Kancheng [18º51’ N, 108º37’ E; ca. 48 km from Tungfang], western Hainan Island, China.”

Ocadia philippeni McCord and Iverson 1992:13 (partim, hybrid)
Type locality: “near Kancheng [18º51’ N, 108º37’ E; = 48 km from Tungfang (19º03’ N, 108º56’ E)], western Hainan Island, China.”

Cuora trifasciata luteocephala Blanck, Protiva, Zhou, Li, Crow, and Tiedemann 2017:14
Type locality: “China, Hainan Province, Dan County, 300m elevation.”

Cuora yunnanensis (Boulenger 1906) (07:37, 12:22)
Yunnan Box Turtle

China (Yunnan)

Zhou Ting, William P. McCord, Torsten Blanck / TCC / Yunnan, China [captivity]
Cuora zhoui Zhao in Zhao, Zhou, and Ye 1990 (12, 22)
Zhou’s Box Turtle

Cuora pallidicephala McCord and Iverson 1991:414
Type locality: “Wuting [= Wuding: 25°26’N, 102°21’W] or Yuanmow [25°41’N, 101°54’W], Yunnan Province, China.”

Cyclemys Bell 1834:17
Type species: Cyclemys orbicularis Bell 1834 [= subjective synonym of Emys dentata Gray 1831d], by original designation.
Cyclemis Tirant 1884:156 (nomen novum)

Cyclemys atripons Iverson and McCord 1997 (44)
Western Black-bridged Leaf Turtle

Cyclemys dentata (Gray 1831d) (08:7)
Asian Leaf Turtle
Brunei, Indonesia (Bali, Java, Kalimantan, Sumatra), Malaysia (Peninsular, East), Philippines (Palawan, Sulu Archipelago), Singapore, Thailand
TFTSG Draft Red List: Data Deficient (2011)
CITES: Appendix II, as Cyclemys spp.

Emys hasseltii Boie in Fitzinger 1826:45 (*nomen nudum*), *Clemmys (Clemmys) hasseltii*
Type locality: “Asia, Insula Java” [Indonesia].

Emys dhor Gray 1830e:8 (*nomen oblitum*), *Cyclemys dhor*
Type locality: “India.” Restricted to “Bengal...[and] Java” by Gray (1831d:20); and to “Java” [Indonesia] by lectotype designation by Fritz et al. (1997:188).

Emys dentata Gray 1831d:errata[btw 78-79] (*nomen novum*), *Cistudo (Cyclemys) dentata, Cistudo dentata, Cyclemys dentata, Cyclemys dentata dentata*
Type locality: “Bengal...[and] Java.” Restricted to “Java” [Indonesia] by Smith (1931:80), and by lectotype designation by Fritz et al. (1997:188).

Cyclemys orbiculata Bell 1834:17, *Emys orbiculata, Emys (Cyclemys) orbiculata, Cistudo orbiculata*
Type locality: “Indiâ.” Restricted to “Java” [Indonesia] by neotype designation by Fritz et al. (1997:188).

Cistudo diardii Duméril and Bibron 1835:227 (*nomen novum*), *Emys diardii*
Type locality: “Bengale et l’île de Java.”

Cyclemys ovata Gray 1863e:178
Type locality: “Sarawak” [East Malaysia].

Cyclemys bellii Gray 1863e:179
Type locality: Not known.

Cyclemys enigmatica Fritz, Guicking, Auer, Sommer, Wink, and Hundsdörfer 2008
Enigmatic Leaf Turtle

Malaysia (Peninsular, East), Singapore, Indonesia (Java, Kalimantan, Sumatra), Thailand
IUCN Red List: Not Evaluated
TFTSG Draft Red List: Data Deficient (2011)
CITES: Appendix II, as Cyclemys spp.

Cyclemys enigmatica Fritz, Guicking, Auer, Sommer, Wink, and Hundsdörfer 2008:381
Type locality: “Padang, Sumatra” [Indonesia].

Cyclemys fusca Fritz, Guicking, Auer, Sommer, Wink, and Hundsdörfer 2008
Myanmar Brown Leaf Turtle

India (Nagaland, Manipur), Myanmar
IUCN Red List: Not Evaluated
TFTSG Draft Red List: Data Deficient (2011)
CITES: Appendix II, as Cyclemys spp.

Cyclemys fusca Fritz, Guicking, Auer, Sommer, Wink, and Hundsdörfer 2008:383
Type locality: “Kachin State, Myanmar.”
Cyclemys gemeli Fritz, Guicking, Auer, Sommer, Wink, and Hundsdörfer 2008

Assam Leaf Turtle

Bangladesh, Bhutan, India (Arunachal Pradesh, Assam, Bihar, Manipur, Meghalaya, Mizoram, Nagaland, Uttar Pradesh), Myanmar, Nepal

IUCN Red List: Not Evaluated

TFTSG Draft Red List: Data Deficient (2011)

CITES: Appendix II, as *Cyclemys* spp.

Cyclemys oldhamii Gray 1863:178, *Cyclemis oldhami*

Southeast Asian Leaf Turtle

Bangladesh, Bhutan, India (Arunachal Pradesh, Assam, Bihar, Manipur, Meghalaya, Mizoram, Nagaland, Uttar Pradesh), Myanmar, Nepal

IUCN Red List: Not Evaluated

TFTSG Draft Red List: Data Deficient (2011)

CITES: Appendix II, as *Cyclemys* spp.

Cyclemys pulchristriata Fritz, Gaulke, and Lehr 1997

Eastern Black-bridged Leaf Turtle
IUCN Red List: Not Evaluated
TFTSG Draft Red List: Data Deficient (2011)
CITES: Appendix II, as Cyclemys spp.

Cyclemys pulchristriata Fritz, Gaulke, and Lehr 1997:203,
Cyclemys atripons pulchristriata
Type locality: “Phuc-Son, Annam” [Vietnam].

Geoclemys Gray 1856b

Geoclemys Gray 1856b:17
Type species: Geoclemys hamiltonii [= Emys hamiltonii Gray 1830c], by subsequent designation by Stejneger (1907:496).
Geoclemys Cope 1865:186 (nomen novum)

Geoclemys hamiltonii (Gray 1830c) (1877)
Spotted Pond Turtle, Black Pond Turtle

Bangladesh, India (Assam, Bihar, Jammu, Meghalaya, Punjab, Rajasthan, Uttar Pradesh, West Bengal), Nepal, Pakistan

CBFTT Account: Das and Bhupathy (2010)
TFTSG Draft Red List: Endangered (2011)
CITES: Appendix I

Emys hamiltonii Gray 1830c:9 (1877), Clemmys (Clemmys) hamiltonii, Clemmys hamiltonii, Geoclemys hamiltonii, Damonia hamiltonii, Geoclemys hamiltonii, Geoclemys hamoltoni
Type locality: “India.”

Emys guttata Gray 1831b:pl.76
Type locality: “India.”

Emys piquotii Lesson 1831a:120
Type locality: “le Gange” [India].

Emys pictus León 1835:316 (nomen novum)

Emys hamiltonoides † Falconer and Cautley in Lydekker 1880:21 (nomen nudum) [Late Pleistocene (Pinjor) to Early Pleistocene (Tatrot), Siwaliks, India (Punjab)], Damonia hamiltonoides
Type locality: “Sind” [Pakistan].

Clemmys palaeindica † Lydekker 1885:178 (nomen novum) [Late Pliocene (Pinjor) to Early Pleistocene (Tatrot), Siwaliks, India (Punjab)], Damonia palaeindica
Type locality: “Siwalik Hills” [Punjab, India].

Geoclemys sivalensis † Tewari and Badam 1969:555 [Lower Pleistocene, Upper Siwaliks, India (Haryana)]
Type locality: “Upper Siwaliks...1 km south-east of Qaranwalla...6 km northeast of Chandigarh Lake...Panjore, India.” [Haryana, India].

Geoemyda Gray 1834b

Geoemyda Gray 1834b:100 (nomen conservandum, ICZN 1985a)
Type species: Geoemyda spengleri [= Testudo spengleri Gmelin 1789], by original designation.

Geoemyda Bonaparte 1836:6 (nomen novum)

Geoemyda Blyth 1856:714 (nomen novum)

Nicoria Gray 1856b:17
Type species: Nicoria spengleri [= Testudo spengleri Gmelin 1789], by original monotypy.

Geoemyda japonica Fan 1931
Ryukyu Black-breasted Leaf Turtle

Japan (Ryukyu Archipelago)

CBFTT Account: Yasukawa and Ota (2008)
CITES: Appendix II

Geoemyda spengleri japonica Fan 1931:148, Geoemyda japonica, Geoemyda japonicus
Type locality: “Japan and other Pacific Islands.” Restricted to “Nawa (Naha), Okinawajima Is., Japan” by Yasukawa et al. (1992:149).
Geoemyda spengleri (Gmelin 1789) (09:25)
Black-breasted Leaf Turtle

China (Guangdong, Guangxi, Hainan, Hunan [?], Jiangxi), Laos, Vietnam

CBFTT Account: Yasukawa and Ota (2010)
TFTSG Draft Red List: Endangered (2011)
CITES: Appendix II

Testudo spengleri Gmelin 1789:1043 (nomen conservandum, ICZN 1985a), *Emys spengleri*, *Geoemyda spengleri*, *Clemmys (Clemmys) spengleri*, *Clemmys spengleri*, *Noricia spengleri*, *Geoemyda spengleri spengleri*
Type locality: Not designated. Originally indicated as coming from “vermuthlich...Ostindien” by Walbaum (1785:129); and restricted to “probably...from the East Indies” by Pope (1935:36).

Testudo serrata Shaw 1802:51 (junior homonym, not = *Testudo serrata* Daudin 1801)
Type locality: Not designated.

Testudo tricarinata Bory de Saint-Vincent 1804:308 (junior homonym, not = *Testudo tricarinata* Retzius in Schoepff 1792)
Type locality: “Bourbon...mare d’Arzule” [Réunion] [in error].

Geoemyda spengleri sinensis Fan 1931:146
Type locality: “Loshiang and Kutchen” [Luoxiang and Guchen, Guangxi, China].

Hardella Gray 1870c

Hardella Gray 1870c:58
Type species: *Hardella thurjii* [= *Emys thurjii* Gray 1831d], by subsequent designation as *Hardella thurgii* by Günther (1871:70).

Hardella thurjii (Gray 1831d) (05:40)
Crowned River Turtle

Bangladesh, India (Assam, Bihar, Madhya Pradesh, Meghalaya, Punjab, Uttar Pradesh, West Bengal), Nepal, Pakistan

CBFTT Account: Das and Bhupathy (2009a)
TFTSG Draft Red List: Endangered (2011)
CITES: Appendix II

Emys thurjii Gray 1830:e:8 (10:7) (nomen oblitum)
Type locality: “Bengal” [Bangladesh or India].

Emys thurjii Gray 1831d:22 (nomen novum), *Testudo thurjii*, *Hardella thurjii*, *Hardella thurjii thurjii*
Type locality: “India.” Restricted to “Ganges and Brahmaputra systems” [India] as *Hardella thurjii* by McDowell (1964:255).

Emys flavonigra Lesson 1831a:120
Type locality: “le Gange” [India].

Clemmys (Clemmys) thurgii Fitzinger 1835:123 (nomen novum), *Clemmys thurgii*, *Testudo thurgii*, *Emys thurgii*, *Emys thurgii*, *Batagur thurgii*, *Hardella thurgii*, *Batagur (Hardella) thurgii*

Kachuga oldhami Gray 1869:a:200, *Kachuga (Kachuga) oldhami*
Type locality: “India.”

Hardella indi Gray 1870c:58 (07:40), *Hardella thurjii indi*
Type locality: “Indus River” [Pakistan].

Batagur falconeri † Lydekker 1885:187 [Late Pliocene (Pin- jor) to Early Pleistocene (Tatrot), Siwaliks, India (Punjab)], *Hardella falconeri*
Type locality: “Siwalik Hills” [Punjab, India].

Batagur cauleyi † Lydekker 1885:194 [Late Pliocene (Pin- jor) to Early Pleistocene (Tatrot), Siwaliks, India (Punjab)], *Hardella falconeri*
Type locality: “Siwalik Hills” [Punjab, India].

Clemmys watsoni † Lydekker 1886:541 [Late Pliocene to Early
Pleistocene, Siwaliks, India (Gujarat)]
Type locality: “Siwaliks of Perim Island, Gulf of Cambay, India”
[Gujarat, India].

Geoemyda pilgrimi † Prasad and Satsangi 1967 [Late Pliocene to Early Pleistocene, Siwaliks, Haritalyanagar, India (Himachal Pradesh)]
Type locality: “Tatro Beds east of Chakrana in Bilaspur District, Himachal Pradesh, India.”

Heosemys Stejneger 1902
Heosemys Stejneger 1902:238
Type species: *Heosemys spinosa* [= *Emys spinosa* Gray 1831d], by original designation.

Hieremys Smith 1916:50
Type species: *Hieremys annandali* [= *Cyclemys annandali* Boulenger 1903a], by original monotypy.

Heosemys annandali (Boulenger 1903a) (07:41)
Yellow-headed Temple Turtle

Heosemys depressa (Anderson 1875)
Arakan Forest Turtle

Bangladesh, Myanmar
TFTSG Draft Red List: Critically Endangered or Endangered (2011)
CITES: Appendix II

Geoemyda depressa Anderson 1875:284, *Geoemyda depressa*, *Heosemys depressa*

Geoemyda arakanana Theobald 1876:vii, *Geoemyda arakanana*
Type locality: “Akyab” [Myanmar].

Heosemys grandis (Gray 1860d)
Giant Asian Pond Turtle

Cambodia, Laos, Malaysia (Peninsular), Thailand, Vietnam
TFTSG Draft Red List: Critically Endangered or Endangered (2011)
CITES: Appendix II

Cyclemys annandali Boulenger 1903a:142 (07:41), *Hieremys annandali*, *Heosemys annandali*
Type locality: “Kampong Jalor” [= Yala, Yala Prov., Thailand].

Hieremys annandali Smith 1916:50 (*nomen novum*), *Cyclemys annandali*
Cambodia, Laos, Malaysia (Peninsular), Myanmar, Thailand, Vietnam
TFTSG Draft Red List: Endangered (2011)
CITES: Appendix II

Enyss siamensis Gray in Günther 1860:114 (nomen nudum)
Type locality: “Siam” [Thailand].

Geoemyda grandis Gray 1860d:218, _Geomyda grandis, Clemmys grandis, Heosemys grandis_
Type locality: “Cambojia” [Cambodia].

__Heosemys spinosa__ (Bell in Gray 1830a) (12,25)
Spiny Turtle

Indonesia (Sulawesi)

CBFTT Account: Hagen, Platt, and Innis (2009)
TFTSG Draft Red List: Critically Endangered (2011)
CITES: Appendix II

Geoemyda yuwonoi McCord, Iverson, and Boeadi 1995:311,
Heosemys yuwonoi, Leucocephalon yuwonoi
Type locality: “near Gorontalo [0º33' N, 123º05' E] on the Minahassa Peninsula, northern Sulawesi (Celebes), Indonesia.”
Malayemys Lindholm 1931 (46)

Damonia Gray 1869a:193 (junior homonym, not = *Damonia* Robineau-Desvoidy 1847 [= *Diaptera*])

Type species: *Damonia macrocephala* [= *Geoclemmys macrocephala* Gray 1859], by subsequent designation by Stejneger (1907:496).

Malayemys Lindholm 1931:30 (*nomen novum*)

Type species: *Malayemys macrocephala* [= *Geoclemmys macrocephala* Gray 1859], in accordance with ICZN Article 67.8, not *Malayemys subtrijuga* [= *Emys subtrijuga* Schlegel and Müller 1845], as by original designation by Lindholm (1931:30).

Malayemys khoratensis Ihlow, Vamberger, Flecks, Hartmann, Cota, Makchai, Meewattana, Dawson, Kheng, Rödder, and Fritz 2016 (46, 47)

Khorat Snail-eating Turtle

Malayemys macrocephala (Gray 1859) (07-43) (46)

Malayan Snail-eating Turtle

Malayemys Lindholm 1931 (46)

Emys megacephala Gray 1870c:44 (*nomen nudum*), *Damonemia megacephala*

Malayemys subtrijuga (Schlegel and Müller 1845) (46)

Mekong Snail-eating Turtle
Cambodia, Laos, Thailand (?), Vietnam
Possibly Introduced or Native: Indonesia (Java, Sumatra?)
(prehistoric or historic?)
TFTSG Draft Red List: Vulnerable (2011)
CITES: Appendix II

Emys herrmanni Schweigger 1812:311 (nomen dubium),
Clemmys (Clemmys) hermanni
Type locality: Not known.

Emys subtrijuga Schlegel and Müller 1845:30 (46), *Damonia subtrijuga*, *Geoclemys subtrijuga*, *Malayemys subtrijuga*
Type locality: “Java” [Indonesia]. Possibly introduced, but perhaps native (46).

Cistudo gibbosa Bleeker 1857b:239 (nomen nudum)
Type locality: “Batavia...Java” [Indonesia].

Emys nuchalis Blyth 1863:82,
Bellia nuchalis
Type locality: “Java?” [Indonesia].

Damonia crassiceps Gray 1870c:43 (48)
Type locality: “China.”

Damonia oblonga Gray 1871c:367
Type locality: “Batavia” [Java, Indonesia].

Mauremys Gray 1869b:500
Type species: *Mauremys fuliginosa* [= *Emys fuliginosus* Gray 1860c = subjective synonym of *Emys leprosa* Schoepff in Schweigger 1812], by subsequent designation by Lindholm (1929:281).

Ocadia Gray 1870c:35
Type species: *Ocadia sinensis* [= *Emys sinensis* Gray 1834a], by original monotypy.

Emmenia Gray 1870c:38
Type species: *Emmenia graei* [= *Emys graei* Günther 1869 = subjective synonym of *Mauremys caspica* siebenrocki Wischuf and Fritz in Fritz and Wischuf 1997 = subjective synonym of *Testudo caspica* Gmelin 1774], by original monotypy.

Eryma Gray 1870c:44 (junior homonym, not = *Eryma* Meyer 1840 [= *Crustacea* †] or *Eryma* Albers 1854 [= Gastropoda] or *Eryma* Förster 1868 [= Hymenoptera])
Type species: *Eryma laticeps* [= *Emys laticeps* Gray 1854a = subjective synonym of *Emys leprosa* Schoepff in Schweigger 1812], by original monotypy.

Cathaiemys Lindholm 1931:29
Type species: *Cathaiemys mutica* [= *Emys mutica* Cantor 1842b], by original designation.

Pseudocadia Lindholm 1931:30
Type species: *Pseudocadia anyangensis* [= *Testudo anyangensis* † Ping 1930], by original designation.

Chinemys Smith 1931:116
Type species: *Chinemys reevesii* [= *Emys reevesii* Gray 1831d], by original monotypy.

Annamemys Bourret 1940:15
Type species: *Annamemys merkleni* Bourret 1940 [= subjective synonym of *Cyclemys annamensis* Siebenrock 1903a], by original monotypy.

Mauremys annamensis (Siebenrock 1903a) (07:44, 14:29) (49)
Vietnamese Pond Turtle, Annam Pond Turtle

Mauremys annamensis (Siebenrock 1903a) (07:44, 14:29) (49)

Vietnamese Pond Turtle, Annam Pond Turtle

Vietnam
CBFTT Account: McCormack, Dawson, Hendrie, Ewert, Iverson, Hatcher, and Goode (2014)
TFTSG Draft Red List: Critically Endangered (2011)
CITES: Appendix II

Cyclemys annamensis Siebenrock 1903a:341, *Cuora (Cyclemys) annamensis*, *Cuora annamensis*, *Annamemys annamensis*, *Mauremys annamensis*, *Cathaiemys annamensis*
Type locality: “Annam (Phuc-Son)” [Vietnam].

Annamemys merkleni Bourret 1940:15
Type locality: “Annam...Fai-Fo” [Vietnam]

Clemmys guangxiensis Qin 1992:60 (14:29) (partim, hybrid), *Mauremys guangxiensis*
Type locality: “Nanning, Guangxi” [China]. [in error?]

Ocadia glyphistoma McCord and Iverson 1994:53 (07:33) (partim, hybrid)
Type locality: “near the Vietnam border southwest of Nanning, Guangxi Province, China.” [in error?]
Mauremys caspica (Gmelin 1774)
Caspian Turtle, Caspian Terrapin

Mauremys japonica (Temminck and Schlegel 1838)
Japanese Pond Turtle

Armenia, Azerbaijan, Bahrain, Georgia, Iran (Ardabil, Bushehr, Chahar Mahal Va Bakhtiari, East Azerbaijan, Esfahan, Fars, Gilan, Golestan, Ilam, Kermanshah, Khuzestan, Kordistan, Lorestan, Mazandaran, West Azerbaijan), Iraq, Russia (Dagestan), Saudi Arabia (Eastern), Syria, Turkey, Turkmenistan

TFTSG Draft Red List: Least Concern (2011)

Testudo caspica Gmelin 1774:59,pl.10, Emys caspica, Clemmys caspica, Clemmys (Clemmys) caspica, Mauremys caspica, Mauremys caspica caspica
Type locality: “Schamachie...bei Bach Pusahat” [Pirsagat, Shemakha, Azerbaijan]. Emended to “Hircaniae aquis dulcisibus” by Gmelin (1789:1042); and to “les bords de la mer Caspienne...dans les eaux douces de l’Hircanie” [Azerbaijan] by Daudin (1801:124).

Testudo ecaudata Daudin 1801:125 (nomen novum and senior homonym, not = Testudo ecaudata Pallas 1814)
Type locality: “les bords de la mer Caspienne...dans les eaux douces de l’Hircanie” [Azerbaijan].

Emys caspia Rüppell in Gray 1830:9 (nomen novum), Testudo caspia, Clemmys caspia, Clemmys caspia caspia
Type locality: “Caspian Sea.”

Emys grayi Günther 1869:504 (junior homonym, not = Emys grayi Bocourt 1868), Emmenia grayi
Type locality: “Busra” [Basrah, Iraq].

Mauremys caspica siebenrocki Wischuf in Maran 1996:17 (nomen nudum)
Mauremys caspica schiras Wischuf in Maran 1996:17 (nomen nudum)

Mauremys caspica ventrimaculata Wischuf and Fritz 1996:114
Type locality: “Tang-e Karam (Tang-i-Kirim), 70 Meilen östlich von Schiraz, Iran (29° 03’ N, 53° 38’ E).”

Mauremys caspica siebenrocki Wischuf and Fritz in Fritz and Wischuf 1997:240
Type locality: “Kerbela, Irak” [Iraq].

Mauremys japonica (Temminck and Schlegel 1838)
Japanese Pond Turtle

Japan (Honsyu, Kyoshu, Shikoku)
CBFTT Account: Yasukawa, Yabe, and Ota (2008)

CITES: Appendix II

Emys palaestinae var. Japon Temminck and Schlegel 1834:pls.8,9 (nomen nudum)
Emys vulgaris var. japonaise Temminck and Schlegel 1834:54 (nomen nudum)

Emys vulgaris japonica Temminck and Schlegel 1838:139
Emys japonica, Emys caspica japonica, Clemmys japonica, Mauremys japonica, Ocadia japonica
Type locality: “Japon” [Japan].

Testudo margaritifera Schlegel in Gray 1856b:11 (nomen nudum)
Type locality: “Japon” [Japan].
Mauremys leprosa (Schoepff in Schweigger 1812) (83)
Mediterranean Pond Turtle, Spanish Terrapin

Mauremys leprosa leprosa (Schoepff in Schweigger 1812) (07:45)
Mediterranean Pond Turtle

Emys marmorata Spix 1824:13, Clemmys marmorata

Clemmys sigirz Michalhelles 1829:1296, Terrapene sigirz, Emys sigirz, Clemmys caspica sigirz
Type locality: “paludibus Hispaniae meridionalis” [marshes of southern Spain].

Emys vulgaris Gray 1830e:107
Type locality: “South of Europe...Spain.” Validated by lectotype designation by Fritz and Wischuf (1997:249).

Emys sigirze Michelhelles in Gray 1831d:24 (nomen novum)
Emys laticeps Gray 1854a:134, Clemmys laticeps, Eryma laticeps

Emys fuliginosus Gray 1860c:232, Emys fuliginosa, Clemmys fuliginosa

Mauremys laniaria Gray 1869b:499

Emys flavipes Gray 1869c:643

Emys fraseri Gray 1869c:643 (partim, nomen dubium)

Mauremys leprosa atlantica Schleich 1996a:32 (07:45)
Type locality: “Larache, Nord-Marokko” [Morocco].

Mauremys leprosa erhardi Schleich 1996a:36 (07:45)
Type locality: “NNE Taza, N 35º 25' 32.8, W 02º 52' 11.5, Nordost Marokko” [Morocco].

Mauremys leprosa marokkonensis Schleich 1996a:40 (07:45)
Type locality: “ca. 2 km NE Tahanaoute / Kreuzung S 501, wenige km vor Aguelmou; S-Marakech, N 31º 24' 54.0, W 7º 49' 44.4, Zentral-Morokko” [Morocco].

Mauremys leprosa wernerkaestlei Schleich 1996a:44 (07:45)
Type locality: “Wasserlauf im Schnittpunkt von Oued Serou, Oued Oum de Oumbia. Oued Oum er Rbia, S-Khenifra, N 32º 44' 55.1, W 5º 41' 10.7, ca. 90 m NN, Zentral-Morokko” [Morocco].

Mauremys leprosa saharica Schleich 1996a:47 (07:45)
Saharan Pond Turtle

Mauremys leprosa saharica Schleich 1996a:48 (07:45)
Saharan Pond Turtle

Algeria, Libya, Mauritania (prehistoric introduction?), Mali (prehistoric introduction?), Morocco, Niger (prehistoric introduction?), Tunisia

Mauremys leprosa saharica Schleich 1996a:45 (07:45)
Type locality: “Fort Bou Jerif, Goulmime, Südwest-Marokko” [Morocco].

Emys leprosa Schoepff in Schweigger 1812:298, Clemmys (Clemmys) leprosa, Clemmys leprosa, Emys caspica leprosa, Clemmys caspica leprosa, Mauremys caspica leprosa, Mauremys leprosa, Mauremys leprosa leprosa
Type locality: Not known. Restricted to “Südspanien” [Spain] by Mertens and Müller (1928:22).

Emys lutescens Schweigger 1812:302, Clemmys (Clemmys) lutescens, Clemmys lutescens

Emys marmorea Spix 1824:13, Clemmys marmorata

Clemmys sigirz Michalhelles 1829:1296, Terrapene sigirz, Emys sigirz, Clemmys caspica sigirz
Type locality: “paludibus Hispaniae meridionalis” [marshes of southern Spain].

Emys vulgaris Gray 1830e:107
Type locality: “South of Europe...Spain.” Validated by lectotype designation by Fritz and Wischuf (1997:249).

Emys sigirze Michelhelles in Gray 1831d:24 (nomen novum)
Emys laticeps Gray 1854a:134, Clemmys laticeps, Eryma laticeps

Emys fuliginosus Gray 1860c:232, Emys fuliginosa, Clemmys fuliginosa

Mauremys laniaria Gray 1869b:499

Emys flavipes Gray 1869c:643

Emys fraseri Gray 1869c:643 (partim, nomen dubium)

Mauremys leprosa atlantica Schleich 1996a:32 (07:45)
Type locality: “Larache, Nord-Marokko” [Morocco].

Mauremys leprosa erhardi Schleich 1996a:36 (07:45)
Type locality: “NNE Taza, N 35º 25' 32.8, W 02º 52' 11.5, Nordost Marokko” [Morocco].

Mauremys leprosa marokkonensis Schleich 1996a:40 (07:45)
Type locality: “ca. 2 km NE Tahanaoute / Kreuzung S 501, wenige km vor Aguelmou; S-Marakech, N 31º 24' 54.0, W 7º 49' 44.4, Zentral-Morokko” [Morocco].

Mauremys leprosa wernerkaestlei Schleich 1996a:44 (07:45)
Type locality: “Wasserlauf im Schnittpunkt von Oued Serou, Oued Oum de Oumbia. Oued Oum er Rbia, S-Khenifra, N 32º 44' 55.1, W 5º 41' 10.7, ca. 90 m NN, Zentral-Morokko” [Morocco].
Mauremys leprosa vanmeerhaeghei Bour and Maran 1999:42

Type locality: “Oued Ziz, Meski bis Erfoud, Sud-Marokko” [Morocco].

Mauremys leprosa vanmeerhaeghei

Type locality: “Mare amont dans l’oasis de Sidi El Mehdouini (29º30 N, 8º00 W)...Province de Tata (ca. 30 km de Tata), Maroc...affluent de...l’oued Draa” [Morocco].

Mauremys mutica (Cantor 1842b) (49)
Yellow Pond Turtle

Mauremys mutica mutica (Cantor 1842b)

Yellow Pond Turtle

Type locality: “Chusan...Island” [Zhoushan Island, Zhejiang, China]. Cited as “Canton” [in error] by many authors, corrected by Iverson and McCord (1989:23).

Clemmys schmackeri Boettger 1894:129

Type locality: “China, wahrscheinlich Hainan.”

Annamemys grochowskiae Dao 1957:1214, Mauremys grochowskiae

Type locality: In Russian [“forest near Vinh-Linh, Quang Tri Province, central Vietnam”].

Mauremys iberonii Pritchard and McCord 1991:140 (partim, hybrid)

Type locality: “People’s Republic of China: Fujian Province: vicinity of Nanping (26º38’ N, 118º10’ E).”

Clemmys guangxiensis Qin 1992:60 (partim, hybrid), Mauremys guangxiensis

Type locality: “Nanning, Guangxi” [China].

Mauremys pritchardi McCord 1997:555 (partim, hybrid)

Type locality: “Lashio, Myanmar (97º14’ E, 22º56’ N).”

Mauremys mutica kami Yasukawa, Ota, and Iverson 1996

Ryukyu Yellow Pond Turtle

Mauremys nigricans (Gray 1834a)

Chinese Red-necked Turtle, Red-necked Pond Turtle
China (Fujian [?], Guangdong, Guangxi, Hainan [?]), Vietnam (?)

CBFTT Account: Anders and Iverson (2012)

TFTSG Draft Red List: Critically Endangered (2011)

CITES: Appendix II

Emys nigricans Gray 1834a:53, Emys nigracans, Clemmys nigricans, Damonia nigricans, Mauremys nigricans
Type locality: “Chinâ prope Canton” [Gangzhou, Guangdong].

Geoclemys kwangtungensis Pope 1934a:1, Clemmys kwang- tungensis, Chinemys kwangtungensis
Type locality: "Lofaoshan, Kwangtung, 300–400 m. altitude“ [Mt. Luofu, Guangdong, China].

Geoclemys palaeannamitica † Bouret 1941a:10 [Holocene, Neolithic, subfossil, Vietnam], Geoclemmys palaeaan- natica, Chinemys palaeannamitica
Type locality: "la grotte de Dong-Giao, appelée ‘Thung Gianh’... à moins de 1 km de la voie ferrée, vers le N.W., au S.W. de la station de Dong-Giao, tout près de la frontière entre Annam et Tonkin” [Vietnam].

Mauremys reevesii (Gray1831d) (07:46) (52)
Reeves’ Turtle, Chinese Three-keeled Pond Turtle

(native populations = red, introduced populations = gray; orange dots = introduced and probable trade)

China (Anhui, Fujian, Gansu, Guangdong, Guizhou, Henan, Hong Kong, Hubei, Hunan, Jiangsu, Jiangxi, Shangdong, Shanxi, Shaanxi, Sichuan, Zhejiang), Japan (prehistoric introduction), North Korea, South Korea, Taiwan (prehistoric introduction)

Introduced: Indonesia (Timor), Japan, Palau, Philippines, Taiwan, Timor-Leste

CBFTT Account: Lovich, Yasukawa, and Ota (2011)

CITES: Appendix III (China)

Emys reevesii Gray 1831d:73, Clemmys (Clemmys) reevesii, Clemmys reevesii, Geoclemmys reevesii, Geoclemmys reevesii, Damonia reevesii, Geoclemmys reevesii reevesii, Chinemys reevesii, Chinemys reevesii, Mauremys reevesii
Type locality: “China.”

Emys vulgaris picta Schlegel 1844:127
Type locality: “Japan.”

Emys japonica Duméril and Bibron in Duméril and Duméril 1851:8 (nomen novum)
Type locality: “Japon” [Japan].

Damonia unicolor Gray 1873e:78, Clemmys unicolor, Damon- nia reevesii unicolor, Geoclemmys reevesii unicolor
Type locality: “China...Shanghai.”

Geoclemmys grangeri Schmidt 1925:1, Geoclemmys reevesii grangeri, Chinemys grangeri
Type locality: “Yenchingkao, Wanhsien, Szechwan, 1500 feet altitude” [Yanjinggou, Sichuan, China].

Geoclemys paracaretta Chang 1929:1, Geoclemmys papacaretta
Type locality: “Fuchow” [Fuzhou Shi, Fujian, China].

Chinemys macrocephala Fang 1934:158, Mauremys mega- locephala, Chinemys megacephala
Type locality: “hill-sides of the vicinity of Nanking city” [Nanjing Shi, Jiangsu, China].

Chinemys macrocephala Bourret 1941c:140 (nomen novum)
Chinemys pani † Tao 1985:45 [Pleistocene, Chi-Ting, Taiwan]
Type locality: “Tsochen, Tsai-liao-chi, Tainan, Taiwan.”

Mauremys pritchardi McCord 1997:555 (09:33) (partim, hybrid)
Type locality: “Lashio, Myanmar (97º14’ E, 22º56’ N).”
Mauremys rivulata (Valenciennes in Bory de Saint-Vincent 1833)

(Western Caspian Turtle, Balkan Terrapin)

Albania, Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, Greece, Israel, Jordan, Kosovo (?), Lebanon, Macedonia, Montenegro, Palestine (West Bank), Syria, Turkey

Introduced: Latvia

CBFTT Account: Mantziou and Rifai (2014)

IUCN Red List: Global: Not Evaluated; Regional: Europe: Least Concern (2004)

TFTSG Draft Red List: Least Concern (2011)

Emys pannonica Michahelles in Bonaparte 1831:87 (nomen nudum)

Emys rivulata Valenciennes in Bory de Saint-Vincent 1833:planches,pl.9 (14:25) (senior homonym, not = Emys rivulata Gray 1844), Clemmys caspica rivulata, Mauremys caspica rivulata, Mauremys rivulata, Emmenia rivulata

Emys tristrami Gray 1869a:190, Emys tristram, Mauremys rivulata tristrami

Type locality: “Holy Land” [Israel or Jordan]. Restricted to “Jabook River” [Zarqa River, Jordan] by Gray (1873j:35); and to “Yarmuk River” [Israel or Jordan] by Bouleguer (1889:104).

Emys caspica arabica Gray 1870c:36, Emys arabica

Type locality: “Arabia Petraea?” Restricted to “Mt. Carmel” [Israel] by Gray (1873j:34).

Emys pannonica Gray 1870c:36

Type locality: “Xantos” [Xanthos, Greece].

Clemmys caspica orientalis Bedriaga 1881:335

Type locality: “Umgebung von Athen und von Nauplia, ferner auf den Inseln Milo, Mykonos, Syra, Tinos, Siphnos und Serifos” [Greece].

Clemmys caspica obsoleta Schreiber 1912:946

Type locality: “südlichen Dalmatien...Boche di Cattaro...&...Halbinsel Sabbioneello...&...Menge” [Croatia]. Restricted to “Boche di Cattaro, Süß-Dalmatien” [Croatia] by Wermuth and Mertens (1961:60).

Clemmys caspica cretica Mertens 1946:115, Mauremys caspica cretica, Mauremys rivulata cretica

Type locality: “Rapaniana, Kreta” [Crete, Greece].

Mauremys sinensis (Gray 1834a) (partim)

Chinese Stripe-necked Turtle

China (Fujian, Guangdong, Guangxi, Hainan, Zhejiang), Taiwan, Vietnam

Introduced: South Korea, USA (Florida)

TFTSG Draft Red List: Endangered (2011)

CITES: Appendix III (China)
Type locality: “near the Vietnam border southwest of Nanning, Guangxi Province, China.” [in error?]

Melanochelys Gray 1869a

Melanochelys Gray 1869a:187

Type species: *Melanochelys trijuga [= *Emys trijuga* Schweigger 1812], by original monotypy.

Geomyda (Chaibassia) Theobald 1876:6

Type species: *Geomyda (Chaibassia) tricarinata [= *Geomyda tricarinata* Blyth 1856], by original monotypy.

Melanochelys tricarinata (Blyth 1856)

Tricarinate Hill Turtle, Three-keeled Land Turtle

Bangladesh, Bhutan, India (Arunachal Pradesh, Assam, Bihar, Jharkhand, Uttar Pradesh, Uttarakhand, West Bengal), Nepal

CBFTT Account: Das (2009)

TFTSG Draft Red List: Vulnerable (2011)

CITES: Appendix I

Geomyda tricarinata Blyth 1856:714, *Geomyda (Chaibassia) tricarinata, Geomyda tricarinata, Chaibassia tricarinata, Nicoria tricarinata, Melanochelys tricarinata*

Type locality: “Central India (Chaibasa).” Restrict to “Chybassa, in the District of Singhbhum, Chota Nagpur, Bengal” [Jharkhand, India] by Anderson (1879:717).

Geomyda carinata Blyth in Jerdon 1870:69 (nomen novum)

Chaibassia theobaldi Anderson 1879:718

Type locality: “Bishnath Plain, near Tezpur, in Assam, close to the Brahmaputra” [Assam, India].

Nicoria tricarinata sivalensis Lydekker 1889:100 [Late Pliocene (Pinjor) to Early Pleistocene (Tatrot), Siwaliks, India (Punjab)], *Nicoria sivalensis* Type locality: “Siwalik Hills” [Punjab, India].

Melanochelys trijuga (Schweigger 1812)

Indian Black Turtle

(subspecies: *trijuga* = red, *coronata* = purple, *edeniana* = orange, *indopeninsularis* = pink, *parkeri* = brown, *thermalis* = green; overlap = intergrades; orange dots = introduced or trade)

Bangladesh, China (?) (Yunnan), India (Andhra Pradesh, Assam, Bihar, Gujarat, Karnataka, Kerala, Maharashtra, Meghalaya, Mizoram, Tamil Nadu, Uttar Pradesh, West Bengal), Myanmar, Nepal, Pakistan (?) Sri Lanka

Introduced: British Indian Ocean Territory (Chagos Archipelago), Maldives

CBFTT Account: Das and Bhupathy (2009b)

TFTSG Draft Red List: Near Threatened (2011)

CITES: Appendix II

Melanochelys trijuga trijuga (Schweigger 1812)

Indian Black Turtle

S. Jayakumar / CBFTT / Anaikatti Hills, Coimbatore, Western Ghats, Tamil Nadu, India

India (Andhra Pradesh, Gujarat, Karnataka, Maharashtra, Tamil Nadu), Pakistan (?)

Emys trijuga Schweigger 1812:310, *Clemmys (Clemmys) trijuga, Clemmys trijuga, Melanochelys trijuga, Nicoria trijuga, Geoemyda trijuga, Geoemyda trijuga trijuga, Melanochelys trijuga trijuga*

Type locality: “insula Java” [in error].
Emys belangeri Lesson 1831b:291
Type locality: “Bengale.[&].Carnate” [India]. Restricted to “Bengal” [India] by Smith (1931:97).

Emys trijuga maderaspatana Anderson 1879:729, Emys trijuga maderaspatana
Type locality: “Madras” [Chennai, Tamil Nadu, India].

Geoemyda trijuga plumbea Annandale 1915a:192
Type locality: “Coorg on the east side of the Western Ghats considerably east and a little south of the Madras district” [Karnataka, India].

Melanochelys trijuga corona (Anderson 1879)
Cochin Black Turtle

Emys trijuga corona Anderson 1879:729, Nicoria trijuga corona, Geoemyda trijuga corona, Melanochelys trijuga corona
Type locality: “Southern India...Travancore” [Kerala, India].

Melanochelys trijuga edeniana Theobald 1876 (00:47)
Burmese Black Turtle

Emys trijuga edeniana Theobald 1879:723
Type locality: “Arakan, Pegu, and Tenasserim...near Tounghu” [Myanmar].

Melanochelys trijuga parkeri Deraniyagala 1939 (46)
Parker’s Black Turtle

China (?) (Yunnan), Myanmar
Melanochelys edeniana edeniana Theobald 1876:12, Nicoria trijuga edeniana, Geoemyda trijuga edeniana, Melanochelys trijuga edeniana, Emys trijuga edeniana, Melanochelys edeniana edeniana
Type locality: “Arakan, Pegu, and Tenasserim...near Tounghu” [Myanmar].

Emys trijuga burmana Anderson 1879:723

Geoemyda trijuga wiroti Reimann in Nutaphand 1979:177, Melanochelys trijuga wiroti, Melanochelys edeniana wiroti
Type locality: “Thai-Burmese border area (Tak and Mae Hong Son Provinces)” [Thailand].
Melanochelys trijuga thermalis (Lesson 1830)
Sri Lanka Black Turtle

Melanochelys trijuga thermalis (Lesson 1830)
Sri Lanka Black Turtle

Melanochelys trijuga thermalis (Lesson 1830)
Sri Lanka Black Turtle

Melanochelys trijuga thermalis (Lesson 1830)
Sri Lanka Black Turtle

Emys thermalis Lesson 1830:86, Clemmys thermalis, Nicoria trijuga thermalis, Geoemyda trijuga thermalis, Melanochelys trijuga thermalis
Type locality: “eaux thermales de Cannia, près Trinquemalé à Ceylan,” [Sri Lanka].

Emys sebae Gray 1831d:75, Emys seba, Geoclemys seba, Geoclemys sebae, Melanochelys sebae

Morenia Gray 1870c
Morenia Gray 1870c:62
Type species: Morenia berdmorei [= Emys berdmorei] Blyth 1859 = subjective synonym of Emys ocellata Duméril and Bibron 1835], by subsequent designation by Lindholm (1929:279).

Morenia ocellata (Duméril and Bibron 1835)
Burmese Eyed Turtle

Morenia ocellata (Duméril and Bibron 1835)
Burmese Eyed Turtle

Morenia ocellata (Duméril and Bibron 1835)
Burmese Eyed Turtle

Morenia ocellata (Duméril and Bibron 1835)
Burmese Eyed Turtle

Morenia petersi Anderson 1879
Indian Eyed Turtle

Batagur (Morenia) petersi Anderson 1879:761, Batagur petersi, Morenia petersi
Type locality: “Huzurapur in the Jessore District.[&]..Furreedpore..[&]..Dacca” [Uttar Pradesh, India.[&]..Bangladesh].

Notochelys Gray 1863e
Notochelys Gray 1863e:177 (senior homonym, not = Notochelys Owen 1882 [= Testudines: Protostegidae †])
Type species: Notochelys platynota [= Emys platynota Gray 1834a], by original monotypy.
Notochelys platynota (Gray 1834a)
Malayan Flat-shelled Turtle

Orlitia borneensis Gray 1873b
Malaysian Giant Turtle

Brunei, Indonesia (Java, Kalimantan, Sumatra), Malaysia (Peninsular, East), Myanmar, Singapore, Thailand
TFTSG Draft Red List: Vulnerable (2011)
CITES: Appendix II

Orlitia borneensis Gray 1873b (1227)

Indonesia (Kalimantan, Sumatra), Malaysia (Peninsular, East)
TFTSG Draft Red List: Critically Endangered (2011)
CITES: Appendix II

Emys platynota Gray 1834a:54, Emys platynotha, Cyclemys platynota, Notochelys platynota
Type locality: "Indiâ Oriental." Restricted to "Sumatra" [Indonesia] by Gray (1835:pl.57).

Cistudo bankanensis Bleeker in Gray 1864a:12
Type locality: "Banka Island" [Sumatra, Indonesia].

Cyclemys giebelii Hubrecht 1881:45
Type locality: "Borneo" [Kalimantan, Indonesia].

Orlitia borneensis Gray 1873b
Type species: Orlitia borneensis Gray 1873b, by original monotypy.

Clemmys (Heteroclemmys) Peters 1875:622
Type species: Clemmys (Heteroclemmys) gibbera Peters 1875 [= subjective synonym of Orlitia borneensis Gray 1873b], by original monotypy.

Brookeia Bartlett 1896:113
Type species: Brookeia baileyi [= Harrella baileyi Bartlett 1895b = subjective synonym of Orlitia borneensis Gray 1873b], by original monotypy.

Adelochelys Baur 1896:319
Type species: Adelochelys crassa Baur 1896 [= subjective synonym of Orlitia borneensis Gray 1873b], by original monotypy.

Liemys Boulenger 1897a:468
Type species: Liemys inornatus Boulenger 1897a [= subjective synonym of Orlitia borneensis Gray 1873b], by original monotypy.

Pangshura Gray 1856b
Type species: Pangshura tecta (= Enyts tectum Gray 1830b), by subsequent designation by Lindholm (1929:278).

Cuchoa Gray 1870c:61
Type species: Cuchoa tentoria (= Enyts tentoria Gray 1834a), by subsequent designation by Lindholm (1929:278).

Jerdonella Gray 1870c:61
Type species: Jerdonella sylhetensis (= Pangshura sylhetensis Jerdon 1870), by original monotypy.
Emia Gray 1870:61
Type species: Emia smithii [= Batagur smithii Gray 1863], by original monotypy.

Pangshura smithii (Gray 1863g)
Brown Roofed Turtle

(subspecies: smithii = red, pallidipes = purple; overlap = intergrades)

Bangladesh, India (Assam, Bihar, Punjab, Uttar Pradesh), Nepal, Pakistan
TFTSG Draft Red List: Least Concern or Near Threatened (2011)
CITES: Appendix II, as Pangshura spp.

Pangshura smithii smithii (Gray 1863g)
Brown Roofed Turtle

Batagur smithii Gray 1863g:253, Pangshura smithii. Clemmys smithii, Emia smithii, Kachuga smithii, Kachuga smithii smithii, Pangshura smithii smithii
Type locality: “North-western India: Punjab; River Chenab” [Punjab, India, or Pakistan].

Pangshura smithii pallidipes (Moll 1987)
Pale-footed Roofed Turtle

India (Bihar, Uttar Pradesh), Nepal
Kachuga smithii pallidipes Moll 1987:8, Pangshura smithii pallidipes
Type locality: “Gandak River, Bherihari Wildlife Sanctuary, Bettiah (West Champaran) District, Bihar” [India].

Pangshura sylhetensis Jerdon 1870
Assam Roofed Turtle, Sylhet Roofed Turtle

Bangladesh, Bhutan (?), India (Arunachal Pradesh, Assam, Meghalaya, Mizoram, Nagaland), Myanmar (?)

IUCN Red List: Endangered B1+2c (2000); Previously: Data Deficient (1996)
TFTSG Draft Red List: Endangered (2011)
CITES: Appendix II, as Pangshura spp.

Pangshura sylhetensis Jerdon 1870:69, Jerdonella sylhetensis, Kachuga sylhetensis
Type locality: “the stream that runs from the Terria Ghat at the foot of the Khasi Hills” [India, now Bangladesh]. Emended to “Sylhet, a stream at the foot of the Khasi Hills” [originally Assam, India; now Sylhet, Bangladesh] by Boulenger (1889:58).
Pangshura tecta (Gray 1830b)
Indian Roofed Turtle

Bangladesh, India (Arunachal Pradesh, Assam, Bihar, Gujart, Haryana, Madhya Pradesh, Meghalaya, Odisha, Punjab, Rajasthan, Uttar Pradesh, Uttarakhnd, West Bengal), Nepal, Pakistan

TFTSG Draft Red List: Near Threatened (2011)

CITES: Appendix I

Emys tectum Gray 1830b:pl.72, *Emys tecta, Clemmys (Clemmys) tecta, Batagur (Pangshura) tecta, Batagur tecta, Clemmys tectum, Pangshura tecta, Pangshura tectum, Kachuga tectum, Kachuga (Pangshura) tecta, Kachuga tectum tectum, Kachuga tecta, Kachuga tecta tecta*

Type locality: "India."

Testudo dura Hamilton in Gray 1831d:23 (*nomen nudum*)

Type locality: "India."

Testudo katyayi Hamilton in Gray 1831d:23 (*nomen nudum*)

Type locality: "India."

Testudo pangshure Hamilton in Gray 1831d:23 (*nomen nudum*), *Testudo pangshura*

Type locality: "India."

Testudo khagraskata Hamilton in Gray 1831d:23 (*nomen nudum*)

Type locality: "India."

Emys trigibbosa Lesson 1831a:121

Type locality: “le Gange” [India].

Emys namadicus † Theobald 1860:295 (*nomen nudum*) [Tertiary, Nerbudda, India], *Emys namadicus, Emys namadica*

Type locality: “near Moar Dornur...Nerbudda Valley” [Madhya Pradesh, India].

Pangshura dura Gray 1869a:205

Type locality: Not designated.

Pangshura ventricosa Gray 1870c:60

Type locality: “India.” Restricted to “Assam” [India] by Boulenger (1889:59).

Pangshura tentoria (Gray 1834a)
Indian Tent Turtle

Bangladesh, India (Andhra Pradesh, Assam, Bihar, Chhattisgarh, Maharashta, Manipur, Odisha, Rajasthan, Uttar Pradesh, Uttarakhnd, West Bengal), Nepal

TFTSG Draft Red List: Least Concern (2011)

CITES: Appendix II, as *Pangshura spp.*

Pangshura tentoria tentoria (Gray 1834a) (07:49)

Indian Tent Turtle

India (Andhra Pradesh, Chhattisgarh, Maharashta, Odisha)

Emys tentoria Gray 1834a:54, *Batagur (Pangshura) tentoria, Batagur tentoria, Pangshura tentoria, Cachoia tentoria, Kachuga tectum tentoria, Kachuga tecta tentoria, Kachuga tentoria tentoria, Pangshura tentoria tentoria*

Type locality: “Indiae Orientalis regione Dukhun” [India]. Emended to “Deccan” [India] by Boulenger (1889-59); and restricted to “Dhond, Poona Dist.” [Daund, Pune Dist., Maharashta, India; in error?] by Smith (1931:128).

Pangshura tentorium Gray 1869a:205 (*nomen novum*)

Emys (Pangshura) tectum intermedia Blanford 1870:339,

Kachuga intermedia, Kachuga tectum intermedia

Type locality: “Chappa and Korba in Bilaspur, on the Hasdo River, a tributary of the upper Mahanaddi...above Sambhalpūr” [Chhattsigarh, India].

Pangshura leithii Gray 1870c:60

Type locality: “River Poona” [Maharashtra, India; in error, trade?].
Pangshura tentoria circumdata (Mertens 1969)
Pink-ringed Tent Turtle

India (Bihar, Rajasthan, Uttar Pradesh, Uttarakhand), Nepal

Kachuga tecta circumdata Mertens 1969a:24, *Kachuga tentoria circumdata*, *Pangshura tentoria circumdata*

Type locality: “Meerut, Indien” [Uttar Pradesh, India].

Pangshura tentoria flaviventer Günther 1864 (07:49)
Yellow-bellied Tent Turtle

Bangladesh, India (Bihar, Uttar Pradesh, West Bengal), Nepal

Pangshura flaviventer Günther 1864:35, *Kachuga tecta flaviventer*, *Pangshura flaviventris*, *Kachuga tentoria flaviventer*, *Pangshura tentoria flaviventer*

Type locality: “Bengal” [India]. Emended to “India” by Boulenger (1889:59).

Cuchoa flaviventris Gray 1870c:61 (nomen novum)

Sacalia Gray 1870c

Sacalia Gray 1870c:35

Type species: *Sacalia beali* [= Emys beali Gray 1834a = *Cistudo beali* Gray 1831d], by original monotypy.

Sacalia beali (Gray 1831d)
Beale’s Eyed Turtle

China (Fujian, Guangdong, Hong Kong, Hunan, Jiangxi)

TFTSG Draft Red List: Critically Endangered (2011)

CITES: Appendix II

Cuchoa flaviventris Gray 1870c:61 (nomen novum)

Sacalia quadriocellata (Siebenrock 1903a) (08:24)
Four-eyed Turtle

China (Guangdong, Guangxi, Hainan), Laos, Vietnam

TFTSG Draft Red List: Endangered (2011)

CITES: Appendix II

Cuchoa flaviventris Gray 1870c:61 (nomen novum)
Siebenrockiella Lindholm 1929
Bellia Gray 1869a:197 (junior homonym, not = Bellia Milne-Edwards 1848 [= Crustacea] or Bellia Bate 1851 [= Crustacea] or Bellia Tutt 1902 [= Lepidoptera])
Type species: Siebenrockiella crassicollis [= Emys crassicollis Gray 1830e], by original monotypy.
Siebenrockiella Lindholm 1929:280 (nomen novum)
Type species: Siebenrockiella crassicollis [= Emys crassicollis Gray 1830e], by original designation.
Siebenrockiella (Panyaenemys) Diesmos, Parham, Stuart, and Brown 2005:38
Type species: Siebenrockiella (Panyaenemys) leytensis [= Heosemys leytensis Taylor 1920], by original designation.

Siebenrockiella crassicollis (Gray 1830e) (10:7)
Black Marsh Turtle

Cambodia, Indonesia (Java, Kalimantan, Sumatra), Laos, Malaysia (Peninsular, East [7]), Myanmar, Singapore, Thailand, Vietnam

TFTSG Draft Red List: Endangered (2011)
CITES: Appendix II
Emys crassicollis Gray 1830e:8 (10:7), Clemmys (Clemmys) crassicollis, Clemmys crassicollis, Bellia crassicollis, Oritia crassicollis, Siebenrockiella crassicollis
Type locality: “Sumatra” [Indonesia].
Emys nigra Blyth 1856:713 (junior homonym, not = Emys nigra Hallowell 1854)
Type locality: “valley of the Tenasserim” [Myanmar].
Emys crassilabris Gray in Theobald 1876:10 (nomen novum), Bellia crassilabris
Pangshura cochinchinensis Tirant 1884:159, Kachuga cochinchinensis
Type locality: “Cochinchine” [Vietnam].

Siebenrockiella leytensis (Taylor 1920) (07:50)
Palawan Forest Turtle, Philippine Forest Turtle

Philippines (Palawan [not Leyte])
CBFTT Account: Diesmos, Buskirk, Schoppe, Diesmos, Sy, and Brown (2012)
CITES: Appendix II
Heosemys leytensis Taylor 1920:131, Geoemyda leytensis, Siebenrockiella leytensis, Siebenrockiella (Panyaenemys) leytensis
Type locality: “Cabalian, southern Leyte, P. L.” [Philippines] [in error]. Restricted to “northern Palawan in the Province of Palawan, Philippines” by Diesmos et al. (2012:3).

Vijayachelys Praschag, Schmidt, Fritzsch, Müller, Gemel, and Fritz 2006 (07:51)
Vijayachelys Praschag, Schmidt, Fritzsch, Müller, Gemel, and Fritz 2006:156
Type species: *Vijayachelys silvatica* [= *Geoemyda silvatica* Henderson 1912], by original designation.

Vijayachelys silvatica (Henderson 1912)
Cochin Forest Cane Turtle

Rhinoclemmys annulata (Gray 1860b)
Brown Wood Turtle

Rhinoclemmydinae Gray 1873j (12:21)

Rhinoclemmyina Gray 1873j:27
Rhinoclemminae Le and McCord 2008:763
Rhinoclemmydinae Turtle Taxonomy Working Group 2012:274

Rhinoclemmys Fitzinger 1835 (09:20, 12:21, 14:31)

Chemelys Rafinesque 1815:75 (*nomen nudum*)
Chemelys Rafinesque 1832:64 (*nomen suppressum, ICZN 1985a*)

Type species: *Chemelys verrucosa* [= *Testudo verrucosa* Sackow 1798 = subjective synonym of *Testudo punctularia* Daudin 1801], by original monotypy.

Clemmys (*Rhinoclemmys*) Fitzinger 1835:115 (*nomen conservandum, ICZN 1985a*)

Type species: *Geoemyda (Rhinoclemmys) dorsata* [= *Testudo dorsata* Schöpff 1801 = subjective synonym of *Testudo punctularia* Daudin 1801], by subsequent designation as *Emys dorsata* sensu Schweigger 1812 by Lindholm (1929:283).

Rhinoclemmys Gray 1863c:182 (*nomen novum*)

Rhinoclemmys (*Callopsis*) Gray 1863c:183

Type species: *Rhinoclemmys (Callopsis) annulata* [= *Geoemydina annulata* Gray 1860b], by original monotypy.
Rhinoclemmys areolata (Duméril and Bibron in Duméril and Duméril 1851)
Furrowed Wood Turtle

Belize, Guatemala, Honduras, Mexico (Campeche, Chiapas, Quintana Roo, Tabasco, Veracruz, Yucatán)

CBFTT Account: Vogt, Platt, and Rainwater (2009)
IUCN Red List: Near Threatened (2007); Previously: Least Concern [Not Listed] (1996)

Emys areolata Duméril and Bibron in Duméril and Duméril 1851:10, Malaclemmys concentrica areolata, Clemmys areolata, Malaclemmys concentrica areolata, Chelopus areolatus, Nicoria punctularia areolata, Geoemyda punctularia areolata, Geoemyda areolata, Rhinoclemmys areolata, Callopsis areolata
Type locality: “Province du Petén (Amér. centr.).” Restricted to “La Libertad, El Petén, Guatemala” by Smith and Taylor (1950a:318; 1950b:30); and to “Flores...El Petén...La Libertad...Guatemala” by Dunn and Stuart (1951:60).

Rhinoclemmys diademata (Mertens 1954)
Maracaibo Wood Turtle

Costa Rica, Honduras, Nicaragua, Panama
IUCN Red List: Near Threatened (1996)

Chelopus funereus Cope 1876:154, Emys funerea, Geoemyda funerea, Geoemyda punctularia funerea, Rhinoclemmys funerea, Callopsis funerea
Type locality: “Costa Rica...Limon.”

Geoemyda costaricensis Kanberg 1930:162
Type locality: “Costa Rica.”
Rhinoclemmys melanosterna (Gray 1861b) (14:31)
Colombian Wood Turtle

Colombia (Antioquia, Atlántico, Bolívar, Boyacá, Caldas, Cauca, Cesar, Chocó, Córdoba, Cundinamarca, La Guajira, Magdalena, Nariño, Santander, Sucre, Valle del Cauca), Ecuador, Panama
TFTSG Draft Red List: Least Concern (2011)

Geoclemmys melanosterna Gray 1861b:205, Clemmys melanosterna, Rhinoclemmys melanosterna, Rhinoclemys melanosterna, Nicoria punctularia melanosternum, Geemyda punctularia melanosternum, Geoemyda punctularia melanosternum, Callopsis punctularia melanosterna, Rhinoclemmys punctularia melanosterna
Type locality: “Gulf of Darien: Cherunha” [Colombia]. Restricted to “River Buonaventura, [and]..Chirambira, Gulf of Darien” [Colombia] by Boulenger (1889:124); to “Chirambira bei Buenaventura, Columbien” [Colombia] by Mertens and Wermuth (1955: 352), and to “Punta Chirambira en el Delta del Río San Juan...al norte de Buenaaventa en la Costa del Pacifico, Chocó” [Colombia] by Medem (1958:21).

Rhinoclemmys nasuta (Boulenger 1902a)
Large-nosed Wood Turtle

Costa Rica, El Salvador, Guatemala, Honduras, Mexico (Chiapas, Colima, Guerrero, Jalisco, Nayarit, Oaxaca, Sinaloa, Sonora), Nicaragua
Rhinoclemmys pulcherrima pulcherrima (Gray 1856b)
Guerrero Wood Turtle

Mexico (Guerrero, Oaxaca)

Emys pulcherrimus Gray 1856b:25, *Clemmys pulcherrima, Callichelys pulcherrima, Enys pulcherrima, Rhinoclemmys pulcherrima, Chelopus pulcherrima, Pseudemys pulcherrima, Chelopus pulcherrimus, Nicoria punctularia pulcherrima, Geoemyda punctularia pulcherrima, Geoemyda pulcherrima pulcherrima, Rhinoclemmys pulcherrima pulcherrima, Callopsis pulcherrima pulcherrima*

Type locality: “Mexico.” Restricted to “Presidio de Mazatlán, Sinaloa, Mexico” by Smith and Taylor (1950a:343, 1950b:30); and to “vicinity of San Marcos, Guerrero, Mexico” by Ernst (1978:125).

Rhinoclemmys pulcherrima incisa (Bocourt 1868)
Incised Wood Turtle

El Salvador, Guatemala, Honduras, Nicaragua, Mexico (Chiapas, Oaxaca)

Emys incisa Bocourt 1868:121, *Chelopus incisa, Chelopus incisus, Glyptemys incisa, Nicoria punctularia incisa, Clemmys incisa, Chrysemys incisa, Geoemyda punctularia incisa, Rhinoclemmys incisa, Geoemyda pulcherrima incisa, Rhinoclemmys pulcherrima incisa, Callopsis pulcherrima incisa*

Rhinoclemmys frontalis Gray 1873a:144
Type locality: “Tropical America.”

Rhinoclemmys bocourti Gray 1873f:111
Type locality: “Central America.”

Rhinoclemmys pulcherrima manni (Dunn 1930)
Central American Wood Turtle

Costa Rica, Nicaragua

Geoemyda manni Dunn 1930:33, *Geoemyda pulcherrima manni, Geoemyda punctularia manni, Callopsis pulcherrima manni, Rhinoclemmys pulcherrima manni*

Type locality: “San Jose, Costa Rica.”

Rhinoclemmys pulcherrima rogerbarbouri (Ernst 1978)
Western Mexican Wood Turtle

Mexico (Colima, Jalisco, Nayarit, Sinaloa, Sonora)

Callopsis pulcherrima rogerbarbouri Ernst 1978:127, *Rhinoclemmys pulcherrima rogerbarbouri*

Type locality: “Guirocoba, Sonora, Mexico.”

Rhinoclemmys punctularia (Daudin 1801) (08:12, 09:28)
Spot-legged Turtle

Brazil (Amapá, Amazonas, Bahia, Maranhão, Pará, Piauí, Roraima, Tocantins), French Guiana, Guyana, Suriname, Trinidad and Tobago, Venezuela (Amazonas, Bolívar, Delta Amacuro, Monagas)

Introduced: Brazil (Rio de Janeiro)

Rhinoclemmys punctularia punctularia (Daudin 1801) (08:12, 09:28)

Eastern Spot-legged Turtle

Brazil (Amapá, Amazonas, Maranhão, Pará, Piauí, Roraima, Tocantins), French Guiana, Guyana, Suriname, Trinidad and Tobago, Venezuela (Bolívar, Delta Amacuro, Monagas)

Introduced: Brazil (Rio de Janeiro)

Testudo scabra Linnaeus 1758:198 (*nomen oblitum* and senior homonym, not = *Testudo scabra* Retzius in Schoepff 1792 or *Testudo scabra* Latreille in Sommiv and Latreille 1801) (08:12), *Emys scabra*, *Rhinoclemmys scabra*, *Rhinoclemmys scabra* punctularia

Type locality: “Amérique méridionale...sur-tout...la Guiane...[&]...Cayenne” [French Guiana].

Testudo verrucosa Walbaum 1782:116 (*unavailable name*)

Type locality: Not designated.

Type locality: “Amérique méridionale...sur-tout...la Guiane...[&]...Cayenne” [French Guiana].

Testudo dorsata Schoepff 1801:136 (**nomen suppressum**, ICZN 1963), *Emys dorsata*, *Clemmys dorsata*

Type locality: Not known.

Testudo alacacca Stedman in Schweigger 1812:429 (**nomen nudum**)

Type locality: “Surinam.”

Emys dorsalis Spix 1824:11, *Emys dorsalis*

Type locality: “juxta flumen Solimoes” [Amazonas, Brazil].

Rhinoclemmys bellii Gray 1863c:183, *Rhinoclemmys bellii*, *Rhinoclemmys scabra bellii*

Type locality: “Tuchitan Tehuantepec, Mexico” [Juchitán, Oaxaca].

Geoemyda callocephalus Gray 1863h:254, *Clemmys callocephala*, *Geoemyda callocephala*, *Geoemyda callocephalus*, *Rhinoclemmys callocephala*, *Rhinoclemmys callocephala*

Type locality: Not known. Restricted to “S. America” by Boulenger (1889:124).

Rhinoclemmys lunata Gray 1873a:144, *Geoemyda punctularia lanata*, *Callopsis punctularia lunata*, *Rhinoclemmys lunata*, *Rhinoclemmys punctularia lunata*

Rhinoclemmys ventricosa Gray 1873a:145, *Rhinoclemmys ventricosa*

Rhinoclemmys punctularia flammigera Paolillo 1985 (08:25, 09:28)

Upper Orinoco Spot-legged Turtle

Venezuela (Amazonas)

Rhinoclemmys punctularia flammigera Paolillo 1985:294, *Rhinoclemmys punctularia flammigera*

Type locality: “Caño Maica, 10 km SE of Carmelitas, Territorio Federal Amazonas, Venezuela (4º4' N, 66º31' W).”

Rhinoclemmys rubida (Cope 1870a)

Mexican Spotted Wood Turtle

subsides: rubida = red, perixantha = purple

Mexico (Chiapas, Colima, Guerrero, Jalisco, Michoacán, Oaxaca)

Rhinoclemmys rubida rubida (Cope 1870a)

Oaxaca Wood Turtle

Mexico (Chiapas, Oaxaca)

Chelopus rubidus Cope 1870a:148, *Geoemyda rubida, Emys rubida, Nicoria rubida, Clemmys rubida, Geoemyda rubida, Geoemyda rubida rubida, Rhinoclemmys rubida, Rhinoclemmys rubida rubida, Callopsis rubida, Callopsis rubida rubida, Chelopus rubidus rubidus*

Type locality: “Tucolan Tehuantepec, Mexico” [Juchitán, Oaxaca].

Rhinoclemmys mexicana Gray 1870b:659, *Chelopus mexicanus*, *Emys mexicanus*

Type locality: “Mexico; San Juan del Río” [Oaxaca].
Rhinoclemmys rubida perixantha (Mosimann and Rabb 1953)
Colima Wood Turtle

Mexico (Colima, Guerrero, Jalisco, Michoacán)
Geoemyda rubida perixantha Mosimann and Rabb 1953:1,
Rhinoclemmys rubida perixantha, Calloplus rubida perixantha, Chelopus rubidus perixantha
Type locality: “8 kilometers south of Tecoman, Colima, Mexico.”

TESTUDINIDAE Batsch 1788

Testudines Batsch 1788:437
Testudia Rafinesque 1814:66
Tortuines Schmid 1819:10
Testudinidae Gray 1825:210
Tylotopodae Wagler 1828:861
Dysmydae Rügen 1828:270
Tylotopes Burmeister 1837:732
Testudinina Agassiz 1857a:356
Testudinidi Portis 1890:12

Aldabrachelys Loveridge and Williams 1957
Testudo (Megalochelys) Fitzinger 1843:29 (junior homonym,
not = Megalochelys Falconer and Cautley 1837 [= Testudinidae †])
Type species: *Testudo (Megalochelys) gigantea* [= Testudo gigantea Schweigger 1812], by original designation.
Geochelone (Aldabrachelys) Loveridge and Williams 1957:225
Type species: *Geochelone (Aldabrachelys) gigantea* [= Testudo gigantea Schweigger 1812], by original designation.
Dipsochelys Bour 1982a:117
Type species: *Dipsochelys elephantina* [= Testudo elephantina Duméril and Bibron 1835 = subjective synonym of *Testudo gigantea Schweigger 1812*], by original designation.

Aldabrachelys gigantea (Schweigger 1812)
Aldabra Giant Tortoise

Seychelles (Aldabra, Granitic Islands)
CITES: Appendix II, as Testudinidae spp.
gigantea elephantina, Geocheleone elephantina, Geocheleone gigantea elephantina, Dipsochelys elephantina, Aldabrachelys elephantina, Dipsochelys gigantea elephantina

Type locality: “la plupart des îles qui sont situées dans le Canal de Mosambique, telle que Anjouan, Aldebra, les Comores, d’où on l’apporte fréquemment à Bourbon et à Maurice.” Restricted to “Aldebra” [Seychelles] by Boulenger (1889:168); to “North Aldabra” by Rothschild (1915:418); and to “Ilé Malabar, Aldabra Atoll, Republic of Seychelles” by Bour (1985:291).

Testudo ponderosa Günther 1877:35, Aldabrachelys ponderosa

Testudo sumeirei Sauzier 1892:398, Geocheleone sumeirei, Dipsochelys sumeirei, Megalochelys sumeirei, Dipsochelys dussumieri sumeirei

Type locality: “probable...de Maurice...&...la Réunion...&...des Séchelles.” Restricted to “Seychelles Islands?” by Auffenberg (1974:144), and to “central Seychelles” by Bour (1985:292).

Testudo goulfei Rothschild 1906:753, Testudo goulfei, Geocheleone goulfei, Geocheleone (Aldabrachelys) goulfei, Geocheleone (Aldabrachelys) gigantea goulfei, Geocheleone goulfei, Megalochelys goulfei, Aldabrachelys goulfei

Type locality: “Therese Island, St. Anne’s Channel, Seychelles Islands.” Emended to “more likely...from Juan de Novo or Farquhar Island” [Seychelles] by Rothschild (1915:427).

Aldabrachelys gigantea arnoldi (Bour 1982a) (07:54, 09:30, 11:10)

Arnold’s Giant Tortoise

Aldabrachelys gigantea daudinii (Duméril and Bibron 1835) (09:30)

Daudin’s Giant Tortoise

Aldabrachelys gigantea hololissa (Günther 1877) (09:30, 11:10)

Seychelles Giant Tortoise

Aldabrachelys gigantea arnoldi (Bour 1982a) (07:54, 09:30, 11:10)

Arnold’s Giant Tortoise

Aldabrachelys gigantea daudinii (Duméril and Bibron 1835) (09:30)

Daudin’s Giant Tortoise

Aldabrachelys gigantea hololissa (Günther 1877) (09:30, 11:10)

Seychelles Giant Tortoise

Seychelles (Mahé? [extinct])

Testudo daudinii Duméril and Bibron 1835:123, Testudo gigantea daudinii, Geocheleone gigantea daudinii, Dipsochelys daudinii, Geocheleone daudinii, Aldabrachelys daudinii, Dipsochelys dussumieri daudinii

Type locality: “Indes orientales.” Restricted to “les îles Seychelles granitiques” by Bour (1985:58).

Dipsochelys resurrecta Gerlach and Canning 1996:133 (nom nudum)

Astrochelys Gray 1873j (07:52)

Testudo (Astrochelys) Gray 1873j:4

Type species: Testudo (Astrochelys) radiata [= Testudo radiata Shaw 1802], by original monotypy.

Astrochelys Gray 1874:724 (nom novum)

Angonoka Le, Raxworthy, McCord, and Mertz 2006:528 (09:31)

Type species: Angonoka yniphora [= Testudo yniphora Vaillant 1885a], by original designation.
Astrochelys radiata (Shaw 1802)
Radiated Tortoise, Sokake

Astrochelys yniphora (Vaillant 1885a) 07:56, 09:31
Ploughshare Tortoise, Angonoka

Madagascar

Introduced: Mauritius (Rodrigues, Round), Réunion

CITES: Appendix I

Testudo coui Daudin 1801:271 (*nomen oblitum*)

Type locality: Not known.

Testudo radiata Shaw 1802:22, *Psammobates radiatus*, *Astrochelys radiata, Testudo radiata radiata, Geochelone radiata, Astrochelys radiata*

Type locality: “Madagascar.” Restricted to “Soalara (Baie de Saint-Augustin), sud-ouest de Madagascar” by Bour (1979:152).

Testudo madagascariensis Schweigger 1812:457 (*nomen nudum*)

Type locality: “Madagascar.”

Testudo desertorum Grandidier 1869:257

Type locality: “Madagascar.”

Testudo hypselonota Bourret 1941b:9

Type locality: “provenant d’un Chinois de Cholon qui l’avait...achetée au marché...il n’est pas certain qu’elle ait été trouvée en Cochinchine” [Vietnam] [in error, trade specimen]. Restricted to “Cholon?...Indochina” by Wermuth and Mertens (1961:213) [in error]. Shown to be identical to *Testudo radiata* from Madagascar by Auffenberg (1963:465); type locality restricted to “durch den Tierhandel...von Madagascar nach Indochina” by Wermuth (1965:285).

Astrochelys radiata (Shaw 1802)
Radiated Tortoise, Sokake

Astrochelys yniphora (Vaillant 1885a)
Ploughshare Tortoise, Angonoka

Madagascar

Introduced: Mauritius (Rodrigues)

CITES: Appendix I

Testudo yniphora Vaillant 1885a:441, *Testudo radiata yniphora, Astrochelys yniphora, Geochelone yniphora, Geochelone (Asterochelys) yniphora, Astrochelys yniphora, Angonoka yniphora*

Type locality: “un îlot situé au nord-nord-est de...grand Comore...d’une localité située vers Aldabra” [in error]. Restricted to “cap d’Amparafaka (Baie de Baly), nord-ouest de Madagascar” by Bour (1979:152).

Testudo hypselonota Vaillant in Vaillant and Grandidier 1910:40 (*nomen novum*)
Centrochelys Gray 1872c (55:52)

Peltastes (*Centrochelys*) Gray 1872c:5

Type species: *Peltastes* (*Centrochelys*) sulcatus [= *Testudo sulcata* Miller 1779], by original monotypy.

Centrochelys sulcata (Miller 1779) (52:29)

African Spurred Tortoise

Chelonoidis Fitzinger 1835 (55:52) (58)

Geochelone (*Chelonoidis*) Fitzinger 1835:112

Type species: *Testudo* (*Chelonoidis*) boiei [= *Testudo boiei* Wagler 1830a = subjective synonym of *Testudo carbonarius* Spix 1824], by subsequent designation by Fitzinger (1843:29).

Testudo (Gopher) Gray 1870a:190

Type species: *Testudo* (Gopher) chilensis Gray 1870a, by original monotypy.

Elephantopus Gray 1874:724 (junior homonym, not = *Elephantopus* Agassiz 1846 [= *Siphonophora*])

Type species: *Elephantopus planiceps* [= *Testudo planiceps* Gray 1854b = unidentified taxon of *Chelonoidis nigra* species complex], by original monotypy.

Testudo (*Pampatestudo*) Lindholm 1929:285 (nomen novum)

Type species: *Testudo* (*Pampatestudo*) chilensis [=? *Testudo* (Gopher) chilensis Gray 1870a], by original monotypy.

Testudo (*Monachelys*) Williams 1952:547

Type species: *Testudo* (*Monachelys*) monensis Williams 1952, by original designation.

Darwintestudo Antenbrink-Vetter and Vetter 1998:4

Type species: *Darwintestudo hoedensis* [=? *Testudo hoedensis* Van Denburgh 1907], by original designation.

Chelonoidis carbonarius (Spix 1824) (51:19, 10:20, 14:33) (58)

Red-footed Tortoise

Benin, Burkina Faso, Cameroon, Central African Republic, Chad, Djibouti (?), Eritrea, Ethiopia, Mali, Mauritania, Niger, Nigeria, Saudi Arabia (?), Senegal, Somalia (?), Sudan, Yemen (?)

CITES: Appendix II, as Testudinidae spp.

Type locality: “India occidentali” [in error]. Restricted to “West Indies” [in error] by Miller (1796:54).

Testudo calcarata Schneider 1784:317 (*nomen novum*), *Chersine* calcarata

Type locality: “Westindien.” [in error].

Testudo radiata senegalensis Gray 1831d:11, *Geochelone* senegalensis, *Geochelone* sulcata *senegalensis*

Type locality: “Senegal.”

Geochelone sulcata sudanensis Ballasina, Vandepitte, Mochi, and Fenwick 2006:111 (*nomen nudum*)

Chelonoidis (*Pampatestudo*) Lindholm 1929:285 (*nomen novum*)

Type species: *Testudo* (*Pampatestudo*) chilensis [=? *Testudo* (Gopher) chilensis Gray 1870a], by original monotypy.

Testudo (*Monachelys*) Williams 1952:547

Type species: *Testudo* (*Monachelys*) monensis Williams 1952, by original designation.

Darwintestudo Antenbrink-Vetter and Vetter 1998:4

Type species: *Darwintestudo hoedensis* [=? *Testudo hoedensis* Van Denburgh 1907], by original designation.

Argentina (Formosa), Bolivia (Beni, Cochabamba, La Paz, Pando, Santa Cruz), Brazil (Alagoas, Amazonas, Bahia, Maranhão, Mato Grosso, Mato Grosso do Sul, Pará, Pernambuco, Piauí, Rio de Janeiro, Rondônia, Roraima, Sergipe), Colombia (Antioquia, Arauca, Atlántico, Bolívar, Boyacá, Caquetá, Casanare, Cauca, Cesar, Chocó, Córdoba, Cundinamarca, Guainía, La Guajira, Magdalena, Meta, Santander, Sucre, Tolima, Vichada), French Guiana, Guyana, Paraguay, Suriname, Venezuela (Apure, Barinas, Bolívar, Carabobo, Cojedes, Falcón, Guárico, Mérida, Miranda, Portuguesa, Sucre, Yaracuy, Zulia)

Introduced (modern or prehistoric?): Anguilla, Antigua, Barbuda, Barbados, Brazil (Rio de Janeiro), British Virgin Islands, Colombia (Providencia), Dominica, Grenada, Guadeloupe, Martinique, Montserrat, Netherlands Antilles, Nicaragua (Máiz Grande), Saint-Barthélemy, Saint Kitts and Nevis, Saint Lucia, Saint Martin, Saint Vincent and the Grenadines, Trinidad, US Virgin Islands, Venezuela (Isla Margarita, Los Togis)
TFTSG Draft Red List: Vulnerable (2011)
CITES: Appendix II, as Testudinidae spp.

Testudo carbonaria Spix 1824:22, *Testudo tabulata carbonaria*, *Geochelone carbonaria*, *Chelondys carbonaria*, *Chelondys carbonaria carbonaria*, *Chelondys carbonaria*
Type locality: “flumen Amazonum” [Pará, Brazil].

Testudo boiei Wagler 1830pl.XIII [14:33], *Geochelone (Chelondys) boiei*, *Geochelone boiei*, *Chelonoidis boiei*
Type locality: Not known.

Testudo hercules truncata Gray 1830c:3 [10:7, 10:20]
Type locality: “South America.”

Chelondys chilensis (Gray 1870a) [07:57, 10:21, 12:30] (59)
Chaco Tortoise, Pampas Tortoise

Argentina (Buenos Aires, Catamarca, Chaco, Córdoba, Formosa, La Pampa, La Rioja, Mendoza, Neuquén, Rio Negro, Salta, San Juan, San Luis, Santa Fe, Santiago del Estero, Tucumán), Bolivia (Santa Cruz, Tarija), Paraguay

TFTSG Draft Red List: Vulnerable (2011)
CITES: Appendix II, as Testudinidae spp.

Testudo (Gopher) chilensis Gray 1870a:190, *Testudo chilensis*, *Geochelone chilensis*, *Geochelone chilensis chilensis*, *Chelondys chilensis*, *Chelondys chilensis chilensis*
Type locality: “Chili” [Chile; in error], see Sclater (1870:470).
Emended to “Chili...N. Patagonia...Mendoza and the Pampas...[&]...Monte Video and Buenos Ayres” by Gray (1870d:707); and restricted to “Mendoza” [Argentina] by Boulegger (1889:159).

Testudo argentina Sclater 1870:471 (*nomen nudum*)
Geochelone donosobarrosi Freiberg 1979:83 [12:30], *Geochelone chilensis donosobarrosi*, *Chelondys chilensis donosobarrosi*, *Chelondys donosobarrosi*
Type locality: “San Antonio, Rio Negro” [Argentina].

Testudo peteri Freiberg 1979:36 [12:30], *Chelondys chilensis peteri*, *Chelondys peteri*, *Geochelone chilensis peteri*

Chelondys denticulatus (Linnaeus 1766) [10:19] (58)
Yellow-footed Tortoise

Bolivia (Beni, La Paz, Pando, Santa Cruz), Brazil (Acre, Amapá, Amazonas, Bahia [?], extirpated?, Espírito Santo [?], extirpated?), Maranhão, Mato Grosso, Mato Grosso do Sul, Pará, Rio de Janeiro [?], extirpated?, Roraima), Colombia (Amazonas, Arauca, Caquetá, Casanare, Guainía, Guaviare, Meta, Putumayo, Vaupés, Vichada), Ecuador, French Guiana, Guyana, Peru (Cusco, Loreto, Madre de Dios, Pasco, Ucayali), Suriname, Trinidad, Venezuela (Amazonas, Bolívar, Delta Amacuro, Monagas)

Introduced: Guadeloupe

TFTSG Draft Red List: Near Threatened (2011)
CITES: Appendix II, as Testudinidae spp.

Testudo denticulata Linnaeus 1766:352, *Chersine denticulata*, *Geochelone (Geochelone) denticulata*, *Geochelone denticulata*, *Chelondys denticulata*, *Chelondys denticulatus*
Type locality: “Virginia” [USA] [in error].

Testudo tabulata Walbaum 1782:122 (*unavailable name*)
Type locality: Not designated.

Testudo tessellata Stobaeus in Schneider 1792:262, *Chersine tessellata*

Testudo stobaeana Gmelin in Schoepff 1793:48 (*nomen nudum*)

Testudo tabulata Walbaum in Schoepff 1793:56, *Chersine tabulata*, *Geochelone (Chelondys) tabulata*, *Geochelone tabulata*, *Chelondys tabulata*

Testudo gigantea Schweigger 1812:327 (partim, misidentified type)
Type locality: “Africa australi?” [in error].

Testudo terrestris brasiliensis Seba in Schweigger 1812:445 (nomen nudum), Testudo brasiliensis
Type locality: Not designated. [Brazil].

Testudo terrestris americana Stobaeus in Schweigger 1812:445
Type locality: Not designated.

Testudo tabulata cayennensis Schweigger 1812:445 (nomen nudum), Testudo terrestris cayennensis
Type locality: Not designated. [French Guiana].

Testudo terrestris surinamensis Stedman in Schweigger 1812:445 (nomen nudum)
Type locality: Not designated. [Suriname].

Testudo hercules Spix 1824:20
Type locality: “sylvis ad flumen Solimoens” [Amazonas, Brazil].

Testudo sculpta Spix 1824:21
Type locality: “sylvis juxta flumen Amazonum” [Pará, Brazil].

Testudo cagado Spix 1824:23
Type locality: “campis et nemoribus campestribus Bahiae” [Bahia, Brazil].

Testudo planata Gmelin in Gray 1831d:9 (nomen nudum)
Testudo foveolata Schinz 1833:40 (nomen nudum)

Chelonoidis niger species complex (09:32, 12:31) (58, 60)
Galapagos Giant Tortoises

Ecuador (Galápagos: Española [Hood]; Fernandina [Narborough] [possibly extinct]; Floreana [Charles] [extinct]; Isabela [Albemarle]; Pinta [Abingdon] [extinct]; Pinzón [Duncan]; San Cristóbal [Chatham]; Santa Cruz [Indefatigable]; Santiago [San Salvador] [James]

Chelonoidis abingdonii (Günther 1877) (09:34, 12:31)
(Extinct, 2012)
Pinta Giant Tortoise, Abingdon Island Giant Tortoise

Ecuador (Galápagos: Pinta [Abingdon] [extinct])
Introduced: Ecuador (Galápagos: Isabela [Albemarle]) (hybrids with C. becki)

CITES: Appendix I, as Chelonoidis nigra

Testudo ephippium Günther 1874:422 (partim, nomen nudum)
Type locality: “Charles Island” [Floreana, Galápagos, Ecuador] [in error].

Testudo ephippium Günther 1875a:271 (partim, misidentified type)
Type locality: “Charles Island” [Floreana, Galápagos, Ecuador] [in error].Restricted to “Duncan” [Pinzón, Galápagos, Ecuador] by Van Denburgh (1914:259) [in error].

Testudo abingdonii Günther 1877:85, Testudo elephantopus abingdonii, Geocheleone abingdonii, Geocheleone elephantopus abingdonii, Chelonoidis abingdonii, Chelonoidis elephantopus abingdonii, Geocheleone (Chelonoidis) nigra abingdonii, Geocheleone nigra abingdonii, Chelonoidis nigra abingdonii, Chelonoidis elephantopus abingdonii
Type locality: “Abingdon Island” [Pinta, Galápagos, Ecuador].
Chelonia*oidis becki (Rothschild 1901)
Volcán Wolf Giant Tortoise, Wolf Volcano Giant Tortoise

Ecuador (Galápagos: Isabela [Albemarle])
Invasives: Hybrids with *Chelonia*oidis abingdoni and *C. niger*
IUCN Red List: Vulnerable D1+2 (1996), as *Chelonia*oidis nigra becki
CITES: Appendix I, as *Chelonia*oidis nigra

Chelonia*oidis chathamensis (Van Denburgh 1907)
San Cristóbal Giant Tortoise, Chatham Island Giant Tortoise

Ecuador (Galápagos: San Cristóbal [Chatham])
IUCN Red List: Vulnerable D1+2 (1996), as *Chelonia*oidis nigra chathamensis
CITES: Appendix I, as *Chelonia*oidis nigra

Type locality: “Chatham Island, Galapagos Archipelago” [San Cristóbal, Galápagos, Ecuador].
Chelonoidis darwini (Van Denburgh 1907)
Santiago Giant Tortoise, James Island Giant Tortoise

Ecuador (Galápagos: Santiago [San Salvador] [James])
CITES: Appendix I, as Chelonoidis nigra

Testudo schweiggeri Fitzinger 1826:44 (nomen nudum)
Geochelone (Geochelone) schweiggeri Fitzinger 1835:122 (nomen dubium et oblitum; junior homonym, not = Testudo schweiggeri Gray in Duméril and Bibron 1835 [= Testudo schweiggeri Gray 1830e]), Geochelone schweiggeri
Type locality: Not designated. Restricted to “America: Insel St.Jacob der Galopagten” [= Santiago, Galápagos, Ecuador] by Fitzinger (1853:110).

Testudo darwini Van Denburgh 1907:4, Testudo elephantopus darwini, Geochelone darwini, Geochelone elephantopus darwini, Chelonoidis darwini, Chelonoidis elephantopus darwini, Geochelone (Chelonoidis) nigra darwini, Geochelone nigra darwini, Chelonoidis nigra darwini
Type locality: “James Island, Galapagos Archipelago” [Santiago, Galápagos, Ecuador].

Eastern Santa Cruz Giant Tortoise, Cerro Fatal Giant Tortoise, Don Fausto’s Giant Tortoise

Ecuador (Galápagos: Santa Cruz [Indefatigable])
IUCN Red List: Not Evaluated
CITES: Appendix I, as Chelonoidis nigra

Chelonoidis donfaustoi Poulakakis, Edwards, and Caccone in Poulakakis, Edwards, Chiari, Garrick, Russello, Benavides, Watkins-Colwell, Glaberman, Tapia, Gibbs, Cayot, and Caccone 2015:12, Chelonoidis nigra donfaustoi
Type locality: “Cerro Fatal in Santa Cruz” [Galápagos, Ecuador].
Chelonoidis duncanensis (Pritchard 1996) (07:60, 12:31)
Pinzón Giant Tortoise, Duncan Island Giant Tortoise

Chelonoidis guntheri (Baur 1889) (07:64, 08:14, 09:36, 12:31) (60)
Sierra Negra Giant Tortoise

Ecuador (Galápagos: Isabela [Albemarle])
IUCN Red List: Endangered C2a (1996), as Chelonoidis nigra guentheri
CITES: Appendix I, as Chelonoidis nigra

Testudo ephippium Günther 1874:422 (partim, nomen nudum)
Testudo ephippium Günther 1875a:271 (partim, misidentified type).
Testudo elephantopus ephippium, Geochelone elephantopus ephippium, Chelonoidis ephippium, Chelonoidis nigra ephippium, Chelonoidis elephantopus ephippium, Geochelone (Chelonoidis) nigra ephippium, Geochelone nigra ephippium
Type locality: “Charles Island” [Floreana, Galápagos, Ecuador] [in error].
Restricted to “Duncan” [Pinzón, Galápagos, Ecuador] by Van Denburgh (1914:259) [in error].

Testudo duncanensis Garman 1917:269 (nomen nudum)
Geochelone nigra duncanensis Pritchard 1996:47, Chelonoidis nigra duncanensis, Chelonoidis duncanensis
Type locality: “Duncan Island” [Pinzón, Galápagos, Ecuador].
Chelonoidis hoodensis (Van Denburgh 1907) (12:31)
Española Giant Tortoise, Hood Island Giant Tortoise

Chelonoidis microphyes (Günther 1875a) (07:64, 08:14, 09:36, 12:31)
Volcán Darwin Giant Tortoise, Darwin Volcano Giant Tortoise, Tagus Cove Giant Tortoise

Chelonoidis hoodensis (Van Denburgh 1907) (12:31)
Española Giant Tortoise, Hood Island Giant Tortoise

Testudo hoodensis Van Denburgh 1907:3, *Testudo elephantopuss hoodensis*, *Geochelone elephantopus hoodensis*, *Geochelone hoodensis*, *Chelonoidis hoodensis*, *Chelonoidis elephantopus hoodensis*, *Geochelone (Chelonoidis) nigra hoodensis*, *Geochelone nigra hoodensis*, *Chelonoidis nigra hoodensis*, *Darwintestudo hoodensis*

Type locality: “Hood Island, Galapagos Archipelago” [Española, Galápagos, Ecuador].

Chelonoidis microphyes (Günther 1875a) (07:64, 08:14, 09:36, 12:31)
Volcán Darwin Giant Tortoise, Darwin Volcano Giant Tortoise, Tagus Cove Giant Tortoise

Testudo microphyes Günther 1874:422 (nomen nudum)
Testudo macrophyes Garman 1917:273

Type locality: “Santa Isabel Island (Albemarle) near Tagus Cove” [Isabela, Galápagos, Ecuador].

Ecuador (Galápagos: Isabela [Albemarle])
IUCN Red List: Vulnerable D1+2 (1996), as *Chelonoidis nigra microphyes*
CITES: Appendix I, as *Chelonoidis nigra*
Chelonoidis niger (Quoy and Gaimard 1824b)
(Extinct, ca. 1850)
Floreana Giant Tortoise, Charles Island Giant Tortoise

Ecuador (Galápagos: Floreana [Charles] [extinct])
Introduced: Ecuador (Galápagos: Isabela [Albemarle]) (hybrids with C. becki)
IUCN Red List: Extinct (1996), as Chelonoidis nigra nigra
CITES: Appendix I

Testudo californiana Quoy and Gaimard 1824a:90 (nomen oblitum)
Type locality: “La Californie...donnée vivante aux îles Sandwich” [California, USA; in error]. Errorously given with “Sandwich Islands” [Hawaii, USA] by Wermuth and Mertens (1961, 1977).

Testudo nigra Quoy and Gaimard 1824b:174 (nomen novum), Chelonoidis nigra, Geochelone nigra, Geochelone nigra nigra, Chelonoidis nigra nigra, Chelonoidis elephantopus nigra, Chelonoidis niger
Type locality: “La Californie...donnée vivante, aux îles Sandwich” [California, USA; in error]. Restricted arbitrarily to “Cerro Azul d’Isabela” [Galápagos, Ecuador] by Bour in David (1994:83); and to “Charles Island (Santa María or Floreana)” [Galápagos, Ecuador] by Pritchard (1996:49).

Testudo galapagoensis Baur 1889:1044, Testudo elephantopus galapagoensis, Geochelone elephantopus galapagoensis, Chelonoidis galapagoensis, Chelonoidis elephantopus galapagoensis, Geochelone (Chelonoidis) nigra galapagoensis, Geochelone nigra galapagoensis, Chelonoidis nigra galapagoensis
Type locality: “Charles Island” [Floreana, Galápagos, Ecuador].

Chelonoidis phantasticus (Van Denburgh 1907)
(Fernandina Giant Tortoise, Narborough Island Giant Tortoise)

Ecuador (Galápagos: Fernandina [Narborough] [possibly extinct])
IUCN Red List: NotEvaluated
TFTSG Draft Red List: Critically Endangered (Possibly Extinct) (2016); Previous Draft: Extinct
CITES: Appendix I, as Chelonoidis nigra

Testudo phantasticus Van Denburgh 1907:4, Testudo phantastica, Testudo elephantopus phantastica, Geochelone elephantopus phantastica, Chelonoidis phantastica, Geochelone phantastica, Chelonoidis elephantopus phantastica, Geochelone (Chelonoidis) nigra phantastica, Geochelone nigra phantastica, Chelonoidis nigra phantastica, Chelonoidis phantasticus
Type locality: “Narborough Island, Galapagos Archipelago” [Fernandina, Galápagos, Ecuador].
Chelonoidis porteri (Rothschild 1903) *(07:63, 09:35, 12:31)* *(62)*

Western Santa Cruz Giant Tortoise, Indefatigable Island Giant Tortoise

Ecuador (Galápagos: Santa Cruz [Indefatigable])
IUCN Red List: Endangered C2a (1996), as *Chelonoidis nigra porteri*
TFTSG Draft Red List: Critically Endangered (2016)
CITES: Appendix I, as *Chelonoidis nigra*

Testudo nigrita Duméril and Bibron 1835:80 *(62)*

Testudo elephantopus nigrita, Geocheleon nigrita, Geocheleon elephantopus nigrita, Chelonoidis elephantopus nigrita, Chelonoidis elephantopus nigrita, Chelonoidis (Chelonoidis) nigra nigrita, Chelonoidis nigra nigrita, Chelonoidis nigra nigrita

Type locality: Not known. Restricted to “Insel Indefatigable” [Santa Cruz, Galápagos, Ecuador] by Mertens and Wermuth (1955:376).

Testudo porteri Rothschild 1903:119, *Geocheleon elephantopus porteri, Geocheleon porteri, Geocheleon nigra porteri, Chelonoidis elephantopus porteri, Chelonoidis nigra porteri, Chelonoidis porteri*

Type locality: “Indefatigable Island, Galapagos group” [Santa Cruz, Galápagos, Ecuador].

Chelonoidis vandenburghi (DeSola 1930) *(07:64, 09:36, 12:31)* *(60)*

Volcán Alcedo Giant Tortoise, Alcedo Volcano Giant Tortoise

Ecuador (Galápagos: Isabela [Albemarle])
IUCN Red List: Vulnerable D2 (1996), as *Chelonoidis nigra vandenburghi*
CITES: Appendix I, as *Chelonoidis nigra*

Testudo vandenburghi DeSola 1930:79, Geocheleon vandenburghi, Geocheleon elephantopus vandenburghi, Chelonoidis vandenburghi, Chelonoidis elephantopus vandenburghi, Geocheleon (Chelonoidis) nigra vandenburghi, Geocheleon nigra vandenburghi, Chelonoidis nigra vandenburghi

Type locality: “forty miles from Villamil...at the coast on the southern border of Perry Isthmus...mid-Albemarle Island...Cowley Mountain nearly north...to the south...Villamil Mountain” [Isabela, Galápagos, Ecuador], emended to “Cowley Mountain...the first mountain north of Villamil Mountain” [Volcán Alcedo, Isabela, Galápagos, Ecuador] by Iverson (1992:250).
Chelonoidis vicina (Günther 1875a)
Cerro Azul Giant Tortoise, Iguana Cove Giant Tortoise

Chersina

Chersonisus

Chersina angulata (Duméril in Schweigger 1812) (10:37)
Angulate Tortoise, South African Bowsprit Tortoise

Chersobius

Chersobius Fitzinger 1835 (10:67, 12:23) (48)
Testudo (Chersobius) Fitzinger 1835:112
Type species: *Testudo (Chersobius) signatus* Walbaum [= *Testudo signata* Gmelin 1789], by subsequent designation by Lindholm (1929:284).

Pseudomopus Hewitt 1931:496

Type species: *Pseudomopus signatus* Walbaum [= *Testudo signata* Gmelin 1789], by original designation.

Chersobius boulengeri (Duerrden 1906)

Karoo Dwarf Tortoise, Karoo Padloper

South Africa

CITES: Appendix II, as Testudinidae spp.

Testudo signata Walbaum 1782:120 (unavailable name)

Type locality: Not known.

Testudo signata Gmelin 1789:1043, *Chersine signata*, *Homopus signatus*, *Pseudomopus signatus*, *Chersobius signatus*, *Homopus signatus signatus*; Type locality: “Virginia” [USA, in error]. Restricted to “vicinity of Springbok, Cape Province, South Africa” by Bour (1988:3).

Testudo cafra Daudin 1801:291

Type locality: “Afrique...la Cafrerie” [South Africa]. Restricted to “Drainage of the Olifants River, Cape Province, South Africa” by Bour (1988:3).

Testudo jovencella Daudin 1802:380

Type locality: “Afrique.”

Pseudomopus signatus peersi Hewitt 1935:345, *Homopus signatus peersi*, *Chersobius peersi*; Type locality: “Klaver District, C.P. [Cape Province], near Van Rhynsdorp” [South Africa].

Chersobius solus Branch 2007

Nama Tortoise, Nama Padloper

South Africa

CITES: Appendix II, as Testudinidae spp.

Testudo signata Walbaum 1782:120 (unavailable name)

Type locality: Not known.

Testudo signata Gmelin 1789:1043, *Chersine signata*, *Homopus signatus*, *Pseudomopus signatus*, *Chersobius signatus*, *Homopus signatus signatus*; Type locality: “Virginia” [USA, in error]. Restricted to “vicinity of Springbok, Cape Province, South Africa” by Bour (1988:3).

Testudo cafra Daudin 1801:291

Type locality: “Afrique...la Cafrerie” [South Africa]. Restricted to “Drainage of the Olifants River, Cape Province, South Africa” by Bour (1988:3).

Testudo jovencella Daudin 1802:380

Type locality: “Afrique.”

Pseudomopus signatus peersi Hewitt 1935:345, *Homopus signatus peersi*, *Chersobius peersi*; Type locality: “Klaver District, C.P. [Cape Province], near Van Rhynsdorp” [South Africa].
Namibia
IUCN Red List: Vulnerable C2a (1996), originally listed as Homopus bergeri
CITES: Appendix II, as Testudinidae spp.

Homopus bergeri Lindholm 1906:348 (*partim*)
Type locality: “nach Gibeon in Deutsch-Südwestafrika...möglicherweise weiter im Innern Südafrikas” [Namibia or South Africa].

Homopus solus Devaux 2003:40 (*nomen nudum*)
Homopus solus Branch 2007:11, *Chersobius solus*
Type locality: “vicinity of Aus, Luderitz District, Namibia.”

Cylindraspis Fitzinger 1835 (*SS*)
Chelomonura Rafinesque 1815:74 (*nomen nudum*)
Chelomonura Rafinesque 1832:64 (junior homonym, not = *Chelomonura* Fleming 1822)
Geochelone (*Cylindraspis*) Fitzinger 1835:112
Type species: *Chersina* (*Cylindraspis*) vosmaeri [= *Testudo indica vosmaeri* Suckow 1798], by subsequent designation by Fitzinger (1843:29).

Cylindraspis indica (Schneider 1783) (*extinct, ca. 1840*)
Reunion Giant Tortoise

*IUCN Red List: Extinct (1996) *
Testudo indica Schneider 1783:355, *Chelomonura indica, Cylindraspis indica, Megalochelys indica, Geochelone indica, Cylindraspis indica*

Testudo tabulata africanus Schweigger 1812:322 (*SS*)
Type locality: “Africa” by inference.

Chersina retusa Merrem 1820:29 (*nomen novum), *Testudo retusa*
Type locality: “India orientalis.”

Testudo perraultii Duméril and Bibron 1835:126 (*nomen novum*), *Geochelone (Cylindraspis) perraultii, Testudo indica perraultii*
Type locality: “Indes Orientales.”

Testudo graii Duméril and Bibron 1835:135 (*nomen novum*), *Geochelone graii, Cylindraspis graii*
Type locality: “Afrika.”

Cylindraspis borbonica Bour 1978:492
Type locality: “Réunion.”

Cylindraspis inepta (Günther 1873)
(Extinct, ca. 1735)
Mauritius Giant Domed Tortoise

*IUCN Red List: Extinct (1996) *
Testudo neraudii Gray 1831d:14 (*nomen oblitum*)

Testudo inepta Günther 1873:397, *Geochelone inepta, Cylindraspis inepta*
Type locality: “Mauritius.” Restricted to “La Mare aux Songes...near Mahé bourg...Mauritius” by Günther (1875b:297).

Testudo boutonii Günther 1875b:297
Type locality: “La Mare aux Songes...near Mahé bourg...Mauritius.”

Testudo sauzieri Gadow 1894:315, *Geochelone sauzieri*
Type locality: “Mare aux Songes, in Mauritius.”

Cylindraspis peltastes (Duméril and Bibron 1835)
(Extinct, ca. 1800)
Rodrigues Domed Tortoise

Testudo rotunda Latreille in Sonnini and Latreille 1801:107
(*partim, nomen dubium*), *Chersine rotunda, Geochelone (Geochelone) rotunda*
Type locality: Not known. Restricted to “Mascarenes...Rodrigues” by Bour (2005:25).

Testudo peltastes Duméril and Bibron 1835:138, *Geochelone peltastes, Geochelone (Cylindraspis) peltastes, Cylindraspis peltastes*

Mauritius (Rodrigues [extinct])

Testudo triserrata Günther 1873:397, *Geochelone triserrata, Cylindraspis triserrata*
Type locality: “Mauritius.” Restricted to “La Mare aux Songes...near Mahe’bourg...Mauritius” by Günther (1875b:29).

Testudo leptocnemis Günther 1875b:297, *Geochelone leptocnemis, Cylindraspis leptocnemis*
Type locality: “district of Flacq...La Mare aux Songes...near Mahe’bourg...Mauritius” by Günther (1877:14).

Testudo microtympanum Boulenger 1891:4, *Geochelone microtympanum*
Type locality: “Mauritius” by supposition.

Testudo guentheri Gadov 1894:320 (senior homonym)
Type locality: “Mare aux Songes...Mauritius.”

Testudo guentheri Gadov in Van Denburgh 1914:257 (*nomen novum, invalid name, junior homonym*), *Testudo guntheri*
Testudo gadowi Van Denburgh 1914:257 (*nomen novum*), *Geochelone (Megalochelys) gadowi, Geochelone (Cylindraspis) gadowi*
Cylindraspis vosmaeri (Suckow 1798) (07:66)
(Extinct, ca. 1800)
Rodrigues Giant Saddleback Tortoise

Geochelone Fitzinger 1835 (05:52)

Geochelone Fitzinger 1835:112
Type species: *Geochelone stellata* [= *Testudo stellata* Schweigger 1812 = objective synonym of *Testudo elegans* Schoepff 1795], by subsequent designation by Fitzinger (1843:29).

Geochelone elegans (Schoepff 1795) (65)
Indian Star Tortoise

Mauritius (Rodrigues [extinct])

Testudo indica vosmaeri Suckow 1798:57,
Testudo vosmaeri,
Geochelone (Cylindraspis) vosmaeri,
Chersina (Cylindraspis) vosmaeri,
Cylindraspis vosmaeri

Testudo rotundata Latreille in Sonnini and Latreille 1801:107
(partim, nomen dubium),
Chersine rotunda,
Geochelone (Geochelone) rotunda
Type locality: Not known. Restricted to “Mascarenes...Rodrigues” by Bour (2005:25).

Testudo rodericensis Günther 1873:397
Type locality: “Rodriguez” [Rodrigues].

Testudo commersoni Vaillant 1898:138,
Geochelone commersoni,
Cylindraspis commersoni
Type locality: “Rodrigue” [Rodrigues].

Testudo actinodes Bell 1828a:419
Type locality: “Africâ” [in error].

Testudo actinoides Bell in Gray 1844:7 (nomen novum),
Peltastes actinoides
Type locality: “Africâ” [in error].

Testudo stellatus Blyth 1854:640 (66)
Type locality: Not known. Restricted to “Caldutta” [India] by Das et al. (1998:127).

Peltastes stellatus maura Gray 1870c:8
Type locality: Not known.

Peltastes stellatus seba Gray 1870c:8
Type locality: Not known.
Geochelone platynota (Blyth 1863)

Burmese Star Tortoise

Myanmar

CBFTT Account: Platt, Thanda Swe, Win Ko Ko, Platt, Khin Myo Myo, Rainwater, and Emmett (2011)

TFTSG Draft Red List: Critically Endangered (2011)

CITES: Appendix I

Testudo platynotus Blyth 1863:83, *Peltastes platynotus*, *Testudo platynota*, *Geochelone platynota*, *Geochelone elegans platynota*

Gopherus Rafinesque 1832 (87)

Gopherus Rafinesque 1815:74 (*nomen nudum*)

Gopherus Rafinesque 1832:64

Type species: *Gopherus polyphemus* [= *Testudo polyphemus* Daudin 1801], by original designation.

Xerobates Agassiz 1857a:252,446

Type species: *Xerobates berlandieri* Agassiz 1857a, by subsequent designation by Brown (1908:115).

Bysmachelys Johnston 1937:439

Type species: *Bysmachelys canyonesis* † Johnston 1937 [= subjective synonym of *Testudo pertenuis* † Cope 1892 (see TEWG 2015)], by original monotypy.

Scaptochelys Bramble 1982:852

Type species: *Scaptochelys agassizii* [= *Xerobates agassizii* Cooper 1861], by original designation.

Gopherus agassizii (Cooper 1861) (10:22, 11:11)

Mojave Desert Tortoise, Mohave Desert Tortoise, Agassiz’s Desert Tortoise

USA (Arizona, California, Nevada, Utah)

TFTSG Draft Red List: Critically Endangered (2011)

CITES: Appendix II, as Testudinidae spp.

Xerobates agassizii Cooper 1861:120 (10:22), *Testudo agassizii*, *Gopherus agassizii*, *Gopherus polyphemus agassizii*, *Geochelone agassizii*, *Scaptochelys agassizii*

Type locality: “mountains of California, near Fort Mojave” [USA].

Xerobates lepidocephalus Ottley and Velázquez Solis 1989:497 (11:11)

Type locality: “western base of the Sierra San Vicente, approximately 1 km N of the Buena Mujer Dam, Baja California Sur, Mexico” [in error or introduced].

Gopherus berlandieri (Agassiz 1857a) (14,34)

Texas Tortoise, Berlandier’s Tortoise
Mexico (Coahuila, Nuevo Leon, San Luis Potosi, Tamaulipas), USA (Texas)
IUCN Red List: Least Concern (1996)
TFTSG Draft Red List: Near Threatened (2011)
CITES: Appendix II, as Testudinidae spp.

Testudo tuberculata Berlandier 1850:287 (nomen oblitum)
Type locality: “Tamaulipas” [Mexico].

Testudo bicolor Berlandier 1850:287 (nomen oblitum)
Type locality: “Tamaulipas” [Mexico].

Xerobates berlandieri Agassiz 1857a:392,447, Testudo berlandieri, Xerobates gopher berlandieri, Gopherus berlandieri, Gopherus polyphe\n
Gopherus flavomarginatus Legler 1959 (12:32)
Bolson Tortoise

Gopherus evgoodei Edwards, Karl, Vaughn, Rosen, Melendez Torres, and Murphy 2016 (88)
Goode’s Thornscrub Tortoise, Sinaloan Thornscrub Tortoise

Mexico (Chihuahua, Sinaloa, Sonora)
IUCN Red List: Not Evaluated
TFTSG Draft Red List: Vulnerable (2016)
CITES: Appendix II, as Testudinidae spp.

Gopherus flavomarginatus Legler 1959:337, Gopherus polyphemus flavomarginatus, Gopherus flavomarginata
Type locality: “Alamos (approximate location 27°02’ N, 108°55’ W, elevation 433 m), Sonora, Mexico.”

Gopherus flavomarginatus Legler 1959:337, Gopherus polyphemus flavomarginatus, Gopherus flavomarginata
Type locality: “Madden Arroyo...Hudspeth County, Texas” [USA].
Gopherus morafkai Murphy, Berry, Edwards, Leviton, Lathrop, and Riedle 2011 (11:11)
Sonoran Desert Tortoise, Morafka’s Desert Tortoise

Mexico (Sinaloa, Sonora), USA (Arizona)
IUCN Red List: Not Evaluated
TFTSG Draft Red List: Vulnerable (2011)

Gopherus polyphemus (Daudin 1801) (12:33)
Gopher Tortoise

USA (Florida, Georgia, South Carolina, Alabama, Mississippi, Louisiana)
TFTSG Draft Red List: Endangered (2011)
CITES: Appendix II, as Testudinidae spp.

Testudo polyphaemus Bartram 1791:18 (*nomen nudum*)
Testudo polyphemus Daudin 1801:256, *Emys polyphemus*, *Gopherus polyphemus*, *Xerobates polyphemus*, *Gopherus polyphemus polyphemus*

Testudo depressa Guérin 1829:pl.1.f.1
Type locality: Not designated. Restricted to “vicinity of Savannah, Georgia” [USA] by Schmidt (1953:105).

Testudo carolina Le Conte 1830:97 (*nomen novum* and junior homonym, not = *Testudo carolina* Linnaeus 1758), *Xerobates carolinus*, *Gopherus carolinus*
Type locality: “pine forests of Georgia and Florida, ...never found north of Savannah river” [USA].

Testudo gopher Bartram in Gray 1844:4, *Xerobates gopher*
Type locality: Not designated. Restricted to “vicinity of Savannah, Georgia” [USA] by Schmidt (1953:105).

Testudo atascosae † Hay 1902:383 (*nomen dubium*) [*Pleistocene, USA (Texas)*], *Gopherus atascosae*
Type locality: “Atascosa county, Texas” [USA].

Gopherus praecedens † Hay 1916a:55 [*Late Pleistocene, USA (Florida)*]
Type locality: “Florida...Vero, St. Lucie county” [USA].

Gopherus, sp. indet.
Testudo australis Girard 1858:470 (*nomen dubium et oblitum*), *Gopherus australis*
Type locality: “Bay of Islands, New Zealand” [in error, based on a trade specimen].
Homopus Duméril and Bibron 1834
Homopus Duméril and Bibron 1834:357
Type species: *Homopus areolatus* [Tortue Aréolée Schöpf = *Testudo areolata* Thunberg 1787], by subsequent designation by Duméril and Bibron (1835:7).

Homopus areolatus (Thunberg 1787)
Parrot-beaked Tortoise, Common Padloper

Homopus femoralis Boulenger 1888a
Greater Dwarf Tortoise, Greater Padloper

Indotestudo Lindholm 1929
Testudo (*Indotestudo*) Lindholm 1929:285
Type species: *Testudo (Indotestudo) elongata* [= *Testudo elongata* Blyth 1854], by original designation.

Indotestudo elongata (Blyth 1854)
Elongated Tortoise, Yellow-headed Tortoise
Bangladesh, Bhutan, Cambodia, China (?) (Guangxi, Yunnan),
India (Assam, Bihar, Jharkhand, Meghalaya, Mizoram,
Odisha, Sikkim, Tripura, Uttarakhand, Uttar Pradesh, West
Bengal), Laos, Malaysia (Peninsular), Myanmar, Nepal,
Thailand, Vietnam

CBFTT Account: Ihlow, Dawson, Hartmann, and Som (2016)
IUCN Red List: Endangered A1cd+2cd (2000); Previously:
Vulnerable (1996)
TFTSG Draft Red List: Endangered (2011)
CITES: Appendix II, as Testudinidae spp.

Testudo forstenii Schlegel and Müller 1845:30 *(69)*, *Peltastes forstenii*, *Geochelone forstenii*, *Indotestudo forstenii*,
Indotestudo elongata forstenii, *Geochelone elongata forstenii*
Type locality: “Gilolo...Indischen Archipel” [Halmahera, Moluccas,
Indonesia] [probably in error]; restricted here to “near Gorontalo,
Sulawesi, Indonesia” by TTWG *(69).*

Indotestudo travancorica (Boulenger 1907) *(07-68)*

Travancore Tortoise

CBFTT Account: Deepak, Ramesh, Bhupathy, and Vasudevan
(2011)
TFTSG Draft Red List: Endangered (2011)
CITES: Appendix II, as Testudinidae spp.

Testudo travancorica Boulenger 1907:560, *Geochelone travancorica*,
Indotestudo travancorica, *Indotestudo elongata travancorica*,
Geochelone elongata travancorica
Type locality: “near Trivandrum..[&]..Travancore hills between 500
and 1,000 feet altitude” [India].

Kinixys Bell 1827 *(12-35)*

Kinixys Bell 1827:398
Type species: *Kinixys homeana* Bell 1827, by subsequent designation
by Bell (1828c:514).

Kinixys Gray 1830:e:6 *(nomen novum)*

Kinixys Wagler 1830b:138 *(nomen novum)*

Kinixys (Cinotaurax) Fitzinger 1835:108
Type species: *Cinixys* (Cinotaurax) belliana [= *Testudo* (*Kinixys*)
belliana* Gray 1830e], by subsequent designation by Fitzinger
(1843:29).

Kinixys Hallowell 1839:161 *(nomen novum)*

Kinixys Peters 1866:887 *(nomen novum)*

Kinothorax Gray 1873j:16 *(nomen novum)*

Madarixys Vuillemin 1972b:169
Type species: *Madakinixys domerguoi* Vuillemin 1972b, by original monotypy.

Kinixys belliana Gray 1830e:67,68, 8:11, 10:7, 12:35
Bell’s Hinge-back Tortoise

Angola, Benin, Cameroon, Central African Republic, Congo (DRC), Congo (ROC), Equatorial Guinea, Gabon, Ghana, Guinea, Ivory Coast, Liberia, Nigeria, Sierra Leone, Togo, Uganda

IUCN Red List: Least Concern [Not Listed] (1996)
SARCA Draft: Least Concern (regional) (2010)
TFTSG Draft Red List: Vulnerable (2013)

CITES: Appendix II, as Testudinidae spp.

Testudo erosa Schweigger 1812:321, *Kinixys erosa*, *Cinixys erosa*, *Kinixys belliana erosa*
Type locality: “America septentrionali” [North America] [in error].

Testudo schoepfii Fitzinger 1826:44 (*nomen nudum*).

Kinixys castanea Bell 1827:398, *Cinixys (Cinixys) castanea*,
Kinixys castanea, *Kinixys castanea*
Type locality: “Africa”.

Kinixis denticulata Hallowell 1839:161, *Kinixis denticulata*
Type locality: “Liberia...banks of the St. Paul and Mesurado rivers.”

Kinixis homeana Bell 1827:12,35
Home’s Hinge-back Tortoise

Benin, Cameroon, Central African Republic, Congo (DRC) (?), Equatorial Guinea, Gabon (?), Ghana, Ivory Coast, Liberia, Nigeria, Togo

CBFFT Account: Luiselli and Diagne (2013)
Kinixys lobatsiana Power 1927
Lobatse Hinge-back Tortoise

Botswana, South Africa
IUCN Red List: Least Concern (2017)
CITES: Appendix II, as Testudinidae spp.

Kinixys natalensis Hewitt 1935
Natal Hinge-back Tortoise, KwaZulu-Natal Hinge-back Tortoise

Benin, Burkina Faso, Cameroon, Central African Republic, Chad, Congo (DRC), Gambia, Ghana, Guinea, Guinea-Bissau, Ivory Coast, Mali, Mauritania (?), Niger, Nigeria, Senegal, Sierra Leone, Togo
IUCN Red List: Not Evaluated
CITES: Appendix II, as Testudinidae spp.

Homopus nogueyi Lataste 1886:286, Cinixys nogueyi, Cinixys belliana nogueyi, Cinixys nogueyi, Cinixys belliana nogueyi
Type locality: “ Médine (Haut-Sénégal)” [Senegal].

Cinixys dorri Lataste 1888:164
Type locality: “Haut-Sénégal” [Senegal]. Restricted to “Bakel,
Kinixys spekii Gray 1863d (12:35)
Speke’s Hinge-back Tortoise

Angola, Botswana, Burundi, Congo (DRC), Kenya, Malawi, Mozambique, Namibia (Caprivi), South Africa, Swaziland, Tanzania, Zambia, Zimbabwe

IUCN Red List: Not Evaluated
SARCA Draft: Least Concern (regional) (2010)
CITES: Appendix II, as Testudinidae spp.

Kinixys zombensis Hewitt 1931 (12:35)
Southeastern Hinge-back Tortoise

Kenya, Malawi, Mozambique, South Africa, Tanzania, Madagascar (prehistoric introduction?)
IUCN Red List: Not Evaluated
SARCA Draft: Least Concern (regional) (2010)
CITES: Appendix II, as Testudinidae spp.

Kinixys belliana zombensis
Southeastern Hinge-back Tortoise

(subspecies: *zombensis* = red, *domerguei* = orange dots)

Kinixys australis Hewitt 1931:477, *Kinixys australis australis, Kinixys belliana australis*
Type locality: “White River, Eastern Transvaal” [South Africa].

Kinixys jordani Hewitt 1931:482
Type locality: “Isoka, N. Rhodesia” [Zambia].

Kinixys youngii Hewitt 1931:486
Type locality: “Nyasaland...near Livingstonia, on the shore of the lake” [Malawi].

Kinixys australis mahabiensis FitzSimons 1932:37, *Kinixys belliana mahabiensis*
Type locality: “Tzotsoroga Pan, Mahabe Flats” [South Africa].
Kinixys zombensis domerguei (Vuillemin 1972b) (12:35)

Madagascan Hinge-back Tortoise

Madagascar (prehistoric introduction?)

Type locality: “Madagascar”. Restricted to “canton d’Antsakoamanondro, N.W. de Madagascar” by Bour (1985:60).

Malacochersus Lindholm 1929

Testudo (Malacochersus) Lindholm 1929:285

Type species: *Testudo (Malacochersus) tornieri* Siebenrock 1903b, by original designation.

Malacochersus tornieri (Siebenrock 1903b)

Pancake Tortoise

Testudo loveridgii Boulenger 1920:263, *Malacochersus loveridgii*

Manouria Gray 1854a

Manouria Gray 1854a:133

Type species: *Manouria fuscus* Gray 1854a [= subjective synonym of *Testudo emys* Schlegel and Müller 1840], by original monotypy.

Teleopus Le Conte 1854:187

Type species: *Teleopus luxatus* Le Conte 1854 [= subjective synonym of *Testudo emys* Schlegel and Müller 1840], by monotypy.

Scapia Gray 1869a:167

Type species: *Testudo (Scapia) falconeri* Gray 1869 [= subjective synonym of *Testudo emys* Schlegel and Müller 1840 or *Testudo phayrei* Blyth 1854], by monotypy.

Manouria emys (Schlegel and Müller 1840)

Asian Giant Tortoise

(orange dots = possible trade)

Kenya, Tanzania, Zambia

CITES: Appendix II, as Testudinidae spp.

Testudo tornieri Siebenrock 1903b:443, *Testudo (Malacochersus) tornieri*, *Malacochersus tornieri*

Bangladesh, Brunei, India (Assam, Meghalaya, Mizoram, Nagaland), Indonesia (Kalimantan, Sumatra), Malaysia (Peninsular, East), Myanmar, Singapore (extirpated), Thailand

TFTSG Draft Red List: Critically Endangered (2011)

CITES: Appendix II, as Testudinidae spp.
Manouria emys emys (Schlegel and Müller 1840)

Asian Brown Giant Tortoise

Brunei, Indonesia (Kalimantan, Sumatra), Malaysia (Peninsular, East), Singapore (extirpated), Thailand

Testudo emys Schlegel and Müller 1840:pl.4, *Manouria emys, Manouria emys emys, Geoche- lone emys emys, Testudo emys emys*

Type locality: “Sumatra” [Indonesia].

Testudo emydoides Duméril and Bibron in Duméril and Duméril 1851:4 (*nomen novum*), *Manouria emys, Manouria emys emys*

Type locality: “Singapore.”

Testudo luxatus Le Conte 1854:187, *Manouria luxata*

Type locality: “Java” [Indonesia] (in error).

Testudo (Scapia) falconeri Gray 1869a:169 (*partim, nomen dubium*), *Testudo falconeri, Scapia falconeri*

Type locality: “India?”

Manouria emys phayrei (Blyth 1854) (65)

Burmesse Black Giant Tortoise

Bangladesh, India (Assam, Meghalaya, Mizoram, Nagaland), Myanmar, Thailand

Testudo phayrei Blyth 1854:639 (65), *Scapia phayrei, Manouria emys phayrei*

Type locality: “Arakan; Tenasserim Provinces...Burma” [Myanmar].

Testudo (Scapia) falconeri Gray 1869a:169 (*partim, nomen dubium*), *Testudo falconeri, Scapia falconeri*

Type locality: “India?”

Testudo nutapundi Reimann and Nutaphand *in* Nutaphand 1979:193, *Geochechone nutapundi, Manouria emys nutapundi, Geochechone emys nutapundi, Manouria nutapundi*

Type locality: “Northern Thailand (Tak Province) and western Central Region (Kanchanaburi Province); Assam, Burma”. Restricted to “Nord-Thailand, Tak-Provinz” by Obst (1983:253).

Manouria impressa (Günther 1882)

Impressed Tortoise

Cambodia, China (Yunnan), Laos, Malaysia (Peninsular), Myanmar, Thailand, Vietnam

TFTSG Draft Red List: Endangered (2011)

CITES: Appendix II, as Testudinidae spp.

Geoemyda impressa Günther 1882:343, *Testudo impressa, Geochechone impressa, Manouria impressa*

Type locality: “Siam” [Thailand].

Geoemyda latinuchalis Vaillant 1894:68, *Testudo latinuchalis*

Type locality: “la rivière Noire, Tonkin” [Vietnam].

Testudo pseudemys Boulenger 1903a:144

Type locality: “Batang Padang district, South Perak (1,000 feet to 2,000 feet)” [Malaysia].

Psammobates Fitzinger 1835

Psammobates Fitzinger 1835:113

Type species: **Psammobates geometricus** Fitzinger [= *Testudo geometrica* Linnaeus 1758], by subsequent designation by Fitzinger (1843:29).

Peltastes (Chersinella) Gray 1870c:8

Type species: **Chersinella geometrica** [= *Testudo geometrica* Linnaeus 1758], by subsequent designation by Hewitt (1933:259). Lindholm (1929:286) previously designated *Testudo graeca* Linnaeus 1758 as type species, but it was not originally included in *Chersinella* by Gray (1870c), so therefore has no validity as type.
Psammobates geometricus (Linnaeus 1758)

Geometric Tortoise

South Africa

CITES: Appendix I

Testudo geometrica Linnaeus 1758:199, *Chersinella geometrica*, *Hydrona geometrica*, *Psammobates geometricus*, *Peltastes geometricus*, *Peltastes (Chersinella) geometrica*, *Chersinella geometrica*, *Psammobates geometrica*, *Geochelone geometrica*

Type locality: “Asia.” Restricted to “southwestern Cape Province, South Africa” by Baard (1991:9).

Testudo luteola Daudin 1801:277

Type locality: Not known.

Peltastes geographicus Gray 1869a:173 (*nomen novum*), *Testudo geographicus*

Testudo strauchi Lidth de Jeude 1893:312, *Chersinella strauchi*

Type locality: “Cape of Good Hope” [South Africa].

Psammobates oculifer (Kuhl 1820)

Serrated Tent Tortoise, Kalahari Tent Tortoise

South Africa

CITES: Appendix I

Testudo oculifera Kuhl 1820:77, *Emys oculifera*, *Clemmys oculifera*, *Chersinella oculifera*, *Psammobates oculifera*, *Psammobates oculifer*, *Psammobates oculiferus*

Type locality: “Cap” [Cape of Good Hope, South Africa] [in error].

Emys oculifera Kuhl in Gray 1830e:9 (*nomen novum*)

Emys kuhlii Gray 1831d:73 (*nomen dubium*)

Type locality: Not known.

Testudo semiserrata Smith 1839a:Reptilia, pl.6, *Peltastes semiserratus*

Type locality: “districts between Latakoo and the Tropic of Capricorn” [South Africa].

Psammobates tentorius (Bell 1828a) (*61*)

Tent Tortoise

Namibia, South Africa

IUCN Red List: Least Concern (2017); Previously: Least Concern [Not Listed] (1996)

CITES: Appendix II, as Testudinidae spp.
Psammobates tentorius tentorius (Bell 1828a)
Southern Tent Tortoise, Common Tent Tortoise

Psammobates tentorius trimeni (Boulenger 1886a)
Western Tent Tortoise

South Africa
Testudo tentoria Bell 1828a:420, Testudo geometrica tentoria, Pelastes tentorius, Pelastes (Chersinella) tentoria, Chersinella tentoria, Chersinella tentoria tentoria, Psammobates tentoria, Psammobates tentoria tentoria, Psammobates tentorius, Psammobates tentorius tentorius, Testudo tentoria tentoria
Type locality: “Africâ?”

Testudo geometrica nigriventris Gray 1856b:8
Type locality: “South Africa.”

Chersinella tentoria albanica Hewitt 1933b:266, Psammobates tentoria albanica
Type locality: “neighbourhood of farm Mayfair, Albany District” [South Africa].

Chersinella tentoria tentorioides Hewitt 1933b:268, Psammobates tentoria tentorioides
Type locality: “Bowden Hall, Middelburg district, C.P.” [Cape Province, South Africa].

Chersinella tentoria piscatella Hewitt 1933b:269, Psammobates tentoria piscatella
Type locality: “Little Fish River, Somerset East district” [South Africa].

Chersinella tentoria subsalacata Hewitt 1933b:270
Type locality: “farm “Brighton” near Steylerville” [South Africa].

Chersinella tentoria karuica Hewitt 1933b:272, Psammobates tentoria karuica
Type locality: “farm “Droogkloof” near Klaarstroom, Prince Albert district” [South Africa].

Chersinella tentoria duerdeni Hewitt 1933b:279, Psammobates tentoria duerdeni
Type locality: “Graaff Reinet, C.P.” [Cape Province, South Africa].

Chersinella tentoria lativittata Hewitt 1933b:281
Type locality: “Willowmore” [South Africa].

Chersinella tentoria karuella Hewitt 1933b:283
Type locality: “Uniondale, C.F.” [Cape Province, South Africa].

Chersinella tentoria hexensts Hewitt 1933b:286
Type locality: “Hex River, Worcester district” [Cape Province, South Africa].

Psammobates tentorius trimeni (Boulenger 1886a)
Western Tent Tortoise

Namibia (?), South Africa

Testudo trimeni Boulenger 1886a:541, Chersinella trimeni, Psammobates trimeni, Psammobates tentorius trimeni, Testudo tentoria trimeni, Psammobates tentoria trimeni
Type locality: “Mouth of the Orange River” [Little Namaqualand, South Africa].

Psammobates tentorius verroxii (Smith 1839)
Northern Tent Tortoise

Namibia, South Africa

Testudo verroxii Smith 1839b:Reptilia,pl.8, Pelastes verroxii, Chersinella verroxii, Chersinella verroxii verroxii, Psammobates verroxii, Psammobates testoria verroxii, Testudo tentoria verroxii, Psammobates tentoria verroxii, Testudo tentoria verroxii
Type locality: “South Africa, near the sources of the Gariep or Orange River.” Restricted to “somewhere north of Aliwal North, between the Orange and Caledon Rivers...roughly 260 miles east of Nickârâ’s Hope” [South Africa] by Power (1932:466).

Pelastes verreauxii Gray 1870b:656 (nomen novum), Testudo verreauxii, Psammobates verreauxii

Testudo fiski Boulenger 1886a:542, Testudo tentoria fiski, Chersinella fiski, Chersinella fiski fiski, Psammobates fiski, Psammobates fiski fiski
Type locality: “De Aar, not far from Hopetown” [South Africa].

Testudo smithi Boulenger 1886a:542, Chersinella verroxii smithi, Testudo smithi smithi, Testudo verroxii smithi
Type locality: “S. Africa” [South Africa].

Testudo seimundi Boulenger 1903b:216, Chersinella fiski seimundi
Type locality: “3 miles east of Deelfontein” [Richmond District, Cape Province, South Africa].

Testudo boettgeri Siebenrock 1904a:194 (junior homonym, not = Testudo graeca boettgeri Mojsisovics 1889), Chersinella verroxii boettgeri, Chersinella boettgeri
Type locality: “Groß-Namaland in Südwestafrika” [Great Namaland, Namibia].

Homopus bergeri Lindholm 1906:348 *(partim)*, *Testudo bergeri*, *Chersinella verroxii bergeri*, *Testudo smithi bergeri*, *Testudo verroxii bergeri*

Type locality: “nach Gibeon in Deutsch-Südwestafrika...möglicherweise weiter im Innern Südafrikas” [Namibia or South Africa].

Testudo oscuraetegi Lindholm 1929:295 *(nomen novum)*

Chersinella schonlandi Hewitt 1934:303

Type locality: “Namaqualand, C.P.” [Little Namaqualand, Cape Province, South Africa].

Chersinella fiski cronwrighti Hewitt 1934:317, *Psammobates fiski cronwrighti*

Type locality: “Hanover, C.P.” [Cape Province, South Africa].

Chersinella fiski orangensis Hewitt 1934:319

Type locality: “between Philipstown and Petrusville district” [Cape Province, South Africa].

Chersinella fiski colesbergensis Hewitt 1934:321, *Psammobates fiski colesbergensis*

Type locality: “Colesberg” [Cape Province, South Africa].

Chersinella fiski gracoides Hewitt 1934:326

Type locality: “Nickerks Hope, about midway between Griquatown and Prieska, C.P.” [Niekerkshoop, Hay District, Cape Province, South Africa].

Chersinella fiski amasensis Hewitt 1934:333

Type locality: “Ukamas district” [Cape Province, South Africa].

Psammobates depressa FitzSimons 1938:154

Type locality: “8 miles west of Aus, Great Namaqualand” [Namibia].

Pyxis Bell 1827

Pyxis Bell 1827:395

Type species: *Pyxis arachnoides* Bell 1827, by original monotypy.

Acinixys Siebenrock 1902b:12

Type species: *Acinixys planicauda* [= *Testudo planicauda* Grandidier 1867], by original monotypy.

**Bellemys Williams 1950:512 *(nomen novum)*

Pyxoides Vuillemin and Domergue 1972:193

Type species: *Pyxoides brygooi* Vuillemin and Domergue 1972, by original monotypy.

Pyxis arachnoides Bell 1827

Spider Tortoise

(subspecies: *arachnoides* = red, *brygooi* = purple, *oblonga* = orange)

Madagascar

CITES: Appendix I

Pyxis arachnoides brygooi (Vuillemin and Domergue 1972) Northern Spider Tortoise

Madagascar

Pyxis arachnoides oblonga Gray 1869a

Southern Spider Tortoise

Madagascar
Pyxis arachnoidea oblonga Gray 1869a:173, Pyxis arachnoideas oblonga

Type locality: Not known. Restricted to “Asia” by Gray (1873j:14); to “Madagascar; Mauritius” by Boulenger (1889:145); and to “Cap Sainte-Marie, province de Tuléar (Toliara), sud du Madagascar” by Bour (1982b:30).

Pyxis arachnoidea mutzi Bour 1979:143

Type locality: “Cap Sainte-Marie (Province de Tuléar), extrême sud du Madagascar.”

Pyxis planicauda (Grandidier 1867)

Flat-tailed Tortoise, Flat-shelled Spider Tortoise

Testudo planicauda Grandidier 1867:223, Acinixys planicauda, Pyxis (Acinixys) planicauda, Pyxis planicauda

Type locality: “Mouroundava...cote sud-ouest de Madagascar” [Morondava].

Testudo morondavaensis Vuillemin 1972a:127

Type locality: “Morondava (côte sud-ouest de Madagascar).”

Stigmochelys Gray 1873j (07:52, 10:26)

Testudo (Stigmochelys) Gray 1873j:5

Type species: Testudo (Stigmochelys) pardalis Bell 1828a, by original monotypy.

Megachersine Hewitt 1933b:257

Type species: Megachersine pardalis [= Testudo pardalis Bell 1828a], by original designation.

Stigmochelys pardalis (Bell 1828a)

Leopard Tortoise

Angola, Botswana, Burundi, Ethiopia, Kenya, Malawi, Mozambique, Namibia, Rwanda, Somalia, South Africa, South Sudan, Swaziland, Tanzania, Uganda, Zambia, Zimbabwe

CITES: Appendix II, as Testudinidae spp.

Testudo pardalis Bell 1828a:420, Geochelone (Geochelone) pardalis, Geochelone pardalis, Testudo (Stigmochelys) pardalis, Megachersine pardalis, Testudo pardalis parda-lis, Geochelone pardalis parda-lis, Stigmochelys pardalis, Centrochelys pardalis, Centrochelys pardalis pardalis, Stigmochelys pardalis pardalis, Psammobates pardalis

Type locality: “Promont. Bonae Spei” [Cape of Good Hope, South Africa].

Testudo biguttata Cuvier 1829:10 (nomen nudum)

Testudo armata Boie in Gray 1830e:4 (nomen nudum)

Testudo bipunctata Gray 1830e:4 (nomen nudum)

Testudo pardalis babcocki Loveridge 1935j (10:27), Geochelone pardalis babcocki, Geochelone babcocki, Stigmochelys pardalis babcocki
Testudo Linnaeus 1758

Testudo linnaeus 1758:197

Type species: *Testudo graeca Linnaeus 1758* (= subjective synonym of *Testudo ibera Pallas 1814*), by subsequent designation by Fitzinger (1843:29) and Lindholm (1929:284); not *Testudo graeca Auct.* (= subjective synonym of *Testudo hermanni Gmelin 1789*) by earlier designation by Bell (1828c:514).

C. merremii 1820:29

Type species: *C. merremii = Auct.* (= subjective synonym of *C. hermanni Gmelin 1789*), by subsequent designation by Lindholm (1929:286).

C. merremii in Gray 1825:210 (nomen novum)

C. merremii Wagler 1830b:138

Type species: *C. merremii* (= subjective synonym of *C. hermanni Gmelin 1789*), by monotypy.

C. merremii Gray 1830b:138 (nomen novum)

Peltastes Gray 1869a:167,171 (junior homonym, not = *Peltastes Illiger 1807* (= Hymenoptera) or *Peltastes Agassiz 1838* (= Echinodermata) or *Peltastes Fischer-Waldheim 1839* (= Orthoptera))

Type species: *Testudo graeca Linnaeus 1758* (= *Peltastes graecus sensu Gray 1869*), by subsequent designation by Lindholm (1929:286).

Peltastrix Gray 1872c:4 (nomen novum)

Testudo (Medaestia) Wussow 1916:170 (nomen novum)

Type species: *Medaestia graeca sensu Wussow 1916* (= subjective synonym of *Testudo hermanni Gmelin 1789*), by subsequent designation by Mertens (1949:232).

Testudo (Pseudotestudo) Loveridge and Williams 1957:166, 276 Type species: *Testudo (Pseudotestudo) kleinmanni = Testudo kleinmanni Lortet 1883*, by original designation.

Furculachelys Highfield 1990:1

Eurotestudo Lapparent de Broin, Bour, Parham, and Perillà 2006a:803

Type species: *Eurotestudo hermannii [= Testudo hermanni Gmelin 1789]*, by original designation.

Testudo (Testudo) Linnaeus 1758 (07:72) (9b)

Testudo Linnaeus 1758:197

Type species: *Testudo graeca Linnaeus 1758* (= subjective synonym of *Testudo ibera Pallas 1814*), by subsequent designation by Fitzinger (1843:29) and Lindholm (1929:284); not *Testudo graeca Auct.* (= subjective synonym of *Testudo hermanni Gmelin 1789*) by earlier designation by Bell (1828c:514).

C. merremii Wagler 1830b:138

Type species: *C. merremii* (= subjective synonym of *C. hermanni Gmelin 1789*), by monotypy.

C. merremii Gray 1830b:138 (nomen novum)

Peltastes Gray 1869a:167,171 (junior homonym, not = *Peltastes Illiger 1807* (= Hymenoptera) or *Peltastes Agassiz 1838* (= Echinodermata) or *Peltastes Fischer-Waldheim 1839* (= Orthoptera))

Type species: *Testudo graeca Linnaeus 1758* (= *Peltastes graecus sensu Gray 1869*), by subsequent designation by Lindholm (1929:286).

Peltastrix Gray 1872c:4 (nomen novum)

Testudo (Pseudotestudo) Loveridge and Williams 1957:166, 276 Type species: *Testudo (Pseudotestudo) kleinmanni* (= *Testudo kleinmanni Lortet 1883*), by original designation.

Furculachelys Highfield 1990:1

Eurotestudo Lapparent de Broin, Bour, Parham, and Perillà 2006a:803

Type species: *Eurotestudo hermannii [= Testudo hermanni Gmelin 1789]*, by original designation.

Testudo (Testudo) Linnaeus 1758 (07:72) (9b)

Testudo Linnaeus 1758:197

Type species: *Testudo graeca Linnaeus 1758* (= subjective synonym of *Testudo ibera Pallas 1814*), by subsequent designation by Fitzinger (1843:29) and Lindholm (1929:284); not *Testudo graeca Auct.* (= subjective synonym of *Testudo hermanni Gmelin 1789*) by earlier designation by Bell (1828c:514).

C. merremii Wagler 1830b:138

Type species: *C. merremii* (= subjective synonym of *C. hermanni Gmelin 1789*), by monotypy.

C. merremii Gray 1830b:138 (nomen novum)

Peltastes Gray 1869a:167,171 (junior homonym, not = *Peltastes Illiger 1807* (= Hymenoptera) or *Peltastes Agassiz 1838* (= Echinodermata) or *Peltastes Fischer-Waldheim 1839* (= Orthoptera))

Type species: *Testudo graeca Linnaeus 1758* (= *Peltastes graecus sensu Gray 1869*), by subsequent designation by Lindholm (1929:286).

Peltastrix Gray 1872c:4 (nomen novum)

Testudo (Pseudotestudo) Loveridge and Williams 1957:166, 276 Type species: *Testudo (Pseudotestudo) kleinmanni* (= *Testudo kleinmanni Lortet 1883*), by original designation.

Furculachelys Highfield 1990:1

Eurotestudo Lapparent de Broin, Bour, Parham, and Perillà 2006a:803

Type species: *Eurotestudo hermannii [= Testudo hermanni Gmelin 1789]*, by original designation.
South Khorasan, Tehran, West Azerbaijan, Yazd, Zanjan, Iraq, Israel, Jordan, Kosovo, Lebanon, Libya, Macedonia, Moldova, Morocco, Pakistan (?), Palestine (West Bank), Romania, Russia (Chechnya [?], Dagestan, Krasnodarskiy), Serbia, Spain, Syria, Tunisia, Turkey (Asian, European), Turkmenistan (?)

Introduced: Egypt, France, Italy (Continental, Sardinia [prehistoric], Sicily), Malta (?), Spain (Continental, Balearic Islands)

CITES: Appendix II, as Testudinidae spp.

Testudo (Testudo) graeca graeca Linnaeus 1758

Mediterranean Spur-thighed Tortoise

![Mediterranean Spur-thighed Tortoise](image)

Algeria, Morocco, Spain

Introduced: Spain (Balearic Islands)

Testudo graeca Linnaeus 1758:198, **Testudo graeca graeca**, **Peltastes graecus**

Type locality: “Africa.” Restricted to “Santa Cruz in Barbarie” [Algeria] by Leven (1764:56), emended to “Santa-Cruz (alte spanische Festung bei Oran in der Algérie)” by Strauch (1862:67).

Testudo pusilla Linnaeus 1758:199 (senior homonym, not = **Testudo pusilla** † Bergounioux 1936), **Peltastes pusillus**

Type locality: “India.” Restricted to “Santa-Cruz (alte spanische Festung bei Oran in der Algérie)” by Strauch (1862:67).

Testudo mauritanica Duméril and Bibron 1835:44, **Testudo graeca mauritanica**, **Peltastes mauritanicus**, **Testudo ibera mauritanica**

Testudo whitei Bennett in White 1836:361 (10:41), **Peltastes marginitus whitei**, **Testudo marginita whitei**, **Furculaclythes whitei**

Type locality: Not known. Restricted to “Algiers and its environs, Algeria” by Highfield and Martin (1989a:21).

Testudo (Testudo) graeca armeniaca Chkhikvadze and Bakradze 1991 (11:12)

Araxes Tortoise

![Araxes Tortoise](image)

Armenia, Azerbaijan, Georgia, Iran (Ardabil, East Azerbaijan, West Azerbaijan), Russia (Dagestan), Turkey

Testudo graeca pallasi Chkhikvadze 1989:67 (nomen nudum)

Testudo graeca armeniaca Chkhikvadze 1989:67 (nomen nudum)

Testudo graeca armeniaca Chkhikvadze and Bakradze 1991-60, **Testudo armeniaca**, **Testudo terrestris armeniaca**

Type locality: “Мегри, ЮВ Армянской ССР” [Megri, SE Armenian SSR] [Armenia].

Testudo graeca pallasi Chkhikvadze and Bakradze 2002:276, **Testudo pallasi**, **Testudo marginata pallasi**

Type locality: “Дагестан, окрестности села Гиляры-Даг” [Dagestan, near the village of Gilyary-Dag]. Emended here to “Gilyar, near Gilyary-Dag mountain, Magaramkent District, Dagestan, Russia (41.558499 N, 48.257204 E).”

Testudo dagestanica Chkhikvadze, Mazanaeva, and Shammakov 2011:337 (11:12), **Testudo graeca dagestanica**

Type locality: “Папас (Южный Дагестан)” [Papas (Southern Dagestan)] [Russia].

Testudo (Testudo) graeca buxtoni Boulenger 1921 (10:28)

Buxton’s Tortoise

![Buxton’s Tortoise](image)

Iran (Alborz, Ardabil, Chahar Mahal Va Bakhtiari, East Azerbaijan, Esfahan, Fars, Gilan, Hamadan, Ilam, Kerman, Kordestan, Lorestan, Markazi, Qazvin, Tehran, West Azerbaijan, Zanjan), Turkey

Testudo ecaudata Pallas 1814:19 (10:28) (nomen dubium and junior homonym, not = **Testudo ecaudata** Daudin 1801)

Type locality: “nemorosis Persiae mari caspio conterminis” [forests of Persia along the Caspian Sea] [Iran].

Testudo buxtoni Boulenger 1921:251, **Testudo terrestris buxtoni**, **Testudo ibera buxtoni**, **Testudo graeca buxtoni**
Type locality: “Manjil, between Resht and Kasuin, South Coast of the Caspian Sea, on a hill-side about 7,000–7,500 feet...northern Persia” [Iran].

Testudo perses Perälä 2002c:81, *Testudo graeca perses, Testudo ibera perses*
Type locality: “vicinity of Lalabad village, some 25 mi NW Kermānshāh, Kermānshāhān province, W Iran...34°27'N 46°50'E.”

Testudo (Testudo) graeca cyrenaica Pieh and Perälä 2002
Cyrenaican Spur-thighed Tortoise

Chris Leone / Libya [captivity]

Libya
Testudo graeca cyrenaica Pieh and Perälä 2002:8, *Testudo cyrenaica*
Type locality: “Derna 32°46'N, 22°39'E (= Darnah, Cyrenaika Ostlibyen)” [Libya].

Testudo (Testudo) graeca ibera Pallas 1814 (11:12)
Asia Minor Tortoise

Alexander A. Inozemtsev / CCB / TCF / nr. Novorossiysk, Krasnodarskiy, Russia

Albania (?), Armenia, Azerbaijan, Bulgaria, Georgia, Greece, Kosovo, Macedonia, Moldova, Romania, Russia (Krasnodarskiy), Serbia, Turkey

IUCN Red List: The currently synonymized taxon *Testudo graeca nikolskii* listed as Critically Endangered A1abcde+2bcde (1996)

Testudo ibera Pallas 1814:18, *Chersus iberus*, *Cherseus iberus*, *Medeaestia ibera*, *Testudo graeca ibera*, *Testudo ibera ibera*, *Testudo terrestris ibera*

Testudo georgicana Güldenstedt in Pallas 1814 (14:7) (*nomen nudum*)

Testudo iberia Blyth 1854:642 (*64*) (*nomen novum*)

Testudo ibera bicaudalis Venzmer 1920:289
Type locality: “cilicischen Taurus in der kleinasiatischen Türkei” [Taurus Mts., Cilicia, Turkey].

Testudo ibera racovitzai Calinescu 1931:169
Type locality: “Turtucaia (jud. Durostor)” [Romania] [now Tutrakan, Silistra, Bulgaria].

Testudo graeca nikolskii Chkikhvadze and Tuniyev 1986:618, *Testudo ibera nikolskii, Testudo terrestris nikolskii, Testudo nikolskii*
Type locality: “Поселок Небуг Туапсинского района (Краснодарский край)” [Nebug Settlement, Tuapse Co., Krasnodar District] [Russia].

Testudo graeca pontica Khosatzky 1987:58 (*nomen nudum*)

Testudo (Testudo) graeca marokkensis Pieh and Perälä 2004 (09:42)
Morocco Tortoise

Chris Leone / Fez, Morocco [captivity]

Morocco
Testudo graeca marokkensis Pieh and Perälä 2004:22 (09:42)
Type locality: “Tarmilet (= Tétouan: Tétuan 35°34'N 5°22'W)” [Morocco].

Testudo graeca lamberti Pieh and Perälä 2004:33 (09:42)
Type locality: “22 km nördlich von Tetuan (= Tetouan; Tétuan 35°34'N 5°22'W)” [Morocco].

Testudo (Testudo) graeca nabeulensis (Highfield 1990)
Nabeul Tortoise

Norbert Halasz / Nabeul, Tunisia [captivity]

Libya, Tunisia
Testudo flavominimaralis Highfield and Martin 1989b:9 (*nomen dubium*), *Testudo graeca flavominimaralis*

Furculachelys nabeulensis Highfield 1990:32, *Testudo nabeulensis, Testudo graeca nabeulensis*

Testudo graeca sarda Ballasina 1995:166 (*nomen nudum*)
Testudo graeca sardinia van der Kuyl, Ballasina, Dekker, Maas, Willemsen, and Goudsmit 2002:180 (*nomen nudum*)
Testudo (Testudo) graeca soussensis Pieh 2001
Souss Valley Tortoise

Testudo (Testudo) graeca soussensis Pieh 2001:211, *Testudo soussensis*

Testudo (Testudo) graeca terrestris Forskål 1775
Mesopotamian Tortoise

Testudo (Testudo) terrestris Forskål 1775:viii,12 (junior homonym, not = Testudo terrestris Garsault 1764 or Testudo terrestris Fermin 1765; nomen conservandum, ICZN 1963), *Testudo graeca terrestris, Testudo terrestris terrestris, Testudo ibera terrestris*

Testudo zolhafa Forsskål in Gray 1830e:5 (nomen nudum)
Testudo floweri Bodenheimer 1935:197, *Testudo graeca floweri, Testudo terrestris floweri, Testudo ibera floweri*
Type locality: “the Negeb...Palestine” [Israel]. Restricted to “Negev, Palestine (environs de Gaza, Israël)” [Israel] by Bour (1989:14).

Testudo graeca anamurensis Weissinger 1987:14, *Testudo ibera anamurensis, Testudo terrestris anamurensis, Testudo anamurensis*
Type locality: “Strand von Anamurum, 7 km westlich von Anamur, SW–Küste der Türkei” [Turkey].

Testudo antakyensis Perälä 1996:16, *Testudo graeca antakyensis, Testudo terrestris antakyensis, Testudo ibera antakyensis*
Type locality: “mountains to the east of Antakya in southern Turkey.”

Testudo (Testudo) graeca zarudnyi Nikolsky 1896
Iranian Tortoise

Testudo (Testudo) graeca zarudnyi Nikolsky 1896:369, *Testudo graeca zarudnyi, Testudo ibera zarudnyi, Testudo terrestris zarudnyi*
Type locality: “Persia orientali” [Iran]. Restricted to “montibus provinciae Birdschan in Persiae orientali” [Iran] by Nikolsky (1897:308); and to “Birjand in Khorāsan province, NE Iran (32°53’ N 59°03’ E)” by lectotype designation by Perälä (2002c:84).

Testudo (Testudo) kleinmanni Lortet 1883
Egyptian Tortoise

Testudo kleinmanni Lortet 1883:188, *Pseudotestudo kleinmanni, Testudo kleinmanni kleinmanni*
Egypt, Israel, Libya, Palestine? (Gaza? [extirpated])
CITES: Appendix I

Testudo leithii Günther 1869:502 (junior homonym, not = Testudo leithii† Carter 1852; Peltastes leithii, Medaestia leithii)
Type locality: “Sindh” [Pakistan] [in error].
Albania, Greece
Introduced: Cyprus, Italy (Continental, Sardinia [prehistoric])
CITES: Appendix II, as Testudinidae spp.

Testudo (Testudo) marginata Schoepff 1793
Type locality: “la basse Égypte, surtout dans les environs d’Alexandrie” [Egypt].
Testudo werneri Perälä 2001:570 (07:74), Testudo kleinmanni werneri
Type locality: “Northern Negev desert, Israel (14 km south of Be’er Sheva).”

Testudo (Testudo) marginata Schoepff 1793
Margined Tortoise

Type locality: “Griechenland und Süditalien” [Greece].
Testudo marginata sarda Mayer 1992:95
Type locality: “Obia...Sardinia” [Italy].
Testudo weissingeri Bour 1996:30, Testudo marginata weissingeri
Type locality: “Kardamili, Messénie, Grèce” [Greece].

Testudo (Agrionemys) Khosatzky and Mlynarski 1966
Testudinella Gray 1870c:12 (junior homonym, not = Testudinella Bory de Saint-Vincent 1822 [= Rotatoria])
Type species: Testudinella horsfieldi [= Testudo horsfieldi Gray 1844], by original monotypy.
Agrionemys Khosatzky and Mlynarski 1966:123 (nomen novum)
Type species: Agrionemys horsfieldi [= Testudo horsfieldi Gray 1844], by original designation.

Testudo (Agrionemys) horsfieldii Gray 1844
Central Asian Tortoise, Steppe Tortoise, Horsfield’s Tortoise

Homopus burnesii Blyth 1854:642
Type locality: “Afghanistan.”
Testudo baluchiorum Annandale 1906:75
Type locality: “Baluchistan” [Pakistan].

Testudo (Agrionemys) horsfieldii horsfieldii Gray 1844
Central Asian Tortoise, Steppe Tortoise, Horsfield’s Tortoise
Afghanistan, Pakistan

Testudo horsfieldii Gray 1844:7, Testudinella horsfieldi, Homopus horsfieldi, Testudo (Homopus) horsfieldii, Medaestia horsfieldii, Agrionemys horsfieldii, Testudo horsfieldi, Testudo horsfieldii horsfieldii, Agrionemys horsfieldii horsfieldii
Homopus burnesii Blyth 1854:642
Type locality: “Afghanistan.”
Testudo baluchiorum Annandale 1906:75
Type locality: “Baluchistan” [Pakistan].

Testudo (Agrionemys) horsfieldii bogdanovi Chkikvadze in Chkikvadze, Brushko, and Kubykin 2008
Fergana Valley Steppe Tortoise
Kyrgyzstan, Tajikistan, Uzbekistan

Type locality: “Узбекистан (Окрестности городов Бухара, Самарқанд, Караж), Восточный Туркменистан (окрестности Чарджоу) и Киргизстан (Чуяская долина и окрестности города Ош)” [Uzbekistan (vicinity of the cities of Bukhara, Samarqand, Karshi), East Turkmenistan (near Chardzhou) and Kyrgyzstan (Chuy valley and vicinity of Osh)]. Restricted to “Ферганская долина” [Fergana Valley] [Uzbekistan] by Chkhikvadze et al. (2009:49).

Testudo (Agrionemys) horsfieldii kazachstanica Chkhikvadze 1988

Kazakhstan Steppe Tortoise

Afghanistan, China (Xinjiang), Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan

Agrionemys horsfieldii kazachstanica Chkhikvadze 1988:110, *Testudo horsfieldii kazachstanica, Agrionemys horsfieldii kazachstanica, Agrionemys kazachstanica*

Type locality: “Южное Прибалхашье, поселок Каратал” [south-ern Pribalkhashye (= Balkash), Karatal village] [Kazakhstan].

Agrionemys kazachstanica terbishi Chkhikvadze 2009:60 (10:30, 14:38), *Testudo horsfieldii terbishi, Agrionemys horsfieldii terbishi*

Type locality: “Монголия, г. Кобдо” [Mongolia, g. Kobdo] [probable trade specimen].

Testudo (Agrionemys) horsfieldii kuznetzovi Chkhikvadze, Amiranashvili, and Ataev 1990:73, *Agrionemys horsfieldii kuznetzovi, Testudo horsfieldii kuznetzovi, Agrionemys kuznetzovi*

Type locality: “впадины Акчакая (Северный Туркменистан, к западу от г. Дашогуз – бывш. Ташауз)" [Akchakai depression (North Turkmenistan, west of the city of Dashoguz – prev. Tashauz)].
Testudo (Chersine) Merrem 1820 (07:72, 09:40; 70)

Chersine Merrem 1820:29 (09:40)

Chersini Merrem in Gray 1825:210 (nomen novum)

Testudo (Medaestia) Wussow 1916:170 (09:40)

Type species: *Medaestia graeca* sensu Wussow 1916 (= subjective synonym of *Testudo hermanni* Gmelin 1789) by subsequent designation by Mertens (1949:232).

Eurotestudo Lapparent de Broin, Bour, Parham, and Perälä 2006a:803

Type species: *Eurotestudo hermanni* (= *Testudo hermanni* Gmelin 1789), by original designation.

Testudo (Chersine) hermanni Gmelin 1789 (14:36; 74)

[Hermann’s Tortoise](#)

(subspecies: *hermanni* = red; *boettgeri* = purple; orange dots = probable introduced or trade)

Albania, Bosnia and Herzegovina, Bulgaria, Croatia, France (Continental, Corsica), Greece, Italy (Continental, Kosovo, Sardinia [prehistoric introduction], Sicily), Macedonia, Montenegro, Romania, Serbia, Slovenia, Spain (Continental, Balearic Islands [prehistoric introduction]), Turkey (European)

Introduced: Malta (?), Spain (Balearic Islands)

CBFTT Account: Bertolero, Cheylan, Hailey, Livoreil, and Willemsen (2011)

CITES: Appendix II, as Testudinidae spp.
hermann boettgeri, Testudo boettgeri, Testudo boettgeri boettgeri, Eurotestudo boettgeri, Chersine hermanni boettgeri

Type locality: “Orsova...Cernathal...Süd-Ungarn” [Romania]. Restricted to “Orsova, Banat” [Romania] by Boettger (1893:11).

Testudo graeca hercegovinensis Werner 1899:818, Testudo hercegovinensis, Eurotestudo hercegovinensis, Testudo hermanni hercegovinensis

Type locality: “Trebinje...Hercegovina” [Bosnia and Herzegovina].

Testudo enriquesi Parenzan 1932:1160

Type locality: “Conca di Elbassan, nella vallata dello Skumbi, in Albania Centrale.”

TRionyChoidea Gray 1825

Trionichidae Gray 1825:212
Trionyoidea Fitzinger 1826:5
Trionychidae Bell 1828c:515
Trionychidae Bonaparte 1831:63

Carettochelyidae Boulenger 1887a

Carettochelys Ramsay 1886

Carettochelys insculpta Ramsay 1886:158

Type species: Carettochelys insculpta Ramsay 1886, by original monotypy.

Carettochelys insculpta Ramsay 1886 (07:78, 08:10)

Pig-Nosed Turtle, Fly River Turtle

TFTSG Draft Red List: Endangered (2011)

CITES: Appendix II

Carettochelys insculpta Ramsay 1886:158, Carettochelys insculpta, Carettochelys insculpta insculpta

Carettochelys insculpta canni Wells 2002a:1 (07:78, 08:10, 10:43) (unavailable name), Carettochelys canni

Type locality: “near Ooloo Crossing, Daly River, Northern Territory [Australia].”

TRionyChidae Gray 1825

Amymdae Oppel 1811:9 (partim)
Trionychidae Schmid 1819:18
Trionychidae Gray 1825:212
Trionychidae Fitzinger 1826:5
Trionychidae Bell 1828c:515
Trionychidae Bonaparte 1831:63
Trionychidae Portis 1890:22

Cyclanorbinae Lydekker 1889

Cyclanostea Gray 1864b:94
Cyclanorbinae Lydekker 1889:x

Cyclanorbis Gray 1854a

Cryptopus Duméril and Bibron 1835:499 (junior homonym, not = Cryptopus Latreille 1829 [= Crustacea])

Type species: Cryptopus senegalensis Duméril and Bibron 1835, by subsequent designation by Bour et al. (1995:82).

Cyclanorbis Gray 1854a:135

Type species: Cyclanorbis petesi Gray 1854a [= subjective synonym of Cryptopus senegalensis Duméril and Bibron 1835], by original monotypy.

Cryptopodus Duméril 1856:374 (nomen novum)

Cyclanostea Gray 1856a:201

Type species: Cyclanostea senegalensis [= Cryptopus senegalensis Duméril and Bibron 1835], by subsequent designation by Günther (1865:108).

Tetrathyra Gray 1865a:205

Type species: Tetrathyra baikii Gray 1865a [= subjective synonym of Cryptopus senegalensis Duméril and Bibron 1835], by original monotypy.

Baikiea Gray 1869a:215

Type species: Baikiea elegans Gray 1869a, by original monotypy.
Cyclanorbis elegans (Gray 1869a)
Nubian Flapshell Turtle

Cyclanorbis oligotylus Siebenrock 1902c:810
Type locality: “Nubien...oberen Nil” [Nubia...upper Nile] [Sudan].

Cyclanorbis senegalensis (Duméril and Bibron 1835) 75
Senegal Flapshell Turtle, Sahelian Flapshell Turtle

Benin (?), Cameroon, Central African Republic, Chad, Ethiopia (?), Ghana, Nigeria, South Sudan, Sudan, Togo

CBFTT Account: Baker, Diagne, and Luiselli (2015)

IUCN Red List: Near Threatened (1996)
TFTSG Draft Red List: Critically Endangered (2016)

CITES: Appendix II, as Cyclanorbis spp.

Cryptopus senegalensis Duméril and Bibron 1835:504,
Emyda senegalensis, Cyclanosteus senegalensis, Cyclanorbis senegalensis
Type locality: “Sénégal.”

Cyclanorbis petersii Gray 1854a:135, Cyclanosteus petersii, Cycloderma petersii
Type locality: “West Africa, River Gambia” [The Gambia].

Cycloderma senegalense Duméril 1861a:168 (justified emendation)
Tetrathyra baikii Gray 1865a:205

Cyclanosteus senegalensis equilifera Gray 1865b:425
Type locality: “the Niger” [Niger River, West Africa].

Cyclanosteus senegalensis normalis Gray 1865b:425
Type locality: “the Niger” [Niger River, West Africa].

Cycloderma Peters 1854

Cycloderma Peters 1854:216
Type species: Cycloderma frenatum Peters 1854, by original monotypy.

Heptathyra Cope 1860:294
Type species: Heptathyra aubryi [= Cryptopus aubryi Duméril 1856], by original monotypy.

Aspidochelys Gray 1860a:6
Type species: Aspidochelys livingstonii Gray 1860a [= subjective synonym of Cycloderma frenatum Peters 1854], by original monotypy.
Cycloderma aubryi (Duméril 1856)
Aubry’s Flapshell Turtle

Angola (Cabinda), Cameroon, Central African Republic, Congo (DRC), Congo (ROC), Gabon
IUCN Red List: Not Listed [Least Concern 1996]
CITES: Appendix II, as *Cycloderma* spp.

Cycloderma frenatum Peters 1854
Zambezi Flapshell Turtle

Malawi, Mozambique, Tanzania, Zambia, Zimbabwe
CBFTT Account: Broadley and Sachsse (2011)
IUCN Red List: Near Threatened (1996)
CITES: Appendix II, as *Cycloderma* spp.

Cycloderma frenatum Peters 1854:216, *Cyclanosteus frenatus*, *Heptathyra frenata*

Aspidochelys livingstonii Gray 1860a:6, *Heptathyra livingstonii*
Type locality: “Mozambique in tributaries of River Zambesi?”

Lissemys Smith 1931
Emyda Gray 1830e:19 (junior homonym, not = *Emyda* Rafinesque 1815)
Type species: *Emyda punctata* [= *Testudo punctata* Lacepède 1788]
[= *Testudo punctata* Bonnaterre 1789], by original monotypy.
Lissemys ceylonensis (Gray 1856a)
Sri Lankan Flapshell Turtle
Sri Lanka
IUCN Red List: Not Evaluated
CITES: Appendix II [as part of Lissemys punctata]

Emyda ceylonensis Gray 1856a:201, *Emyda granosa ceylonensis, Lissemys ceylonensis, Lissemys punctata ceylonensis*
Type locality: “Ceylon” [Sri Lanka].

Lissemys punctata sinhaleyus † Deraniyagala 1953:5 [Late Pleistocene, Ratnapura Beds, Sri Lanka]
Type locality: “near Ratnapura...Ceylon” [Sri Lanka].

Lissemys punctata (Bonnaterre 1789) (09:44, 11:14)
Indian Flapshell Turtle

(subspecies: *punctata* = red, *andersoni* = purple, *vittata* = orange; overlap = intergrades; orange dot = introduced)

Bangladesh, India (Andhra Pradesh, Bihar, Goa, Gujarat, Kerala, Madhya Pradesh, Odisha, Punjab, Tamil Nadu, West Bengal), Myanmar, Nepal, Pakistan
Introduced: India (Andaman Islands)

CBFTT Account: Bhupathy, Webb, and Praschag (2014)
TFTSG Draft Red List: Least Concern (2011)
CITES: Appendix II

Testudo punctata Lacepède 1788:171, synopsis [table] (09:6)
(senior homonym, not = *Testudo punctata* Schoepff 1792);
nomen suppressum, ICZN 2005a)

Type locality: “les grandes Indes” [India]. Restricted to “Pondicherry, South Arcot (district), Tamil Nadu (state), India” by Webb (1980a:552).

Testudo punctata Bonatterre 1789:30 (senior homonym, not = *Testudo punctata* Schoepff 1792), *Trionyx (Emyda)* punctatus, *Trionyx punctatus, Emyda punctata, Trionyx punctata, Lissemys punctata, Lissemys punctata punctata, Trionyx punctatus punctatus*

Type locality: “les grandes Indes” [India]. Restricted to “Pondicherry, South Arcot (district), Tamil Nadu (state), India” by Webb (1980a:552).

Testudo sonnerati Meyer 1790:83 (09:8) (nomen novum et oblitum)

Testudo granulosa Suckow 1798:48 (nomen novum)
Testudo scabra Latreille in Sonnini and Latreille 1801:164 (nomen novum and junior homonym, not = *Testudo scabra* Linnaeus 1758)

Testudo granosa Schoepff 1801:127, *Trionyx granosus, Cryptopus granosus, Emyda granosa, Emyda granosa granosa, Lissemys punctata granosa, Trionyx punctatus granosus*

Type locality: “Coromandeliae” [India].

Testudo granulata Daudin 1801:81 (nomen novum)
Trionyx coromandelicus Geoffroy Saint-Hilaire 1809b:16 (nomen novum)
Emyda dura Buchanan-Hamilton in Anderson 1876:514 (nomen nudum)

Lissemys punctata andersoni Webb 1980a (11:14)
Spotted Northern Indian Flapshell Turtle

Bangladesh, India (Assam, Bihar, Haryana, Jammu, Madhya Pradesh, Meghalaya, Rajasthan, Sikkim, Uttar Pradesh, West Bengal), Myanmar, Nepal, Pakistan
Introduced: India (Andaman Islands)

Lissemys punctata andersoni Webb 1980a:554, *Lissemys andersoni*
Type locality: “Belbari, Terai, southeastern Nepal, elevation 210 m.”

Lissemys punctata vittata (Peters 1854) (11:14)
Central Indian Flapshell Turtle

India (Andhra Pradesh, Chhattisgarh?, Goa, Gujarat, Karnataka, Madhya Pradesh, Maharashtra, Okisha, Rajasthan)

Emyda vittata Peters 1854:216, *Emyda granosa vittata, Lissemys punctata vittata*
Type locality: “India orientalis, Goa.”

Emyda granosa intermedia Annandale 1912a:171
Type locality: “Near Purulia, Manbhum Dist.” [India].

Lissemys scutata (Peters 1868) (11:14)
Burmese Flapshell Turtle

Myanmar

IUCN Red List: Data Deficient (2000); Previously: Data Deficient (1996)

TFTSG Draft Red List: Near Threatened (2011)

CITES: Appendix II

Amyda Schweigger in Geoffroy Saint-Hilaire 1809a

*Amyda Schweigger in Geoffroy Saint-Hilaire 1809a:365

Type species: *Amyda javanica Schweigger in Geoffroy Saint-Hilaire 1809a [= subjective synonym of Testudo cartilaginea Boddaert 1770], by original monotypy.

Amida Duméril and Bibron 1834:416 (nomen novum)

*Potamochelys Fitzinger 1843:30

Type species: *Aspidonectes (Potamochelys) javanica Wagler [= Amyda javanica Schweigger in Geoffroy Saint-Hilaire 1809a] [= subjective synonym of Testudo cartilaginea Boddaert 1770], by original monotypy.

*Aspilus Gray 1864b:83 [junior homonym, not = Aspilus Schaum 1848 [= Coleoptera]]

Type species: *Aspilus cariniferus [= Trionyx cariniferus Gray 1856b] [= subjective synonym of Testudo cartilaginea Boddaert 1770], by original designation.

Type species: *Ida ornata [= Trionyx ornatus Gray 1861a] [= subjective synonym of Testudo cartilaginea Boddaert 1770], by original monotypy.

Amyda cartilaginea (Boddaert 1770) (96)
Malayan Softshell Turtle, Asiatic Softshell Turtle

Myanmar

IUCN Red List: Vulnerable (2016) [includes Amyda ornata]

CITES: Appendix II

Emyda ornata Gray 1861a:119, *Emyda granosa ornata, Lissemys punctata ornata, Trionyx punctatus ornatus, Trionychidae Fitzinger 1826:5

Trionychidae Lydekker 1889:4

Trionyx cartilaginea (Boddaert 1770) (76)

Myaman Softshell Turtle, Asiatic Softshell Turtle

(subspecies: *cartilaginea* = red, *maculosa* = purple, unassigned *A. cartilaginea* sensu lato = gray; orange dots = probable trade)

Brunei, Indonesia (Bali, Java, Kalimantan, Sumatra), Malaysia (Peninsular, East), Singapore, Thailand (?)

Introduced or Trade: Indonesia (Lesser Sundas, Moluccas, Sulawesi)

CBFTT Account: Auliya, van Dijk, Moll, and Meylan (2016) [includes Amyda ornata]

TFTSG Draft Red List: Vulnerable (2011)

CITES: Appendix II
Amyda cartilaginea cartilaginea (Boddaert 1770) *(?)

South Sundas Softshell Turtle

Indonesia (Bali, Java, Kalimantan), Malaysia (East)
Introduced or Trade: Indonesia (Lesser Sundas [Lombok]), Moluccas [Ambon, Seram]), Sulawesi)

Testudo cartilaginea Boddaert 1770:1,*Gymnopus cartilagineus*, *Aspidonectes cartilagineus*, *Potamochelys cartilagineus*, *Amyda cartilaginea*, *Amyda cartilaginea cartilaginea*

Type locality: Not known. Restricted to “Java” [Indonesia] by Baur (1893a:220).

Testudo membranacea Blumenbach 1779:257 *(nomen dubium)*

Testudo boddaerti Schneider 1787:12 *(nomen novum)*,*Trionyx boddaerti*

Testudo striata Suckow 1798:37 *(partim, nomen novum)*

Amyda javanica Schweigger in Geoffroy Saint-Hilaire 1809a:365 *(senior homonym, not = Trionyx javanicus Gray 1830e)*,*Trionyx javanicus*, *Trionyx iavanicus*, *Tyrse javanica*, *Aspidonectes javanicus*, *Trionyx stellatus javanica*, *Aspilus javanicus*, *Potamochelys javanicus*

Type locality: “Java et les îles voisines” [Indonesia].

Trionyx stellatus Geoffroy Saint-Hilaire 1809a:365 *(nomen novum)*,*Potamochelys stellatus*

Trionyx cariniferus Gray 1856b:67,*Aspilus cariniferus*, *Trionyx carinifera*

Type locality: “Moluccas” [Indonesia].

Aspilus punctulatus Gray 1864b:84

Type locality: “Amboina or Ceram” [Indonesia].

Trionyx jeudi Gray 1869a:217

Type locality: “Java?” [Indonesia].

Trionyx trimilis † Jaekel 1911:78 *[Pleistocene, Pithecanthropus Trinil Beds, Indonesia (Java)]*

Type locality: “Pithecanthropus-schichten...Java...Trinil” [Indonesia].

Amyda cartilaginea maculosa Fritz, Gemel, Kehlmaier, Vamberger, and Praschag 2014a *(?)

North Sundas Softshell Turtle

Brunei (?), Indonesia (Kalimantan, Sumatra), Malaysia (East, Peninsular?), Thailand (?)

Amyda cartilaginea maculosa Fritz, Gemel, Kehlmaier, Vamberger, and Praschag 2014a:240

Type locality: “Nanga Badau, Kalimantan, Indonesia (“Nanga Bandang, Borneo”).”

Amyda cartilaginea (Boddaert 1770) *(?) or** Amyda ornata** (Gray 1861a)

Southeast Asian Softshell Turtle

Bangladesh, Cambodia, India (Mizoram), Laos, Myanmar, Thailand, Vietnam
Introduced: Indonesia (Lesser Sundas, Sulawesi)

CBFTT Account: Auliya, van Dijk, Moll, and Meylan (2016) [as part of Amyda cartilaginea]

IUCN Red List: Vulnerable A1cd+2cd (2000), as part of Amyda cartilaginea; Previously: Vulnerable (1996), as part of A. cartilaginea

CITES: Appendix II, as part of A. cartilaginea
Amyda cartilaginea ornata (Gray 1861) or
Amyda ornata ornata (Gray 1861)
Indochinese Softshell Turtle

Amyda cartilaginea phayrei (Theobald 1868b) or
Amyda ornata phayrei (Theobald 1868b)
Burmese Softshell Turtle

Apalone Rafinesque 1832
Applaxia Rafinesque 1817:166 (nomen oblitum)
Type species: Applaxia nasica Rafinesque 1817 (nomen nudum) [= Triopterus nasicus Rafinesque 1822 (nomen suppressum) [= subjective synonym of Triopterus spiniferus LeSueur 1827], by original monotypy.

Apalone Rafinesque 1832:64
Type species: Apalone bussonica Rafinesque 1832 [= subjective synonym of Triopterus spiniferus LeSueur 1827], by original monotypy.

Mesodeca Rafinesque 1832:64
Type species: Mesodeca bartrami [= Testudo bartrami Daudin 1801] [= subjective synonym of Testudo ferox Schneider 1783], by original monotypy.

Triopterus (Platypeltis) Fitzinger 1835:109
Type species: Platypeltis ferox Fitzinger [= Testudo ferox Schneider 1783], by subsequent designation by Fitzinger (1845:30).

Callinia Gray 1869a:221
Type species: Callinia spinifera [= Triopterus spiniferus LeSueur 1827], by subsequent designation by Stejneger (1907:514).

Euamyla Stejneger 1944:7
Type species: Euamyla mutica [= Triopterus muticus LeSueur 1827], by original monotypy.

Apalone ferox (Schneider 1783)
Florida Softshell Turtle

Testudo (ferox) Schoepff 1795:90
Type locality: "Floridae Orientalis" [USA]. Restricted to "Halfway Pond...between...Palatka and Gainesville, Fla...somewhere in southwestern Putnam County" [Florida, USA] by Harper (1940:717) by restriction of nomen novum replacement name Testudo bartramii Daudin 1801.

Testudo bartramii Daudin 1801:74 (nomen novum), Chelys
bartrami, Trionyx bartrami, Mesodeca bartrami
Type locality: “la Floride orientale” [Florida, USA]. Restricted to “Halfway Pond...between...Palatka and Gainesville, Fl...somewhere in southwestern Putnam County” [Florida, USA] by Harper (1940:717).

Trionyx georgianus Geoffroy Saint-Hilaire 1809a:367 (nomen novum)
Trionyx carinatus Geoffroy Saint-Hilaire 1809b:14, Aspidonectes carinatus

Trionyx georgicus Geoffroy Saint-Hilaire 1809b:17 (nomen novum)
Trionyx brunniart Schwegger 1812:288 (nomen novum), Testudo brunniart, Platypeltis brunniart

Trionyx harlani Bell in Harlan 1835:159
Type locality: “East Florida” [USA].

Apalone mutica (LeSueur 1827)
Smooth Softshell Turtle

Apalone mutica mutica (LeSueur 1827)
Midland Smooth Softshell Turtle

Pennsylvania [extirpated], South Dakota, Tennessee, Texas, West Virginia, Wisconsin

Trionyx pusilla Rafinesque 1822:3 (nomen dubium et suppressum, ICZN 1984)
Type locality: “United States” [USA].

Trionyx muticus LeSueur 1827:263, Aspidonectes muticus, Gymnopus muticus, Amyda mutica, Euamyda mutica, Trionyx muticus, Trionyx muticus muticus, Apalone mutica, Apalone muticus, Apalone mutica mutica
Type locality: “New Harmony, sur le Wabash, à peu de distance de son embouchure dans l’Ohio...l’Etat de l’Indiana” [USA].

Potamochelys microcephalus Gray 1864b:87, Callinia microcephala, Potamochelys microcephala

Apalone mutica calvata (Webb 1959) 77
Gulf Coast Smooth Softshell Turtle

USA (Alabama, Arkansas, Florida, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Minnesota, Mississippi, Missouri, Nebraska, New Mexico, North Dakota, Ohio, Oklahoma, Pennsylvania [extirpated], South Dakota, Tennessee, Texas, West Virginia, Wisconsin)

Apalone mutica calvata, Apalone calvata
Type locality: “Pearl River, Roses Bluff, 14 miles northeast Jackson, Rankin County, Mississippi” [USA].
Apalone spinifera (LeSueur 1827) (12:37)
Spiny Softshell Turtle

Apalone spinifera spinifera (LeSueur 1827) (08:22)
Northern Spiny Softshell Turtle

Aplaxia nasica Rafinesque 1817:166 (nomen nudum)
Trionyx nasica Rafinesque 1822:3 (nomen suppressum, ICZN 1984)

Type locality: “western streams...United States” [USA].

Trionyx spiniferus LeSueur 1827:258, Gymnopus spiniferus, Gymnopus spinifer, Trionyx spinifer, Callinina spinifer, Gymnopus spinifer, Platypeltis spinifer, Tyrse spinifer, Amyda spinifer, Platypeltis spinifer, Amyda spinifer, Amyda spinifer spinifer, Trionyx spinifer, Trionyx spinifera spinifer, Amyda ferox spinifer, Trionyx ferox spinifer, Trionyx spinifer spinifer, Trionyx spiniferus spiniferus, Apalone spinifera, Apalone spinifera, Apalone spinifera spinifera

Type locality: “New harmony, sur le Wabash, à peu de distance de son embouchure dans l’Ohio...l’Etat de l’Indiana” [USA].

Trionyx ocellatus LeSueur 1827:261 (senior homonym, not = Trionyx ocellatus Gray 1832a)

Type locality: “New harmony, sur le Wabash, à peu de distance de son embouchure dans l’Ohio...l’Etat de l’Indiana” [USA].

Apalone hudsonica Rafinesque 1832:64

Type locality: “River Hudson between the falls of Hadley, Glen and Baker, and further up to the source” [USA]. Restricted to “Hudson River, near Baker’s Falls, Saratoga County, New York” [USA] by Webb (1962:491).

Trionyx annulifer Wied 1839:140 (nomen novum)

Tyrs argus Gray 1844:48, Trionyx argus

Trionyx annulatus Gray 1856b:69 (nomen novum)

Aspidonectes nuchalis Agassiz 1857a:402,406, Platypeltis nuchalis

Gymnopus olivaceus Wied 1865:55 (nomen novum)

Amyda spinifera hartwegi Conant and Goin 1948:1 (08:22), Amyda ferox hartwegi, Trionyx ferox hartwegi, Trionyx spinifer hartwegi, Trionyx spiniferus hartwegi, Apalone spinifera hartwegi

Type locality: “Wichita, Sedgwick County, Kansas” [USA].

Apalone spinifera aspera (Agassiz 1857a)
Gulf Coast Spiny Softshell Turtle

USA (Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, Tennessee)
asper, Trionyx spiniferus asperus, Apalone spinifera aspera, Apalone spinifera aspera
Type locality: “Mississippi” [USA]. Restricted to “Lake Concordia, La.” [Louisiana, USA] by Baur (1893:220) and Schmidt (1953:109); and to “Pearl River at Columbus, Marion County, Mississippi” [USA] by lectotype designation by Webb (1960:7).

Platypeltis agassizii Baur 1888c:1122, Trionyx agassizii, Pelodiscus agassizii, Aspidonectes agassizii, Trionyx spiniferus agassizii, Amyda agassizii, Amyda ferox agassizii, Trionyx ferox agassizii

Black Spiny Softshell Turtle, Cuatro Cienegas Softshell

Apalone spinifera emoryi (Agassiz 1857a) 12:37
Texas Spiny Softshell Turtle

Apalone spinifera guadalupensis (Webb 1962)
Guadalupe Spiny Softshell Turtle

Apalone spinifera pallida (Webb 1962)
Pallid Spiny Softshell Turtle
Chitra Gray 1844

Type species: *Chitra indica* [= *Trionyx indicus* Gray 1830e], by original monotypy.

Chitra chitra Nutaphand 1986

Asian Narrow-headed Softshell Turtle

Chitra chitra Nutaphand 1986

Type locality: “Khwae Noi and Khwae Yai rivers of Kanchanaburi Province and in the Mae Klong River in Ratburi Province” [Thailand]. Restricted to “[Khwae Noi and Khwae Yai rivers of Kanchanaburi Province and in the Mae Klong River in Ratburi Province]” by Nutaphand (1990:113); and to “Kanburi (= Kanchanaburi), where the Khwae Noi and the Khwae Yai Rivers join to form the Mae Klong River in Kanchanaburi Province, Thailand” by McCord and Pritchard (2003:18).

Chitra chitra javanensis McCord and Pritchard 2003:41

Javanese Narrow-headed Softshell Turtle

Chitra indica (Gray 1830e) (107)

Indian Narrow-headed Softshell Turtle

Type locality: “Fatehgahr, Ganges” [India] by Smith (1931:162).

Testudo chitra Buchanan-Hamilton in Gray 1831d:47 (nomen nudum)

Gymnopus lineatus Duméril and Bibron 1835:491, *Trionyx lineatus*

Type locality: “le Gange” [India].
Chitra vandijkii McCord and Pritchard 2003
Burmese Narrow-headed Softshell Turtle

Dogania Gray 1844
Dogania Gray 1844:49
Type species: *Dogania subplana* [= *Trionyx subplanus* Geoffroy Saint-Hilaire 1809b], by original monotypy.

Sarbierta Gray 1869a:211
Type species: *Sarbierta frenata* [= *Trionyx frenata* Gray 1856b] [= subjective synonym of *Trionyx subplanus* Geoffroy Saint-Hilaire 1809b], by original monotypy.

Dogania subplana (Geoffroy Saint-Hilaire 1809b)
Malayan Softshell Turtle

Nilssonia Gray 1872a:332
Nilssonia Gray 1872a:332
Type species: *Nilssonia formosa* [= *Trionyx formosus* Gray 1869a], by original monotypy.

Isola Gray 1873h:51
Type species: *Isola penguensis* [= *Trionyx penguensis* Gray 1870c] [= subjective synonym of *Trionyx formosus* Gray 1869a], by original monotypy.

Aspideretes Hay 1904:274
Type species: *Aspideretes gangeticus* [= *Trionyx gangeticus* Cuvier 1825], by original designation.
Nilssonia formosa (Gray 1869a)
Burmese Peacock Softshell Turtle

Nilssonia hurum (Gray 1830c) (10:7)
Indian Peacock Softshell Turtle

Trionyx formosus Gray 1869a:217, Nilssonia formosa, Aspidonectes formosus, Isola formosa, Trionyx formosus, Amyda formosus, Amyda formosa
Type locality: “Pegu” [Myanmar].

Trionyx javanicus Gray 1830e:19 (10:7) (partim, junior homonym, not = Amyda javanica Schweigger in Geoffroy Saint-Hilaire 1809a), Tyrse javanica
Type locality: “Java and India.”

Nilssonia gangetica (Cuvier 1825) (12:38)
Indian Softshell Turtle

Nilssonia hurum (Gray 1830c) (10:7)
Indian Peacock Softshell Turtle
Concern [Not Listed] (1996)
TFTSG Draft Red List: Endangered (2011)
CITES: Appendix I, as Aspideretes hurum
Trionyx occellatus Gray 1830d:pl.78 (nomen oblitum)
Trionyx hurum Gray 1830e:18 (nomen nudum), Isola hurum, Aspideretes hurum, Aspidonectes hurum, Tyrse hurum, Amyda hurum, Nilssonia hurum
Testudo chim Buchanan-Hamilton in Gray 1831d:47 (nomen nudum)
Trionyx occellatus Gray 1832a:directions (nomen novum and junior homonym, not = Trionyx occellatus LeSueur 1827),
Testudo occellata, Gymnopus occellatus
Gymnopus duvaucelii Duméril and Bibron 1835:487 (partim, nomen nudum)
Trionyx sewaare Gray 1872a:336
Type locality: “Bengal” [India or Bangladesh].
Trionyx bellii Gray 1872a:337
Type locality: “Asia.”
Trionyx buchanani Theobald 1874:78
Type locality: “Bengal” [India or Bangladesh].
Trionyx hurum sivalensis Lydekker 1889:9 [Late Pliocene to Early Pleistocene, Siwaliks, India (Punjab)], Trionyx sivalensis
Type locality: “India...Siwalik Hills.”

Nilssonia leithii (Gray 1872a)
Leith’s Softshell Turtle

Trionyx javanicus Gray 1830e:19 (partim, junior homonym, not = Amyda javanica Schweigger in Geoffroy Saint-Hilaire 1809a), Tyrse javanica
Type locality: “Java and India.”
Testudo gataghul Buchanan-Hamilton in Gray 1831d:48 (nomen nudum)
Trionyx leithii Gray 1872a:334, Isola leithii, Aspideretes leithii, Amyda leithii, Nilssonia leithii
Type locality: “Poonah” [India].
Aspilus gataghul Gray 1872a:339, Trionyx gataghul, Trionyx gataghul
Type locality: “India.”
Trionyx sulcifrons Annandale 1915b:341
Type locality: “Nagpur...Central Provinces of India.”

Nilssonia nigricans (Anderson 1875) (nomen nudum)
Black Softshell Turtle, Bostami Softshell

Palea Meylan 1987
Palea Meylan 1987:77
Type species: Palea steindachneri [= Trionyx steindachneri Siebenrock 1906a], by original designation.
Palea steindachneri (Siebenrock 1906a)
Wattle-necked Softshell Turtle

China (Guangdong, Guizhou, Yunnan), Vietnam
Introduced: China (Hong Kong), Mauritius, USA (Hawaii [Kauai])
TFTSG Draft Red List: Endangered (2011)
CITES: Appendix II

Pelochelys Gray 1864b

Pelochelys Gray 1864b:89
Type species: *Pelochelys cantorii* Gray 1864b, by subsequent designation by Günther (1865:108).
Pelochelys (Ferepelochelys) Hoser 2014a:62 (unavailable name pending ICZN decision; Rhadin et al. 2015) (479)

Pelochelys bibroni (Owen 1853)
New Guinea Giant Softshell Turtle

Indonesia (Papua), Papua New Guinea (Southern)
TFTSG Draft Red List: Vulnerable (2011)
CITES: Appendix II, as *Pelochelys* spp.

Trionyx (Gymnopus) bibroni Owen 1853:185, *Trionyx bibroni*, *Pelochelys bibroni*, *Pelochelys (Ferepelochelys) bibroni*, *Ferepelochelys bibroni*
Type locality: “Australian.” Restricted to “Laloki River, Astrolabe Range, 40 miles [ca. 65 km] from its entry into Redscar Bay (9°20'S 147°14'E), Central District, Papua New Guinea” by neotype designation by Webb (1995a:302).
Pelochelys cantorii Gray 1864b (79)
Asian Giant Softshell Turtle, Cantor’s Giant Softshell Turtle

Bangladesh, Brunei (?), Cambodia, China (Fujian, Guangdong, Guangxi, Hainan, Zhejiang), India (Kerala, Odisha, Tamil Nadu, West Bengal), Indonesia (Kalimantan, Sumatra), Laos, Malaysia (Peninsular, East), Myanmar, Philippines (Luzon, Mindanao, Palawan), Singapore (extirpated), Thailand, Vietnam

CBFDTT Account: Das (2008)
TFTSG Draft Red List: Critically Endangered (2011)
CITES: Appendix II, as *Pelochelys* spp.

Pelochelys cantorii Gray 1864b:90
Type locality: “Malacca” [Malaysia].

Pelochelys cumingii Gray 1864b:90, *Chitra indica cumingii*
Type locality: “Philippines.”

Pelochelys cantoris Boulenger 1889:ix (nomen novum)

Pelochelys poljakowii Strauch 1890:118
Type locality: “Fu-tschau” [China]. Emended to “Fu-tschau [Fuzhou Shi], Fujian Province, China” by Fritz and Havaš (2008:317).

Chitra minor † Jaekel 1911:80 [Pleistocene, *Pithecanthropus* Trinil Beds, Indonesia (Java)]
Type locality: “Pithecanthropus-schichten...Java...Trinil” [Indonesia].

Pelochelys clivepalmeri Hoser 2014a:62 (unavailable name pending ICZN decision; Rhodin et al. 2015)

Pelochelys telstraorum Hoser 2014a:62 (unavailable name pending ICZN decision; Rhodin et al. 2015)

Pelochelys signifera Webb 2003
Northern New Guinea Softshell Turtle

Indonesia (Papua), Papua New Guinea (Northern)
IUCN Red List: Not Evaluated
TFTSG Draft Red List: Data Deficient (2011)
CITES: Appendix II, as *Pelochelys* spp.

Pelochelys signifera Webb 2003:100, *Pelochelys (Ferepelo- chelys) signifera*, *Ferepelochelys signifera*
Type locality: “Wanggar River, Weyland Range, Geelvinck Bay, N. New Guinea (Papua Province, Indonesia).”

Pelodiscus Fitzinger 1835 (07:82, 10:32, 11:16)

Trionyx (*Pelodiscus*) Fitzinger 1835:110
Type species: *Aspidonectes (Pelodiscus) sinensis* [= *Trionyx (Aspidonectes) sinensis* Wiegmann 1834], by subsequent designation by Fitzinger (1843:30).

Landemania Gray 1869a:211
Type species: *Landemania irrorata* Gray 1869a [= subjective synonym of *Trionyx (Aspidonectes) sinensis* Wiegmann 1834], by original designation.

Psilognathus Heude 1880:24
Type species: *Psilognathus laevis* Heude 1880 [= subjective synonym of *Trionyx (Aspidonectes) sinensis* Wiegmann 1834], by original monotypy.

Temnognathus Heude 1880:25
Type species: *Temnognathus mordax* Heude 1880 [= subjective synonym of *Trionyx (Aspidonectes) sinensis* Wiegmann 1834], by original monotypy.

Gomphopelta Heude 1880:27
Type species: *Gomphopelta officinaceae* Heude 1880 [= subjective synonym of *Trionyx (Aspidonectes) sinensis* Wiegmann 1834], by original monotypy.

Coelognathus Heude 1880:29
Type species: *Coelognathus novemcostatus* Heude 1880 [= subjective synonym of *Trionyx (Aspidonectes) sinensis* Wiegmann 1834], by original monotypy.

Tortisternum Heude 1880:31
Type species: *Tortisternum novemcostatum* Heude 1880 [= subjective synonym of *Trionyx (Aspidonectes) sinensis* Wiegmann 1834], by original monotypy.
Ceramopelta Heude 1880:33
Type species: Ceramopelta latirostris Heude 1880 [= subjective synonym of Trionyx (Aspidonectes) sinensis Wiegmann 1834], by original monotypy.

Coptopelta Heude 1880:34
Type species: Coptopelta septemcostata Heude 1880 [= subjective synonym of Trionyx (Aspidonectes) sinensis Wiegmann 1834], by original monotypy.

Cinctisternum Heude 1880:36
Type species: Cinctisternum bicinctum Heude 1880 [= subjective synonym of Trionyx (Aspidonectes) sinensis Wiegmann 1834], by original monotypy.

Hunan Softshell Turtle

Pelodiscus maackii (Brandt 1857) (10:32, 11:16)
Northern Chinese Softshell Turtle

Vietnamese Softshell Turtle
Pelodiscus sinensis
Chinese Softshell Turtle

Trionyx japonica

Testudo semimembranacea

Hermann 1804:219

(nomen supersedes Trionyx stellatus)

(nomen suppressum)

Thunberg 1787:179

(var. japonica, Pelodiscus sinensis japonicus

Type locality: "Tzu ya ho, the river of Sien hien...Chili"

Gray 1844b:81

Type locality: "Chusan...Island" [Zhoushan Island, Zhejiang, China].

Testudo perocellata Gray 1844:48, Testudo perocellata, Emydes perocellata, Cyrtosternum perocellata

(nomen nudum)

(nomen nudu
Rafetus *euphraticus* (Olivier in Daudin 1801)\(^{(83,84)}\)

Euphrates Softshell Turtle

Rafetus *swinhoei* (Gray 1873g)\(^{(85-87,103,107,11,17)}\)\(^{(85)}\)

Red River Giant Softshell Turtle, Yangtze Giant Softshell Turtle, Swinhoe's Softshell Turtle

Conservation Biology of Freshwater Turtles and Tortoises • Chelonian Research Monographs, No. 7

Iran (Ilam, Khuzestan, Lorestan), Iraq, Syria, Turkey

CBFTT Account: Taskavak, Atatur, Ghaffari, and Meylan (2016)

IUCN Red List: Endangered A1ac+2c (1996)

TFTSG Draft Red List: Endangered (2011)

CITES: Appendix II as *Rafetus* spp.

Testudo euphratica Olivier in Daudin 1801:305\(^{(83)}\), *Trionyx euphraticus*, *Gymnopus euphraticus*, *Rafetus euphraticus*, *Pelodiscus euphraticus*, *Amyda euphratica*, *Tyrse euphratica*

Type locality: “le Tigre et l’Euphrate” [Tigris and Euphrates rivers, Iraq]. Restricted to “Euphrates (Al Firat), vicinity of Anah, Al-Anbar, Iraq” by Bour et al. (1995:85).

Testudo rafcht Olivier 1807:328

Type locality: “le Tigre[..]..l’Euphrate” [Tigris and Euphrates rivers, Iraq].

Testudo rascht Gray 1830e:19 (nomen novum)

Tyre rascht Gray 1844:49 (nomen novum), *Trionyx rascht*, *Testudo rascht*

Rafetus *swinhoei* (Gray 1873g)\(^{(85,83,103,11,17)}\)\(^{(85)}\)

Red River Giant Softshell Turtle, Yangtze Giant Softshell Turtle, Swinhoe’s Softshell Turtle

China (Anhui? [extirpated], Jiangsu? [extirpated], Yunnan, Zhejiang? [extirpated]), Vietnam

TFTSG Draft Red List: Critically Endangered (2011)

CITES: Appendix II

Oscaria swinhoei Gray 1873g:157, *Pelodiscus swinhoei*, *Trionyx swinhoei*, *Amyda swinhoei*, *Rafetus swinhoei*

Type locality: “neighbourhood of Shanghai” [China].

Yuen leprosus Heude 1880:20

Type locality: “le Houang-p’ou, à Chang-hai” [Huangpu Jiang, Shanghai, China].

Yuen maculatus Heude 1880:22, *Pelochelys maculatus*

Type locality: “le Houang-p’ou” [Huangpu Jiang, Shanghai, China].

Yuen elegans Heude 1880:23

Type locality: “Houang-p’ou” [Huangpu Jiang, Shanghai, China].

Yuen viridis Heude 1880:23

Type locality: “Houang-p’ou” [Huangpu Jiang, Shanghai, China].

Yuen pallens Heude 1880:23

Type locality: “Grand Lac, près de Sou-tcheou” [Tai Hu, Suzhou Shi, Jiangsu, China].

Trionyx swinhonis Boulenger 1889:iix (nomen novum)

Pelochelys taihuensis † Zhang 1984:71 [Holocene, Neolithic, subfossil, China (Zhejiang)]

Type locality: “Luojiajiao Relics, Tongxiang County, Zhejiang” [China].

Trionyx liupani † Tao 1986:23 [Late Pleistocene, Taiwan]

Type locality: “Penghu Channel in the Taiwan Strait” [Taiwan, China].

Rafetus hoankiemensis Ha 1995:4 (nomen nudum)

Rafetus huoquomensis Ha 1995:4 (nomen nudum)

Rafetus eloi Ha 2000:104 (11,17)

Type locality: “Hoan Kiem Lake, Ha Noi” [Vietnam].

Rafetus vietnamensis Le, Le, Tran, Phan, Tran, Pham, Nguyen, Nong, Phan, Dinh, Truong, and Ha 2010:950 (10,33,11,17)

Type locality: Not known; holotype from “Hung Ky Pagoda, Hanoi” [Vietnam].

Trionyx Geoffroy Saint-Hilaire 1809a

Trionyx Geoffroy Saint-Hilaire 1809a:363

Type species: *Trionyx “tortue du Nil” [= *Trionyx egyptiacus* Geoffroy Saint-Hilaire 1809a] [= subjective synonym of *Testudo triunguis* Forskål 1775], by subsequent designation by Bory de Saint-Vincent (1828:77).

Aspidonectes Wagler 1830b:134

Type species: *Aspidonectes aegyptiacus* [= *Trionyx aegyptiacus* Geoffroy Saint-Hilaire 1809b] [= subjective synonym of *Testudo triunguis* Forskål 1775], by subsequent designation by Fitzinger (1843:30).

Gymnopus Duméril and Bibron 1835:472 (nomen novum)

Tyxre Gray 1844:47
Type species: *Tyrse aegyptiacus* [= *Trionyx aegyptiacus* Geoffroy Saint-Hilaire 1809b] = subjective synonym of *Testudo triunguis* Forskål 1775, by original designation.

Fordia Gray 1869a:219

Type species: *Fordia africana* Gray 1869a = subjective synonym of *Testudo triunguis* Forskål 1775, by original monotypy.

Trionyx triunguis (Forskål 1775) (10:29, 11:18)

African Softshell Turtle, Nile Softshell Turtle

(Pleurodira) Cope 1864 (08:20)

Pleuroderes Duméril and Bibron 1834:354

Pleurodera Lichtenstein 1856:2 (08:20)

Pleurodera Cope 1864:181

Pleurodira Cope 1865:186

Chelidae Gray 1825 (12:39) (86)

Chelidae Cuvier 1816:14

Chelydidae Schmid 1819:17

Chelidina Gray 1825:211

Chelydoidae Fitzinger 1826:7

Chelydae Gray 1831d:7

Chelydidae Gray 1831d:37

Hydaspida Bonaparte 1836:3 (partim)

Chelina Bonaparte 1836:4

Hydaspidae Agassiz 1857a:249

Chelydidi Portis 1890:17

Chelydae Baur 1893a:211

Chelodinidae Baur 1893a:211

Typhlonemidae Baur 1893a:211

Chelidae Lindholm 1929:289

Chelidae Storr 1978:303

Chelidae Gray 1825 (12:39)

Chelides Cuvier 1816:14

Chelydes Schmid 1819:17

Chelidina Gray 1825:211

Chelydoida Fitzinger 1826:7

Chelydae Gray 1831d:7

Chelydidae Gray 1831d:37

Hydaspida Bonaparte 1836:3 (partim)

Chelina Bonaparte 1836:4

Hydaspidae Agassiz 1857a:249

Chelydidi Portis 1890:17

Chelydae Baur 1893a:211

Chelodinidae Baur 1893a:211

Typhlonemidae Baur 1893a:211

Chelidae Lindholm 1929:289

Chelidae Storr 1978:303

Chelinae Gray 1825 (12:39)

Chelides Cuvier 1816:14

Chelydes Schmid 1819:17

Chelidina Gray 1825:211

Chelina Bonaparte 1831:63

Chelinae Georges, Birrell, Saint, McCord, and Donnellan 1998:235

Chelinae Turtle Taxonomy Working Group 2012:289
Acanthochelys Gray 1873c (14:39)

Type species: Acanthochelys spixii [= Platemys spixii Duméril and Bibron 1835], by original monotypy.

Acanthochelys macrocephala (Rhodin, Mittermeier, and McMorris 1984) (07:84)
Pantanal Swamp Turtle, Big-headed Pantanal Swamp Turtle

Bolivia (Santa Cruz), Brazil (Mato Grosso, Mato Grosso do Sul), Paraguay

CBFTT Account: Rhodin, Métrailler, Vinke, Vinke, Arntner, and Mittermeier (2009)
IUCN Red List: Near Threatened (1996)
TFTSG Draft Red List: Near Threatened or Least Concern (2012)

Phrynops schoepffii Fitzinger in Siebenrock 1904b:27 (no-men nudum, partim)

Platemys macrocephala Rhodin, Mittermeier, and McMorris 1984a:38, Acanthochelys macrocephala
Type locality: “Caçara, Rio Paraguai, Mato Grosso, Brazil (16°03’S 57°43’W).”

Phrynops chacoensis Fritz and Pauler 1992:299 (07:84), Acanthochelys chacoensis, Mesoclemmys chacoensis
Type locality: “Paraguayischer Chaco, 22°30’3” S, 59°44’30” W” [Paraguay].

Acanthochelys pallidiprotectoris (Freiberg 1945)
Chaco Side-necked Turtle

Argentina (Chaco, Formosa, Salta, Santa Fe), Bolivia (Tarija), Paraguay

Introduced: Argentina (Mendoza)

IUCN Red List: Endangered A2cde+3cde+4cde; C1+2a(i) (2016); Previously: Vulnerable (1996)

Platemys pallidiprotectoris Freiberg 1945:19, Acanthochelys pallidiprotectoris
Type locality: “Presidencia Roque Sáenz Peña, Chaco” [Argentina].

Acanthochelys radiolata (Mikan 1820) (14:39)(87)
Brazilian Radiolated Swamp Turtle

Brazil (Alagoas, Bahia, Espírito Santo, Minas Gerais, Rio de Janeiro, Sergipe)

IUCN Red List: Near Threatened (1996)
TFTSG Draft Red List: Data Deficient (2011)

Emys radiolata Mikan 1820:[unpaginated], Chelodina radiolata, Rhinemys radiolata, Chelys (Hydraspis) radiolata, Chelys radiolata, Hydraspis radiolata, Platemys radiolata, Platemys radiolata radiolata, Acanthochelys radiolata
Type locality: “Sebastianopoli...Brasilia” [Rio de Janeiro, Brazil].

Platemys gaudichaudi Duméril and Bibron 1835:427,
Hydraspis gaudichaudii
Type locality: “Brésil” [Brazil].

Platemys werneri Schneck 1900:463
Type locality: “Umgebung von São Paulo” [Brazil].

Platemys radiolata quadrisquamosa Luederwaldt 1926:437,
Platemys quadrisquamosa
Type locality: “Rio Doce (Est. do Espirito Santo). [&] Belmonte (Bahia)” [Brazil].

Platemys werneri Schnee 1900:463
Type locality: “Umgebung von São Paulo” [Brazil].

Platemys radiolata quadrisquamosa Luederwaldt 1926:437,
Platemys quadrisquamosa
Type locality: “Rio Doce (Est. do Espirito Santo). [&] Belmonte (Bahia)” [Brazil].

Acanthochelys spixii (Duméril and Bibron 1835)
Black Spiny-necked Turtle, Spix’s Sideneck Turtle

Brazil (Bahia, Goiás, Minas Gerais, Paraná, Rio Grande do Sul, Santa Catarina, São Paulo), Uruguay
IUCN Red List: Near Threatened (1996)
TFTSG Draft Red List: Near Threatened (2011)

Emys depressa Spix 1824:4 (junior homonym, not = Emys depressa Merrem 1820)

Emys aspera Cuvier in Gray 1830e:16 (nomen oblitum)

Platemys spixii Duméril and Bibron 1835:409 (nomen novum), Hydraspis spixii, Acanthochelys spixii, Platemys radiolata spixii

Chelus Duméril 1805 (10:11)
Chelus Duméril 1805:76 (10:11)
Type species: Chelus fimbriata [= Testudo fimbriata Schneider 1783], by original monotypy.
Chelys Oppel 1811:6 (nomen novum)
Chelyda Rafinesque 1815:75 (nomen novum)
Matamata Merrem 1820:21 (nomen novum)

Chelus fimbriata (Schneider 1783) (88)
Matamata Turtle

Bolivia (Beni, Pando, Santa Cruz), Brazil (Amapá, Amazonas, Goiás, Mato Grosso, Pará, Rondônia, Roraima, Tocantins), Colombia (Amazonas, Arauca, Caquetá, Casanare, Guainía, Meta, Putumayo, Vaupés, Vichada), Ecuador, French Guiana, Guyana, Peru (Loreto, Ucayali), Suriname, Trinidad, Venezuela (Amazonas, Anzoátegui, Apure, Barinas, Bolívar, Cojedes, Delta Amacuro, Guárico, Monagas, Sucre, Zulia)

CBFTT Account: Pritchard (2008)
TFTSG Draft Red List: Least Concern (2011)

Testudo terrestris Fernin 1765:51 (junior homonym, not = Testudo terrestris Garsault 1764 or Testudo terrestris Forskål 1775; nomen suppressum, ICZN 1963)
Type locality: “Surinam.”

Testudo fimbriata Schneider 1783:349 (nomen conservandum, ICZN 1963), Chelus fimbriata, Chelys fimbriata, Matamata fimbriata, Chelus fimbriatus
Type locality: “Surinam...von Aprouague..[&]..Remire.”

Testudo fimbria Gmelin 1789:1043 (nomen novum), Chelys fimbria

Testudo matamata Bruguère 1792:257, Emydidae matamata, Chelus matamata, Chelys matamata
Type locality: “Cayenne” [French Guiana].

Testudo bispinosa Ruiz de Xelva in Daunin 1801:94, Chelys bispinosa, Matamata bispinosa
Type locality: “Brésil” [Brazil].

Testudo rapara Gray 1831d:44 (nomen nudum)
Testudo raparara Gray 1844:44 (nomen nudum)

Chelys boulengeri Baur 1890h:968
Type locality: “Orinoco” [Venezuela].
Mesoclemmys Gray 1873c:305
Type species: *Mesoclemmys gibba* [= *Emys gibba* Schweigger 1812], by original monotypy.

Batrachemys Stejneger 1909:126
Type species: *Batrachemys nasuta* [= *Emys nasuta* Schweigger 1812], by original monotypy.

Bufocephala McCord, Joseph-Ouni, and Lamar 2001:732
Type species: *Bufocephala vanderhaegei* [= *Phrynops tuberculatus vanderhaegei* Bour 1973], by original designation.

Type species: *Ranacephala hogei* [= *Phrynops hogei* Mertens 1967], by original designation.

Mesoclemmys dahli (Zangerl and Medem 1958) (12:40)
Dahl’s Toad-headed Turtle

Colombia (Atlántico, Bolívar, Cesar, Córdoba, Magdalena, Sucre)

IUCN Red List: Critically Endangered B1+2c (1996)
TFTSG Draft Red List: Endangered (2011)

Phrynops (Batrachemys) dahli Zangerl and Medem 1958:376, *Phrynops dahli*, *Batrachemys dahli*, *Phrynops nasutus dahli*, *Mesoclemmys dahli*
Type locality: “Vicinity of Sincelejo, Bolivar, Colombia.”

Emys gibba Schweigger 1812:298, *Rhinemys gibba*, *Hydraspis cayennensis gibba*, *Platemys gibba*, *Hydraspis (Podocnemis) gibba*, *Hydraspis gibba*, *Phrynops gibbus*, *Mesoclemmys gibba*, *Phrynops (Mesoclemmys) gibba*, *Mesoclemmys gibbus*

Emys stenops Spix 1824:12, *Hydraspis stenops*

Platemys miliusii Duméril and Bibron 1835:431, *Phrynops miliusii*, *Hydraspis miliusii*
Type locality: “Cayenne” [French Guiana].

Hydraspis gordoni Gray 1868:563
Type locality: “Trinidad, near the mountain of Tamana.”

Hydraspis bicolour Gray 1873c:304
Type locality: “Demerara Falls” [Guyana].
Mesoclemmys heliostemma (McCord, Joseph-Ouni, and Lamar 2001:107-101, 12-41)

Yellow-crowned Toad-headed Turtle

Brazil (Acre, Amazonas, Mato Grosso, Pará, Rondônia, Roraima), Colombia (Amazonas, Caquetá, Guainía, Putumayo, Vaupés), Ecuador, Peru (Loreto), Venezuela (Amazonas)

IUCN Red List: Not Evaluated

TFTSG Draft Red List: Data Deficient (2011)

Batrachemys heliostemma McCord, Joseph-Ouni, and Lamar 2001:734,

Type locality: “base of Pico da Neblina (situated on the Venezuela/Brazil border) on the left bank of Río Baria (= Río Mawarinuma) [4º95'S, 66º10'W], a tributary of the Rio Negro, Amazonas, Venezuela.” GPS coordinates incorrect, emended here to 0º50'S, 66º10'W.

Mesoclemmys hogei (Mertens 1967)

Hoge’s Side-necked Turtle

Brazil (Espírito Santo, Minas Gerais, Rio de Janeiro, São Paulo?)

IUCN Red List: Critically Endangered A2bcd+4bcd (2016);

Previously: Endangered (1996)

Phrynops hogei Mertens 1967:73, *Mesoclemmys hogei*, *Ranacephala hogei*

Mesoclemmys nasuta (Schweigger 1812)

Guyanan Toad-headed Turtle

Brazil (Amapá), French Guiana, Suriname

TFTSG Draft Red List: Data Deficient (2011)

Emys nasuta Schweigger 1812:298, *Rhinemys nasuta*, *Hydaspis (Rhinemys) nasuta*, *Hydaspis nasuta*, *Platemys nasuta*, *Batrachemys nasuta*, *Phrynops (Batrachemys) nasuta*, *Phrynops nasutus*, *Phrynops nasutus nasutus*, *Phrynops nasuta nasuta*, *Batrachemys nasutus*, *Mesoclemmys nasuta*

Type locality: Not known. Restricted to “Amérique méridionale” by Duméril and Bibron (1835:437); to “Guyanes et au nord-est de l’Amazonie” by Lescure and Fretey (1976:1318); and to “rivières Ouaqui et Inini, bassin du Maroni en amont de Maripasoula,”

Emys barbatula Gravenhorst 1829:15, Hydraspis barbatula
Type locality: Not known.

Platemys schweiggerii Duméril and Bibron 1835:435 (nomen novum)

Phrynops walbaumi Fitzinger in Siebenrock 1904b:20 (nomen nudum)

Mesoclemmys perplexa Bour and Zaher 2005
Cerrado Side-necked Turtle

Bolivia, Brazil (Acre, Amazonas, Rondônia, Roraima), Colombia (Amazonas, Caquetá, Guainía, Putumayo, Vaupés), Ecuador, Peru (Loreto, Madre de Dios, Puno, Ucayali)
TFTSG Draft Red List: Data Deficient (2011)

Hydraspis raniceps Gray 1856b:55, Platemys raniceps,
Phrynops raniceps, Batrachemys raniceps, Batrachemys raniceps raniceps, Mesoclemmys raniceps
Type locality: “Brazils; Para” [Pará, Brazil].

Hydraspis maculata Gray 1873c:305
Type locality: “Tropical America.” Restricted to “S. America” by Gray (1873j:65); and to “Venezuela” by Boulenger (1889:219) and Pritchard and Trebbau (1984:127) [in error, see Rivas et al. (2015)].

Phrynops wermuthi Mertens 1969b:132, Phrynops tuberculatus wermuthi, Phrynops (Batrachemys) nasutus wermuthi, Phrynops nasutus wermuthi, Phrynops nasuta wermuthi, Batrachemys raniceps wermuthi
Type locality: “Peru...zweifellos der amazonische Teil des Landes.” Restricted to “Iquitos (3°50′ S 73°15′ W), Loreto, Peru” by Bour and Pauler (1987:8).

Mesoclemmys tuberculata (Luederwaldt 1926)
Tuberculate Toad-headed Turtle

Brazil (Alagoas, Bahia, Ceará, Maranhão, Mato Grosso, Minas Gerais, Pernambuco, Piauí, Rio Grande do Norte, Sergipe)
TFTSG Draft Red List: Data Deficient (2011)

Type locality: "Brasil: Estado da Bahia e Pará" [Brazil]. Restricted to "Villa Nova, Bahia" by Mertens and Wermuth (1955:400); and to "Fortaleza, Ceará" [Brazil] by lectotype designation by Bour and Pauler (1987:9).

Mesoclemmys vanderhaegei (Bour 1973)
Vanderhaege’s Toad-headed Turtle

Type locality: "environs d’Asunción au Paraguay." Restricted to "Tobati (25°15' S, 57°04' W), La Cordillera, Paraguay" by Bour and Pauler (1987:10).

Phrynops Schoepffii Fitzinger in Diesing 1839:237 (nomen nudum)

Phrynops schoepfii Fitzinger in Siebenrock 1904b:22 (nomen nudum, partim)

Phrynops paraguayensis Vanzolini in Donoso-Barros 1965:13 (nomen nudum)

Type locality: "environ d’Asunción au Paraguay.” Restricted to “Tobati (25°15’ S, 57°04’ W), La Cordillera, Paraguay” by Bour and Pauler (1987:10).

Phrynops schoepfii Fitzinger in Siebenrock 1904b:135

Type locality: “Caño Madre Vieja near El Guayabo, Distrito Colón, Edo. Zulia, Venezuela (8°53’ N, 72°30’ W).”

Phrynops Wagler 1830b:135
Type species: *Phrynops geoffroanus* [= *Emys geoffroana* Schweigger 1812], by original monotypy.

Spatulemys Gray 1872b:463
Type species: *Spatulemys lasalae* [= subjective synonym of *Platemyx hilarii* Duméril and Bibron 1835], by original monotypy.

Parahydraspis Wieland 1923:2
Type species: *Parahydraspis paranaensis* † Wieland 1923, by original monotypy.
Phrynops geoffroanus (Schweigger 1812) (10:44, 14:40) (90)
Geoffroy’s Side-necked Turtle

Phrynops geoffroanus

Argentina (Corrientes, Misiones), Bolivia (Beni), Brazil (Acre, Alagoas, Amazonas, Bahia, Ceará, Espírito Santo, Goiás, Maranhão, Mato Grosso, Mato Grosso do Sul, Minas Gerais, Pará, Paraíba, Paraná, Pernambuco, Piauí, Rio de Janeiro, Rio Grande do Norte, Rio Grande do Sul, Rondônia, Santa Catarina, São Paulo, Sergipe, Tocantins), Colombia (Amazonas, Caquetá, Casanare, Guainía, Meta, Putumayo, Vaupés, Vichada), Ecuador, Paraguay, Peru (Cusco, Huancayo, Junin, Loreto, Madre de Dios, Pasco), Venezuela (Amazonas)

TFTSG Draft Red List: Least Concern (2011)

Emys geoffroana Schweigger 1812:302, Chelodina geoffroana, Phrynops geoffroanus, Platemys geoffroana, Hydraspis (Phrynops) geoffroana, Hydraspis geoffroana, Phrynops geoffroana, Rhinemys geoffroana, Phrynops geoffroana geoffroana, Phrynops geoffroanus geoffroanus
Type locality: “Brasilia” [Brazil].

Emys depressa Merrem 1820:22 (senior homonym, not = Emys depressa Speix 1824), Chelys (Hydraspis) depressa, Chelys depressa, Hydraspis depressa, Platemys depressa
Type locality: “Brasilia” [Brazil].

Emys viridis Speix 1824:3, Chelys (Hydraspis) viridis, Chelys viridis, Hydraspis viridis
Type locality: “fluminis Carinhanhae, confluentis Sti Francisci” [Rio Carinhanha, tributary of Rio São Francisco, Brazil].

Emys trientaculata Saint-Hilaire in Cuvier 1829:11 (14:40) (nomen nudum et dubium)

Emys geoffroyna Gray 1830c:16 (nomen novum), Phrynops geoffroyna, Hydraspis geoffroyna, Platemys geoffroyna

Platemys wagleri Duméril and Bibron 1835:422, Hydraspis wagleri, Phrynops wagleri
Type locality: “Brésil” [Brazil].

Platemys neovieri Duméril and Bibron 1835:425 (nomen novum)

Hydraspis bosdensi Bohls 1895:53
Type locality: “nördlichen Theile Paraguays...im Aquidabon, Tagatiya und anderen linken Nebenflüssen des Paraguaustromes” [Paraguay]. Restricted to “Departamento Concepción: Río Saladillo, 23ºS” [Paraguay] by Cacciati et al. (2016:45).

Hydraspis lutzi Ihering in Luederwaldt 1926:441, Phrynops lutzi
Type locality: “Mogy-gaussù (Est. de S. Paulo)” [Brazil].

Platemys hilarii (Duméril and Bibron 1835)
Saint-Hilaire’s Side-necked Turtle

Platemys hilarii

Argentina (Buenos Aires, Chaco, Córdoba, Corrientes, Entre Rios, Formosa, La Rioja (?), Mendoza (?), Misiones, Santa Fe, Santiago del Estero), Brazil (Rio Grande do Sul, Santa Catarina), Paraguay, Uruguay

TFTSG Draft Red List: Least Concern (2011)

Platemys hilarii Duméril and Bibron 1835:428, Hydraspis hilarii, Hydraspis geoffroyna hilarii, Phrynops hilarii, Phrynops geoffroyna hilarii, Phrynops geoffroanus hilarii
Type locality: “Brésil” [Brazil].

Hydraspis hilarii Gray 1844:40 (nomen novum), Platemys hilarii, Phrynops (Phrynops) geoffroanus hilarii, Phrynops geoffroanus hilarii

Spatulemys lasalae Gray 1872b:463
Type locality: “Rio Paraná, Corrientes” [Argentina].
Phrynops tuberosus (Peters 1870) (10:44)(90)

Guianan Shield Side-necked Turtle

Argentina (Corrientes, Entre Ríos, Misiones), Brazil (Paraná, Rio Grande do Sul, Santa Catarina), Paraguay, Uruguay

TFTSG Draft Red List: Vulnerable (2011)

Phrynops williamsi Rhodin and Mittermeier 1983:58

Type locality: “Rio Cadea, Rio Grande do Sul, Brazil.”

Platemys Wagler 1830b (14:39)

Platemys Wagler 1830b:135

Type species: *Platemys planiceps* [= *Testudo planiceps* Schneider 1792] [= objective synonym of *Testudo platycephala* Schneider 1792], by original monotypy.

Platemys platycephala (Schneider 1792) (14:41)(91)

Twist-necked Turtle

(subspecies: *platycephala* = red, *melanonota* = purple)

Bolivia (Beni, Cochabamba), Brazil (Acre, Amapá [?], Amazonas, Mato Grosso, Pará, Roraima), Colombia (Amazonas, Caquetá, Guainía, Guaviare, Meta, Putumayo, Vaupés, Vichada), Ecuador, French Guiana, Guyana, Peru (Amazonas, Huánuco, Loreto, Madre de Dios, Puno, Ucayali), Suriname, Venezuela (Amazonas, Bolívar, Delta Amacuro, Monagas)

TFTSG Draft Red List: Least Concern (2011)

Platemys platycephala platycephala (Schneider 1792)

Eastern Twist-necked Turtle, Common Twist-necked Turtle

Bolivia (Beni, Cochabamba), Brazil (Acre, Amapá [?], Amazonas, Mato Grosso, Pará, Roraima), Colombia (Amazonas, Caquetá, Putumayo, Vaupés), French Guiana, Guyana, Peru (Huánuco, Loreto, Madre de Dios, Puno, Ucayali), Suriname, Venezuela (Amazonas, Bolívar, Delta Amacuro, Monagas)

TFTSG Draft Red List: Least Concern (2011)

Testudo platycephala Schneider 1792:261, *Platemys platycephala platycephala*

Testudo planiceps Schneider 1792:pl.7 (*nomen novum* and senior homonym, not = *Testudo planiceps* Gray 1854b), *Emys planiceps*, *Hydraspis planiceps*, *Clemmys planiceps*, *Platemys planiceps*, *Chelys (Hydraspis) planiceps*, *Chelys planiceps*

Testudo martinella Daudin 1802:377, *Platemys martinella*

Type locality: “Cayenne et dans l’intérieur de la Guiane” [French Guiana].

Emys discolor Thunberg in Schweigger 1812:302, *Hydraspis (Phrynops) discolor*, *Hydraspis discolor*

Emys canaliculata Spix 1824:10, *Hydraspis canaliculata*, *Platemys canaliculata*

Type locality: “fluminis Solimoens” [Rio Solimões, Amazonas, Brazil].

Emys carunculata Saint-Hilaire in Cuvier 1829:11 (*nomen nudum et dubium*)

Emys constricta Cuvier in Gray 1830e:17 (*nomen nudum*)

Hydraspis pachyura Boie in Gray 1830e:17 (*nomen nudum*), *Emys pachyura*

Hydraspis constricta Gray 1831d:43

Type locality: Not known. Restricted to “Belem, Brazil” by Ernst (1984:350).

Platemys platycephala melanomela Ernst 1984 (*nomen nudum and senior homonym, not = *Platemys platycephala* Gray 1854)

Black-backed Twist-necked Turtle

Ecuador, Peru (Amazonas, Loreto)

Platemys platycephala melanomela Ernst 1984:352

Type locality: “vicinity of Galilea, on the Río Santiago, Amazonas, Perú (4°1’ S, 77°47’ W).”

Rhinemys Wagler 1830b

Rhinemys Wagler 1830b:134

Type species: *Rhinemys rufipes* (= *Emys rufipes* Spix 1824), by subsequent designation by Fitzinger (1843:29).

Rhinemys rufipes (Spix 1824)

Red Side-necked Turtle, Red-footed Sideneck Turtle

Hydromedusinae Baur 1893a

Hydromedusa Wagler 1830b

Hydromedusa Wagler 1830b:135

Type species: *Hydromedusa maximiliani* [= *Emys maximiliani* Mikan 1825], by original monotypy.

Hydromedusa (Chelomedusa) Gray 1873c:303

Type species: *Hydromedusa (Chelomedusa) depressa* [= *Hydromedusa depressa* Gray 1856b] [= subjective synonym of *Emys maximiliani* Mikan 1825], by subsequent designation by Lindholm (1929:289).

Hydromedusa maximiliani (Mikan 1825)

Brazilian Snake-necked Turtle, Maximilian’s Snake-necked Turtle
Brazil (Espírito Santo, Minas Gerais, Rio de Janeiro, São Paulo)

CBFTT Account: Souza and Martins (2009)

TFTSG Draft Red List: Near Threatened (2011)

Emys maximiliani Mikan 1825: [unpaginated], Chelodina maximiliani, Hydromedusa maximiliani, Hydraspis maximiliani

Type locality: “Brasiliam...Capitania St. Paulo” [São Paulo, Brazil].

Emys maximiliana Gray 1830e:17 (nomen novum), Hydromedusa maximiliana

Chelodina flavilabris Duménil and Bibron 1835:446, Hydromedusa flavilabris, Chelomedusa flavilabris

Type locality: “Brazil” [Brazil].

Hydromedusa subdepressa Gray 1854a:134

Type locality: “Brazils” [Brazil].

Hydromedusa depressa Gray 1856b:60 (nomen novum), Chelomedusa depressa

Hydromedusa bankae Giebel 1866b:19

Type locality: “Insel Banka” [Bangka Island, Sumatra, Indonesia] [in error].

Hydromedusa tectifera Cope 1870a

South American Snake-necked Turtle

Argentina (Buenos Aires, Chaco, Córdoba, Corrientes, Entre Ríos, Formosa, Misiones, Santa Fe, Santiago del Estero), Brazil (Minas Gerais, Paraná, Rio de Janeiro, Rio Grande do Sul, Santa Catarina, São Paulo), Paraguay, Uruguay

TFTSG Draft Red List: Least Concern (2011)

Hydromedusa tectifera Cope 1870a:147

Type locality: “tributaries of the Parana or Uruguay rivers, either in the Argentine Confederation or the Banda Oriental” [Argentina or Uruguay].

Hydromedusa platensis Gray 1873c:302, Hydromedusa platensis

Type locality: “Rio de la Plata” [Argentina or Uruguay].

Platemys antiqua † Ameghino 1882:41 (nomen nudum)

[Pleistocene or Holocene, Argentina (Buenos Aires)]

Platemys fossilis † Ameghino 1882:41 (nomen nudum)

[Pleistocene or Holocene, Argentina (Buenos Aires)]

Platemys laevis † Ameghino 1882:41 (nomen nudum)

[Pleistocene or Holocene, Argentina (Buenos Aires)]

Platemys robusta † Ameghino 1882:41 (nomen nudum)

[Pleistocene or Holocene, Argentina (Buenos Aires)]

Hydromedusa wagleri Günther 1884:423

Type locality: “Buenos Ayres” [Argentina].

Chelodininae Baur 1893a (12.99)

Chelodinidae Baur 1893a:211

Chelodininae Georges, Birrell, Saint, McCord, and Donnellan 1998:235

Chelodina Fitzinger 1826 (07.85, 08.2, 10.34)

Chelodina Fitzinger 1826:6

Type species: Chelodina longicollis [= Testudo longicollis Shaw 1794], by original designation.

Hydraspis Bell 1828b:512

Type species: Hydraspis longicollis [= Testudo longicollis Shaw 1794], by original designation.

Hesperochelodina Wells and Wellington 1985:9 (nomen nudum)

Macrochelodina Wells and Wellington 1985:9

Type species: Macrochelodina oblonga [= Chelodina oblonga Gray 1841], by original designation.

Macrodiremys McCord and Joseph-Ouni 2007b:57

Type species: Macrodiremys oblonga [= Chelodina oblonga Gray 1841], by original designation.

Chelodina (Supremechelys) Hoser 2014b:8 (unavailable name pending ICZN decision; Rhodin et al. 2015) (4, 92)

Chelodina (Chelodina) Fitzinger 1826 (10.34)

Chelodina Fitzinger 1826:6

Type species: Chelodina longicollis [= Testudo longicollis Shaw 1794], by original designation.

Hydraspis Bell 1828b:512

Type species: Hydraspis longicollis [= Testudo longicollis Shaw 1794], by original designation.

Chelyodina Agassiz 1846:79 (nomen novum)

Hesperochelodina Wells and Wellington 1985:9 (nomen nudum)
Chelodina (Chelodina) canni McCord and Thomson 2002 (nomen nudum)

Cann's Snake-necked Turtle

Type locality: “Malogie Waterhole, near Scarlet Hill on Kalala Station (16º08’ S, 133º36’ E), Northern Territory, Australia.”

Australia (Northern Territory, Queensland)
IUCN Red List: Not Evaluated
TFTSG Draft Red List: Near Threatened (2011)

Chelodina rankini Wells and Wellington 1985:8 (nomen nudum)

Type locality: “north-eastern Australia...Burdekin River, Queensland.”

Introduction: Australia (New South Wales, Queensland, South Australia, Victoria)

CBFTT Account: Kennett, Roe, Hodges, and Georges (2009)
TFTSG Draft Red List: Least Concern (2011)

Testudo longicollis Shaw 1794:19, *Emys longicollis, Chelodina longicollis, Hydaspis longicollis, Chelys (Chelodina) longicollis, Chelys longicollis, Chelodina longicollis longicollis, Chelodina (Chelodina) longicollis*

Type locality: “The vast island or rather continent of Australia, Australasia, or New Holland.”

Chelodina novaehollandiae Duméril and Bibron 1835:443 (nomen nudum)

Chelodina sulcata Gray 1856a:201, *Chelodina longicollis sulcata*

Type locality: “Australia.”

Chelodina sulcifera Gray 1856b:59 (nomen nudum), *Chelodina longicollis sulcifera*

Indonesia (Papua)
IUCN Red List: Not Evaluated
TFTSG Draft Red List: Data Deficient (2011)
Chelodina (Chelodina) mccordi Rhodin 1994b (10:36)
Roti Snake-necked Turtle

(subspecies: mccordi [western Roti] and roteensis [eastern Roti] = red, timorensis = purple)
Indonesia (Lesser Sundas [Roti]), Timor-Leste

IUCN Red List: Critically Endangered A1d, B1+2e (2000);
Previously: Vulnerable (1996)
TFTSG Draft Red List: Critically Endangered (2011)
CITES: Appendix II

Chelodina (Chelodina) mccordi mccordi Rhodin 1994b (10:36)
Western Roti Snake-necked Turtle

Anders G.J. Rhodin / TCF / CBFTT / nr. Busalangga, Roti, Indonesia

Chelodina (Chelodina) mccordi roteensis McCord, Joseph-Ouni, and Hagen 2007a:59, Chelodina (Chelodina) mccordi roteensis
Type locality: “Lake Enduy, eastern Rote Island, East Nusa Tenggara Province, Indonesia.”

Chelodina (Chelodina) timorensis McCord, Joseph-Ouni, and Hagen 2007a:54, Chelodina (Chelodina) timorensis
Type locality: “Lake Ira Lalaro (= Lagoa Ira Lalaro) (ca. 08º28’ S; 127º07’ E, elev. ca. 334 m), east of Lospalos, Lautém District, Timor-Leste.”

Chelodina (Chelodina) novaeguineae Boulenger 1888b
New Guinea Snake-necked Turtle

Fred Parker / Abam, Western Prov., Papua New Guinea

Indonesia (Papua), Papua New Guinea (Southern)
TFTSG Draft Red List: Least Concern (2011)
Chelodina novaeguineae Boulenger 1888b:450, Chelodina novaeguineae novaeguineae, Chelodina (Chelodina)
Chelodina (Chelodina) pritchardi Rhodin 1994a

Pritchard’s Snake-necked Turtle

Type locality: “Bore, Kemp Welch River, 13 km southeast of Kwikila, Central Province, Papua New Guinea (9°53’S, 147°46’E).”

Chelodina (Chelodina) reimanni Philippen and Grossmann 1990

Reimann’s Snake-necked Turtle

Type locality: “Merauke-River, West-Irian, Neuguinea” [Papua, Indonesia].

Chelodina (Chelodina) steindachneri Siebenrock 1914

Steindachner’s Snake-necked Turtle

Type locality: “Marloo Station am Grey River in Westaustralien” [Australia].

Chelodina millymillyensis Glauert 1923

Type locality: “Milly Milly, Murchison River, W.A.” [Australia]. Emended to “Milly Milly Creek, Milly Milly Station, Murchison River, W.A.” [Australia] by lectotype designation by Cogger et al. (1983:62).
Chelodina (Macrochelodina) Wells and Wellington 1985

Macrochelodina Wells and Wellington 1985:9

Type species: *Macrochelodina oblonga* [= *Chelodina oblonga* Gray 1841], by original designation.

Chelodina (Supremechelys) Hoser 2014b:8 (unavailable name pending ICZN decision; Rhodin et al. 2015) 4, 92

Chelodina (Macrochelodina) burrungandjii Thomson, Kennett, and Georges 2000

Arnhem Snake-necked Turtle, Sandstone Snake-necked Turtle

Chelodina (Macrochelodina) expansa Gray 1857 93

Broad-shelled Snake-necked Turtle

Claire Treilibs / CBFTT / Paringa, South Australia, Australia

Australia (New South Wales, Queensland, South Australia, Victoria)

CBFTT Account: Bower and Hodges (2014)

TFTSG Draft Red List: Near Threatened (2011)

Chelodina expansa Gray 1857:370, *Chelodina oblonga expansa*, *Macrochelodina expansa*, *Chelodina (Macrochelodina) expansa*, *Chelodina (Supremechelys) expansa*

Type locality: "Australia." Restricted to "nördliches Australien" [Australia] by Wermuth and Mertens (1977:122).

Chelodina (Supremechelys) expansa brisbaneensis Hoser 2014b:9 (unavailable name pending ICZN decision; Rhodin et al. 2015) 4, 93

Chelodina (Supremechelys) duboisi Hoser 2014b:9 (unavailable name pending ICZN decision; Rhodin et al. 2015) 4, 93

Chelodina (Macrochelodina) kuchlingi Cann 1997d

Kuchling’s Snake-necked Turtle

Gerald Kuchling / Parry Creek, Western Australia, Australia [Western Australia Museum]

Australia (Western Australia)

IUCN Red List: Not Evaluated

Chelodina kuchlingi Cann 1997d:41 07, 10, 14-2, 94

Type locality: "Kalamburu, N. W. Australia, (14°18' S x 126°28' E).”

Chelodina (Macrochelodina) expansa Gray 1857

Broad-shelled Snake-necked Turtle

Australia (Northern Territory)

CBFTT Account: Thomson, Kennett, Tucker, FitzSimmons, Featherston, Alacs, and Georges (2011)

IUCN Red List: Not Evaluated

TFTSG Draft Red List: Least Concern (2011)

Chelodina burrungandjii Thomson, Kennett, and Georges 2000:676, *Macrochelodina burrungandjii*, *Chelodina (Macrochelodina) burrungandjii*

Type locality: "Koolpin Gorge, South Alligator River (13º28' S, 132º38' E)... Arnhem Land Plateau, Northern Territory, Australia.”

Chelodina (Macrochelodina) kuchlingi Cann 1997d

Kuchling’s Snake-necked Turtle

Gerald Kuchling / Parry Creek, Western Australia, Australia [Western Australia Museum]

Australia (Western Australia)

IUCN Red List: Not Evaluated

Chelodina kuchlingi Cann 1997d:41 07, 10, 14-2, 94

Type locality: "Kalamburu, N. W. Australia, (14°18' S x 126°28' E).”
Chelodina (Macrochelodina) oblonga Gray 1841\(^{14,43}\) (94)

[formerly C. (M.) rugosa Ogilby 1890] \(^{97,91}, 10:37\)

Northern Snake-necked Turtle

Australia (Northern Territory, Queensland, Western Australia), Indonesia (Papua), Papua New Guinea (Southern)

CBFFT Account: Kennett, Fordham, Alacs, Corey, and Georges (2014)

TFTSG Draft Red List: Near Threatened (2011)

Chelodina oblonga Gray 1841:446\(^{14,43}\) (nomen conservandum, ICZN 2013a), Chelodina (Macrochelodina) oblonga

Type locality: “Western Australia.” Emended to “Northern Territory...possibly...Port Essington” [Australia] by Thomson (2000:747).

Chelodina rugosa Ogilby 1890:56\(^{14,43}\), Chelodina oblonga rugosa, Macrochelodina rugosa, Macrochelodina rugosa rugosa, Chelodina (Macrochelodina) rugosa

Type locality: “Cape York, Q.” [Queensland, Australia].

Chelodina siebenrocki Werner 1901a:602\(^{97,91}\), Chelodina oblonga siebenrockii, Macrochelodina siebenrockii, Macrochelodina rugosa siebenrockii

Chelodina intergularis Fry 1915:88

Type locality: “Australia.”

Macrochelodina billabong Wells and Wellington 1985:9 (nomen nudum), Chelodina billabong

Chelodina (Macrochelodina) parkeri Rhodin and Mittermeier 1976

Parker’s Snake-necked Turtle

Indonesia (Papua), Papua New Guinea (Southern)

TFTSG Draft Red List: Near Threatened (2011)

Chelodina parkeri Rhodin and Mittermeier 1976:465, Macrochelodina parkeri, Chelodina (Macrochelodina) parkeri

Type locality: “Mawa, Lake Murray, Western District, Papua New Guinea.”

Chelodina (Macrochelodina) walloyarra McCord and Joseph-Oumi 2007b

Kimberley Snake-necked Turtle

Indonesia (Papua), Papua New Guinea (Southern)

TFTSG Draft Red List: Near Threatened (2011)

Chelodina walloyarra McCord and Joseph-Oumi 2007b

Kimberley Snake-necked Turtle
Chelodina (Macrodirremys) McCord and Joseph-Ouni 2007b

Type species: Macrodirremys oblonga sensu Burbidge et al. 1974 [= Chelodina oblonga Gray 1841 sensu Burbidge et al. 1974 = subjective synonym of Chelodina colliei Gray 1856a], by original designation.

Chelodina (Macrodirremys) colliei Gray 1856a

[formerly C. (M.) oblonga Gray 1841] (14:44)

Southwestern Snake-necked Turtle

Chelodina (Macrodirremys) oblonga

Type locality: “Western Australia.” Emended to “Northern Territory...possibly...Port Essington” [Australia] by Thomson (2000:747).

Chelodina colliei Gray 1856a:200, Macrodirremys colliei, Chelodina (Macrodirremys) colliei

Type locality: “Swan River” [Western Australia, Australia].

Elseya Gray 1867 (87:92, 14:45)(95)

Elseya Gray 1867:44

Type species: Elseya dentata [= Chelymys dentata Gray 1863a], by subsequent designation by Lindholm (1929:291).

Pelocomastes De Vis 1897:6

Type species: Pelocomastes ampla † De Vis 1897 [= subjective synonym of Chelymys ibertrina † De Vis 1897], by original monotypy.

Elseya (Hamvarachelys) Thomson, Amepou, Anamiato, and Georges 2015:65

Type species: Elseya (Hamvarachelys) novaeguineae [= Platemys novaeguineae Meyer 1874], by original designation.

Elseya (Elseya) Gray 1867 (95)

Elseya Gray 1867:44

Type species: Elseya dentata [= Chelymys dentata Gray 1863a], by subsequent designation by Lindholm (1929:291).

Elseya (Elseya) branderhorsti (Ouwens 1914) (87:83)

White-bellied Snapping Turtle, Branderhorst’s Snapping Turtle

Emydura branderhorsti Ouwens 1914:31, Elseya branderhorsti, Elseya (Elseya) branderhorsti

Elseya (Elseya) dentata (Gray 1863a)
Northern Snapping Turtle

Elseya (Elseya) flaviventralis Thomson and Georges 2016
Yellow-bellied Snapping Turtle

Elseya (Hanwarachelys) Thomson, Amepou, Anamiato, and Georges 2015
Western New Guinea Stream Turtle, New Guinea Snapping Turtle
Elseya (Hanwarachelys) rhodini

Thomson, Amepou, Anamiato, and Georges 2015

Southern New Guinea Stream Turtle; Rhodin’s Stream Turtle

Elseya (Hanwarachelys) schultzei

(Vogt 1911) (07:95, 10:40, 14:45)

Northern New Guinea Stream Turtle, Schultz’s Snapping Turtle

Indonesia (Papua); Papua New Guinea (Northern)

Introduced: Solomon Islands (?) (Malaita)

IUCN Red List: Not Evaluated

TFTSG Draft Red List: Least Concern (2015)

Emydura schultzei Vogt 1911:410, Elseya schultzei, Elseya novaeguineae schultzei, Elseya (Hanwarachelys) schultzei

Type locality: “Fluss westlich der Tamimündung...Holländisch-Neu-Guinea” [Papua, Indonesia]. Restricted to “near Sae village, Seko coast, near Skosai, ca 5 km W. mouth of Tami River, Papua, Indonesia (2°37' S, 140°54' E)” by Thomson et al. (2015:68).

Elseya (Pelocomastes) De Vis 1897

Pelocomastes De Vis 1897:6

Type species: Pelocomastes ampla † De Vis 1897 [= subjective synonym of Chelymys uberrima † De Vis 1897], by original monotypy.

Elseya (Pelocomastes) albagula

Thomson, Georges, and Limpus 2006

White-throated Snapping Turtle, Southern Snapping Turtle

Indonesia (Aru Islands, Papua); Papua New Guinea (Southern)

IUCN Red List: Not Evaluated

TFTSG Draft Red List: Least Concern (2015)

Elseya (Hanwarachelys) rhodini Thomson, Amepou, Anamiato, and Georges 2015:69, Elseya rhodini

Type locality: “Rue Creek (tributary of Wau Creek), Gulf Province, Papua New Guinea (07°11'67.3" S, 144°37'13.8" E)”; GPS coordinates emended here to 07°11.673' S, 144°37.138’ E.
Elseya (Pelocomastes) albagula

Thomson, Georges, and Limpus 2006:75,
Elseya dentata albagula, Elseya (Pelocomastes) albagula

Type locality: “Ned Churchwood Weir, Burnett River, Queensland, Australia (25º03' S, 152º05' E).”

Elseya (Pelocomastes) irwini Cann 1997c
Irwin’s Snapping Turtle

Elseya stirlingi

Wells and Wellington 1985:9 (nomen nudum), Elseya sterlini

Elseya irwini Cann 1997c:36, Elseya dentata irwini, Elseya (Pelocomastes) irwini

Type locality: “Burdekin River, Queensland, 19º42' S, 147º18' E, approximately 18 km upstream from Ayr” [Australia].

Elseya stirlingi Wells 2007b:4 (07:96, 10:43) (unavailable name)

Elseya (Pelocomastes) lavarackorum (White and Archer 1994)
Riversleigh Snapping Turtle, Gulf Snapping Turtle

Elusor Cann and Legler 1994

Elusor Cann and Legler 1994:83

Type species: Elusor macrurus Cann and Legler 1994, by original monotypy.

Elusor macrurus

Cann and Legler 1994

Mary River Turtle
Australia (Queensland)
IUCN Red List: Endangered B1+2c (1996)
TFTSG Draft Red List: Endangered (2011)

Elasmur macrurus Cann and Legler 1994:83
Type locality: "Mary River. 45.5 km S and 21.0 km W Mary-
borough, Queensland, Australia, elevation approximately 30 m
(25°58′ S, 152°30′ E)."

Emydura Bonaparte 1836

_Type species: Emydura macquaria [= Enys macquaria Cuvier
1829] [= Chelys (Hydraspis) macquarrii Gray 1830e], by original
monotypy."

Chelys Gray 1844:42
Type species: _Chelys macquaria_ [= Enys macquaria Cuvier
1829] [= Chelys (Hydraspis) macquarrii Gray 1830e], by original
monotypy.

Euchelymys Gray 1871a:118
Type species: _Euchelymys sulcifera_ [= subjective synonym of _Chelys_
(Hydraspis) macquarrii Gray 1830e], by subsequent designation
by Lindholm (1929:290).

Tropicochelymys Wells and Wellington 1985:9
Type species: _Tropicochelymys victoriae_ [= Hydraspis victoriae Gray
1842], by original designation.

Emydura macquarii (Gray 1830e) (subspecies: macquarii = red, emmotti = purple, kreffiti = blue, nigra = green; overlap = intergrades)

_Australia (New South Wales, Queensland, South Australia,
Victoria)
TFTSG Draft Red List: Least Concern (2011)

Emydura macquarii macquarii (Gray 1830e) (07:98, 10:7, 10:41, 10:42)
Macquarie River Turtle

_Australia (New South Wales, Queensland, South Australia,
Victoria)

Chanys macquaria Cuvier 1829 (nomen nudum)
Chanys macquariae Gray 1830e:15 (nomen dubium), _Chelys_
macquarii, *Emydura macquarii, Chelys macquarii, Emydura
cmacquarii macquarii*
Type locality: "New Holland" [Australia]. Restricted to "Novâ
Hollandiâ, Macquarrie River" [New South Wales, Australia] by
Gray (1831d:40), and to "Upper Macquarie River, in the vicinity

Hydaspis macquarrii Gray 1831d:40 (nomen novum), _Emy-
dura macquarrii, Emydura macquarii macquarii*

Platemys macquaria Duméril and Bibron 1835:438 (nomen
novum), _Hydaspis macquaria, Chelys macquaria*

Hydaspis australis Gray 1841:445 (nomen dubium), _Chelys_
amquarrii, _Emydura australis, Emydura australis australis*

_Type locality: "Western Australia?" Restricted to "Australia,
Macquarie River" by Gray (1872d:506).

Euchelymys sulcifera Gray 1871a:118
Type locality: "North Australia."

Emydura macquarriae Boulenger 1889:ix (nomen novum)
Emydura signata Ahl 1932:127 (nomen novum), _Emydura
cmacquarri signata, Chelys signata, Emydura macquarrii signata*
_Type locality: "Umgebung von Brisbane, Australien"
[Queensland, Australia].

Emydura canni Worrell 1970p:6 (nomen nudum)
Chelys cooki Wells and Wellington 1985:8 (nomen
Chelymys johnacci
Wells and Wellington 1985:8 (nomen nudum)

Emydura macquarii binjing
Cann 1998:116 (10:42)
Type locality: “Clarence River and its tributaries in eastern New South Wales...29°45'S, 152°15'E” [Australia].

Emydura macquarii dharra
Cann 1998:120 (10:42)
Type locality: “Macleay River and its tributaries in eastern New South Wales...30°54'S, 152°10'E” [Australia].

Emydura macquarii gunabarra
Cann 1998:123 (10:42)
Type locality: “Hunter River and its tributaries in eastern New South Wales...32°09'S, 150°58'E” [Australia].

Emydura macquarii dharuk
Cann 1998:126 (10:42)
Type locality: “Norton’s Basin, Nepean River, 0.5 km upstream from the junction of the Warragamba and Nepean Rivers at 33°52'S, 150°37'E...Sydney Basin in eastern New South Wales” [Australia].

Emydura macquarii emmotti
Cann, McCord, and Joseph-Ouni in McCord, Cann, and Joseph-Ouni 2003 (98)
Cooper Creek Turtle

Chelymys windorah
Wells and Wellington 1985:9 (nomen nudum), Emydura windorah

Emydura macquarii emmotti
Cann, McCord, and Joseph-Ouni in McCord, Cann, and Joseph-Ouni 2003:60, Emydura emmotti
Type locality: “Waterloo Station, shearing-shed waterhole, southwestern Queensland, Australia (24°13' S, 143°17' E).”

Emydura macquarii kreffiti
(Gray 1871b) (98)
Krefft’s River Turtle

Chelymys victoriae marmorata
Gray 1872d:506
Type locality: “east coast of Queensland, Burnet River” [Australia].

Chelymys victoriae sulcata
Gray 1872d:506
Type locality: “east coast of Queensland, Burnet River” [Australia].

Emydura macquarii nigra
McCord, Cann, and Joseph-Ouni 2003 (98)
Fraser Island Short-necked Turtle

Emydura subglobosa
(Krefft 1876)
Red-bellied Short-necked Turtle

Australia (Queensland)
Tropicochelymys insularis
Wells and Wellington 1985:9 (nomen nudum), Emydura insularis

Emydura macquarii nigra
McCord, Cann, and Joseph-Ouni 2003:59, Emydura nigra
Type locality: “Lake McKenzie, Fraser Island, Queensland, Australia (25°27' S, 153°04' E).”
Emydura subglobosa subglobosa (Krefft 1876)
New Guinea Red-bellied Short-necked Turtle

Australia (Queensland), Indonesia (Papua), Papua New Guinea (Southern)
Introduced: Papua New Guinea (New Britain, Northern)

Euchelymys subglobosa Krefft 1876:390, *Emydura subglobosa, Emydura australis subglobosa, Emydura macquarrii subglobosa, Chelymys subglobosa, Emydura subglobosa subglobosa*

Emydura albertisii Boulenger 1888b:449, *Emydura australis albertisii*
Type locality: “Katow, S. E. New Guinea” [= Mawatta, Binaturi River (9°08' S, 142°55' E), Papua New Guinea].

Tropicochelymys goodei Wells and Wellington 1985:9 (*nomen nudum*), *Emydura goodei*

Emydura subglobosa worrelli (Wells and Wellington 1985) (07:99)
Worrell’s Short-necked Turtle, Diamond-head Turtle

Australia (Northern Territory, Queensland)
IUCN Red List: Not Evaluated
TFTSG Draft Red List: Data Deficient (2011)

Emydura tanybaraga Cann 1997b
Northern Yellow-faced Turtle

Australia (Northern Territory, Queensland)

Emydura victoriae (Gray 1842)
Northern Red-faced Turtle

Australia (Northern Territory, Queensland)

Tropicochelymys leichhardtii Wells and Wellington 1985:9 (*nomen nudum*)

Tropicochelymys worrelli Wells and Wellington 1985:9,*Emydura worrelli, Emydura subglobosa worrelli*
Type locality: “Caranbirini Waterhole, ca. 21 km north of MacArthur River, Northern Territory (16°16' S x 136°05' E)” [Australia].
Phrynops bellii

Gray 1844:41, Hydraspis bellii, Elseya bellii, Wollumbinia bellii, Wollumbinia bellii bellii, Elseya lattisternum bellii, Myuchelys bellii

Type locality: Not known. Restricted to “the upper reaches of both the Namoi-MacDonald and Gwydir Rivers, above the New England escarpment, in New South Wales” [Australia] by Cann (1998:211).

Elseya dorriani Wells 2002b:16 (nomen nudum), Wollumbinia bellii dorriani

Myuchelys georgesi (Cann 1997a)

Bellinger River Sawshelled Turtle

Myuchelys bellii (Gray 1844) (09:47)

Bell’s Sawshelled Turtle, Western Sawshelled Turtle

Myuchelys latisternum (Gray 1867) (09:47)

Sawshelled Turtle, Common Sawshelled Turtle
Australia (New South Wales, Northern Territory, Queensland)

CBFTT Account: Freeman and Cann (2014)

TFTSG Draft Red List: Least Concern (2011)

Elseya latisternum Gray 1867:44, *Emydura latisternum, Elseya latisternum latisternum, Wollumbinia latisternum, Myuchelys latisternum*

Type locality: “North Australia.”

Euchelymys spinosa Gray 1871a:118 (09:47)

Type locality: “North Australia.”

Elseya latisternon Gray 1871b:292 (nomen novum)

Wollumbinia dorsii Wells 2009:2 (09:46, 10:43) (unavailable name)

Myuchelys purvisi (Wells and Wellington 1985) (14:46) (99)

Manning River Sawshelled Turtle

Rheodytes Legler and Cann 1980

Rheodytes Legler and Cann 1980:2

Type species: *Rheodytes leukops* Legler and Cann 1980, by original designation.

Rheodytes leukops Legler and Cann 1980

Fitzroy River Turtle

Australia (Queensland)

IUCN Red List: Vulnerable A1c+i2c, D2 (1996)

TFTSG Draft Red List: Vulnerable (2011)

Rheodytes leukops Legler and Cann 1980:2, *Elseya leukops*

Type locality: “Fitzroy River, 63 km N and 25 km E of Duaringa, Queensland, Australia, elevation 40 m (23°09' S 149°55' E).”

Australia (Queensland)

IUCN Red List: Data Deficient (1996)

TFTSG Draft Red List: Near Threatened (2011)

Elseya purvisi Wells and Wellington 1985:8, *Wollumbinia purvisi, Elseya latisternum purvisi, Myuchelys purvisi, Flaviemys purvisi*

Type locality: “a river 15 km S., 32.3 km E. of Nowendoc, New South Wales (31°39' S x 152°04' E. elevation 183 m)” [Australia].
Pseudemydurnae Gaffney 1977

Pseudemydurnae Gaffney 1977:24

Pseudemydura Siebenrock 1901

Pseudemydura Siebenrock 1901:248

Pseudemydura umbrina Siebenrock 1901, by original monotypy.

Pseudemydura umbrina Siebenrock 1901

Western Swamp Turtle

Pelomedusidae Cope 1868

Hydaspina Bonaparte 1836:3 (*partim*)

Pelomedusidae Cope 1868a:119

Pelomedusa Wagner 1830

Pelomedusa galeata [= *Testudo galeata* Schoepff 1792], by original monotypy.

Pentonyx Duméril and Bibron 1835:389

Pentonyx galeata [= *Testudo galeata* Schoepff 1792], by original designation.

Pelomedusa subrufa (sensu lato) species complex

African Helmeted Turtles, African Helmeted Terrapins

Emydura inspectata Glauert 1954

Emydura inspectata Glauert 1954:125

Type locality: “Warbrook, about 24 miles north of Perth...Swan River District” [Western Australia, Australia].

Pseudemydura umbrina Siebenrock 1901:249

Type locality: “Australien” [Australia].

Emydura catesbyi Glauert 1954

Emydura catesbyi Glauert 1954:125

Type locality: “Warbrook, about 24 miles north of Perth...Swan River District” [Western Australia, Australia].

Arabian Helmeted Turtle

Australia (Western Australia)

IUCN Red List: Critically Endangered A1c, B1+2c, C1+2b, D (1996)

TFTSG Draft Red List: Critically Endangered (2011)

CITES: Appendix I

Emydura catesbyi Siebenrock 1901:249

Type locality: “Australien” [Australia].

Arabian Helmeted Turtle
(gray dots = unassigned Pelomedusa spp. = *P. subrufa* sensu lato; orange dot = introduced or trade)

Saudia Arabia (Asir, Jizan), Yemen

CBFTT Account: Boycott and Bourquin (2008) [as part of *Pelomedusa subrufa* sensu lato]

IUCN Red List: Not Evaluated

Type locality: “Zinjibar, Abyan, Yemen, N13°7.75 E45°22.81.”

Pelomedusa galeata (Schoepff 1792) (101)

South African Helmeted Turtle

Botswana (?), Lesotho, Mozambique, Namibia (?), South Africa, Swaziland

CBFTT Account: Boycott and Bourquin (2008) [as part of *Pelomedusa subrufa* sensu lato]

IUCN Red List: Not Evaluated

Testudo scabra Retzius in Schoepff 1792:12 (*nomen nudum* and junior homonym, not = *Testudo scabra* Linnaeus 1758)

Pentonyx capensis Duméril and Bibron 1835:390

Type locality: “au cap de Bonne-Espérance, dans l’île de Madagas- car.” Restricted to “Kap der Guten Hoffnung” [Cape of Good Hope, South Africa] by Mertens (1937:139) [invalid designation]; and to “Cape of Good Hope” [South Africa] by lectotype designation by Fritz et al. (2014b:510).

Pelomedusa galeata orangensis Hewitt 1935:332, *Pelomedusa subrufa orangensis* Type locality: “presumably from the Kimberley neighbourhood” [South Africa].

Pelomedusa galeata devilliersi Hewitt 1935:337

Type locality: “Besondermeid, Steinkopf, Namaqualand, C.P.” [South Africa].

Pelomedusa gehafie (Rüppell 1835) (101)

Eritrean Helmeted Turtle

Eritrea, Sudan

CBFTT Account: Boycott and Bourquin (2008) [as part of *Pelomedusa subrufa* sensu lato]

IUCN Red List: Not Evaluated

Pelomedusa gehafiae Gray 1844:38 (*nomen novum*).

Pelomedusa galeata disjuncta Vaillant and Granddidier
1910:56
Type locality: Not designated. Restricted to “shore of Lake Abaya, Sidamo, Ethiopia” by Loveridge (1941:480) [invalid designation]; and to “Abysinia...the eastern slope of the coastal mountains in present-day Eritrea,” by lectotype designation by Fritz et al. (2014b:515).

Tanzanian Helmeted Turtle

Neumann’s Helmeted Turtle

Pelomedusa olivacea (Schweigger 1812)

Sahelian Helmeted Turtle

Pelomedusa olivacea (Schweigger 1812) (101)

Type locality: “sabulosis Nigritiae” [Senegal].

Emys olivacea Schweigger 1812:307 (senior homonym, not = _Emys olivacea_ Gray 1856b), _Hydraspis (Pelomedusa) olivacea_, _Hydraspis olivacea_, _Pelomedusa subrufa olivacea_, _Pelomedusa olivacea_

Type locality: “sabulosis Nigritiae” [Senegal].

Pelomedusa gasconi Rochebrune 1884:25

Type locality: “Dagana, Saidé, lac de N’Guer, marigot des
Maringouins” [Senegal]. Restricted to “Dagana, Senegal” by Loveridge (1941:480) [invalid designation]; and to “Dakar” [Senegal] by neotype designation by Fritz et al. (2014b:514).

Pelomedusa schweinfurthi Petzold, Vargas-Ramírez, Kehlmaier, Vamberger, Branch, Du Preez, Hofmeyr, Meyer, Schleicher, Široký, and Fritz 2014 (101)
Schweinfurth’s Helmeted Turtle

Central African Republic, Congo (DRC), South Sudan

CBFTT Account: Boycott and Bourquin (2008) [as part of *Pelomedusa subrufa* sensu lato]

IUCN Red List: Not Evaluated

Type locality: “Liria, Central Equatoria, South Sudan, N4°38.66 E32°4.83.”

Pelomedusa somalica Petzold, Vargas-Ramírez, Kehlmaier, Vamberger, Branch, Du Preez, Hofmeyr, Meyer, Schleicher, Široký, and Fritz 2014 (101)
Somalian Helmeted Turtle

Ethiopia, Somalia

CBFTT Account: Boycott and Bourquin (2008) [as part of *Pelomedusa subrufa* sensu lato]

IUCN Red List: Not Evaluated

Type locality: “Borama district, Awdal, Somaliland/Somalia, N9°55 E43°10, 4500 ft.”

Pelomedusa subrufa (sensu stricto) (Bonnoterre 1789) (10:45, 11:19) (101)
Helmeted Turtle, African Helmeted Terrapin

Angola, Botswana, Congo (DRC), Kenya, Madagascar (prehistoric introduction?), Malawi, Mozambique, Namibia, South Africa, Tanzania (?), Zambia, Zimbabwe

CBFTT Account: Boycott and Bourquin (2008) [*Pelomedusa subrufa* sensu lato]

TFTSG Draft Red List: Least Concern (2015)

Testudo planitia Meuschen 1778:11 (*nomen dubium* and senior homonym, not = *Testudo planitia* Gmelin 1789), Hydraspis (Pelomedusa) planitia, Hydraspis planitia
Type locality: Not designated.

Type locality: “l’Inde” [India] [in error]. Restricted to “Kap der Guten Hoffnung” [Cape of Good Hope, South Africa] by Mertens (1937:139); and to “Taolañaro (Fort-Dauphin), République Malagasy (Madagascar)” by Fritz et al. (2014b:507), following Bour (1982c:535).

Testudo rubra Meyer 1790:83 (*nomen novum, dubium et oblinit*)

Ethiopia, Somalia

CBFTT Account: Boycott and Bourquin (2008) [as part of *Pelomedusa subrufa* sensu lato]

IUCN Red List: Not Evaluated

Type locality: “Borama district, Awdal, Somaliland/Somalia, N9°55 E43°10, 4500 ft.”
Testudo badia Donndorff 1798:34 (nomen novum)
Testudo rubicunda Suckow 1798:49 (nomen novum)
Pentonyx americana Cornalia 1849:13 (nomen dubium),

Pentonyx americana
Type locality: “Flum. prope Novaeboracum” [= Novum Eboracum = New York, USA] [in error].

Pelomedusa mossambicensis Peters in Lichtenstein 1856:2 (nomen nudum)
Pelomedusa mossambica Peters in Gray 1856b:53 (nomen nudum)

Pelomedusa galeata damarensis Hewitt 1935:338, Pelomedusa subrufa damarensis
Type locality: “Quickborn, near Okahandja, South West Africa” [Namibia]; with lectotype designation by Fritz et al. (2014b:515).

Pelomedusa subrufa wettsteini Mertens 1937:141
Type locality: “Majunga, West-Madagascar” [Mahajanga, Madagascar].

Pelusios adansonii (Schweigger 1812)
Adanson’s Mud Turtle

(orange dot = probable trade)
Benin (?), Cameroon, Central African Republic, Chad, Ethiopia, Mali, Mauritania, Niger, Nigeria, Senegal, South Sudan, Sudan

CBFTT Account: Bour (2008)
TFTSG Draft Red List: Least Concern (2013)

Emys adansonii Schweigger 1812:308, Hydraspis adansonii, Pelomedusa adansonii, Sternotherus adansonii, Sternothaerus adansonii, Pentonyx adansonii, Pentonyx adansonii, Pelusios adansonii, Pelusios adansonii adansonii
Type locality: “Nigritia” [Senegal], Restricted to “cap Vert” [Senegal] by Duméril and Bibron (1835:395).

Chelys (Hydraspis) adansonii Gray 1830e:15 (nomen novum)

 Pelusios Wagler 1830b:137 (nomen conservandum, ICZN 1989)
Type species: Pelusios subniger Wagler [= Testudo subniger Lacepède 1786 (nomen suppressum) = Testudo subnigra Bonnaterre 1789], by subsequent designation by Fitzinger (1843:29).

Sternothaerus (Tanou) Gray 1863f:193
Type species: Sternothaerus (Tanou) sinuatus (Smith 1838), by subsequent designation by Lindholm (1929:288).

Sternothaerus (Notoa) Gray 1863f:195
Type species: Type species (by monotypy): Sternothaerus (Notoa) subniger [Lacepède 1788] [= Sternothaerus (Notoa) subniger (Bonnaterre 1789)], by original monotypy.

Sternothaerus (Anota) Gray 1863f:196 (junior homonym, not = Anota Hallowell 1852 [= Sauria])
Type species: Sternothaerus (Anota) niger (Duméril and Bibron 1835), by original monotypy.
Pelusios bechuanicus FitzSimons 1932
Okavango Mud Turtle

Angola, Botswana, Namibia, Zambia, Zimbabwe
TFTSG Draft Red List: Least Concern (2013)
Pelusios bechuanicus FitzSimons 1932:37, *Pelusios castaneus bechuanicus*, *Pelusios bechuanicus bechuanicus*
Type locality: "Thamalakane River at Maun, Ngamiland" [Botswana].

Pelusios broadleyi Bour 1986
Turkana Mud Turtle

Ethiopia (?), Kenya
Pelusios broadleyi Bour 1986:31
Type locality: "Loiengalani [= Loyenganij] (2°43’ N, 36°43’ E), Marsabit district, Kenya."

Pelusios carinatus Laurent 1956 (102)
African Keeled Mud Turtle

Congo (DRC), Congo (ROC), Gabon
TFTSG Draft Red List: Least Concern (2013)
Pelusios carinatus Laurent 1956:39
Type locality: “Eala, Equateur” [Democratic Republic of Congo (DRC)].
Pelusios castaneus (Schweigger 1812)
African Mud Turtle

Angola, Benin, Burkina Faso, Cameroon, Central African Republic, Chad, Congo (DRC), Congo (ROC), Equatorial Guinea (?), Gabon, Ghana, Guinea, Guinea-Bissau, Ivory Coast, Liberia, Mali (?), Niger, Nigeria, São Tomé and Príncipe (probable historic introduction), Senegal, Sierra Leone, Togo

Introduced: Guadeloupe

CBFTT Account: Bour, Luiselli, Petrozzi, Segniagbeto, and Chirio (2016)

IUCN Red List: Least Concern [Not Listed] (1996)

TFTSG Draft Red List: Least Concern (2013)

Pelusios castaneus castaneus (Schweigger 1812)
West African Mud Turtle, Swamp Terrapin

Type locality: Not known. Restricted to “vicinity of Koutchatcha (7°20’ N, 1°18’ E)...close to the Amou River (ca. 30 km East of Géli), Ogou Prefecture, Plateaux Region, Togo” by neotype designation by Bour (2008:37).

Sternothaerus leachianus Bell 1825a:306, **Sternotherus leachianus**

Type locality: Not known.

Sternothaerus derbianus Gray 1844:37, **Sternothera derbianus**, **Sternothaerus (Tanoa) derbianus**, **Pelusios derbianus**, **Pelusios castaneus derbianus**

Pelusios castaneus seychellensis (Siebenrock 1906c)
(Seychelles Mud Turtle)

(Seychelles [extinct]; possible historic introduction)

CBFTT Accounts: Bour and Gerlach 2008; Bour, Luiselli, Petrozzi, Segniagbeto, and Chirio 2016

IUCN Red List: Extinct (2003)

Sternothaerus nigricans seychellensis Siebenrock 1906c:38, **Pelusios subniger seychellensis**, **Sternothaerus castaneus seychellensis**, **Pelusios castaneus seychellensis**, **Pelusios seychellensis**

Pelusios castanoides Hewitt 1931
Yellow-bellied Mud Turtle

Kenya, Madagascar (prehistoric introduction?), Malawi, Mozambique, Seychelles (prehistoric introduction?), South Africa, Tanzania

IUCN Red List: Least Concern (1996)
SARCA Draft: Least Concern (regional) (2010)
TFTSG Draft Red List: Least Concern (2013)

Pelusios castanoides castanoides Hewitt 1931
East African Yellow-bellied Mud Turtle

Kenya, Madagascar (prehistoric introduction?), Malawi, Mozambique, South Africa, Tanzania

Pelusios castaneus kapika Bour 1979:149, **Pelusios castanoides kapika**

Type locality: “Delta du Sambirano (Province de Diégo-Suarez), nord de Madagascar.”

Pelusios castanoides intergularis Bour 1983
Seychelles Yellow-bellied Mud Turtle

Seychelles (Cerf, Fregate, La Digue, Mahé, Praslin, Silhouette) (prehistoric introduction?)

CBFFT Account: Gerlach (2008a)
Pelusios castanoides intergularis Bour 1983:355
Type locality: “La Digue Island, Seychelles.”

Pelusios chapini Laurent 1965
Central African Mud Turtle

Central African Republic, Congo (DRC), Congo (ROC), Gabon, South Sudan, Uganda

TFTSG Draft Red List: Least Concern (2013)

Pelusios castaneus chapini Laurent 1965:21, **Pelusios chapini**

Type locality: “Kasenyi, Lake Albert, Bunia Terr., Ituri, Congo” [Democratic Republic of Congo (DRC)]
Conservation Biology of Freshwater Turtles and Tortoises • Chelonian Research Monographs, No. 7

Pelusios cupulatta Bour and Maran 2003

Ivory Coast Mud Turtle

Benin, Ghana, Guinea, Ivory Coast, Liberia, Nigeria, Sierra Leone, Togo

IUCN Red List: Not Evaluated
TFTSG Draft Red List: Least Concern (2013)

Pelusios cupulatta Bour and Maran 2003:28

Type locality: “environs de San Pédro, Côte d’Ivoire, précisément entre San Pédro (10 km W) et Grand-Bérébi (20 km E) (4°50’ N, 6°47’ W).” [Ivory Coast].

Pelusios gabonensis (Duméril 1856)

African Forest Turtle

Angola, Cameroon, Central African Republic, Congo (DRC), Congo (ROC), Equatorial Guinea, Gabon

TFTSG Draft Red List: Least Concern (2013)

Pentonyx gabonensis Duméril 1856:373, *Pelomedusa gabonensis*, *Sternothaeus gabonensis*, *Pelusios gabonensis*

Type locality: “Gabon.”

Pentonyx gabonensis Gray 1863f:194 (*nomen novum*)

Pelomedusa gabonica Peters 1864:644 (*nomen novum*)

Sternothaeus steindachneri Siebenrock 1902a:6

Type locality: “Madagascar” [in error].

Pelusios marani Bour 2000

Gabon Mud Turtle

Congo (ROC), Gabon

IUCN Red List: Not Evaluated
TFTSG Draft Red List: Data Deficient (2013)

Pelusios marani Bour 2000:3

Type locality: “Yombi (01º26’ S, 10º37’ E), province de N’Gounié, Gabon; environ 30 km SSE de Fougamou, entre Lambaréné et Mouila.”

Pelusios nanus Laurent 1956

African Dwarf Mud Turtle

 Angola, Cameroon, Central African Republic, Congo (DRC), Congo (ROC), Equatorial Guinea, Gabon

(orange dots = uncertain, trade, or possibly misidentified)
Angola, Congo (DRC), Zambia
TFTSG Draft Red List: Data Deficient (2013)

Pelusios nanus Laurent 1956:31, *Pelusios adansonii nanus*
Type locality: “Dilolo, Haut Lualaba” [Democratic Republic of Congo (DRC)].

Pelusios niger (Duméril and Bibron 1835)
West African Black Mud Turtle

Benin, Cameroon, Equatorial Guinea, Gabon, Nigeria, Togo
TFTSG Draft Red List: Near Threatened (2013)

Sternotherus niger Duméril and Bibron 1835:397, *Sternotherus (Anota) niger*, *Pelusios niger*
Type locality: “probablement...originaire de l’île de Madagascar” [in error].

Sternothaerus oxyrhinus Boulenger 1897b:919
Type locality: “unknown...but probably...from some part of Tropical Africa.”

Sternothaerus heinrothi Kanberg 1924:195
Type locality: “Kamerun” [Cameroon].

Pelusios rhodesianus Hewitt 1927(11:19) (102)
Variable Mud Turtle, Mashona Hinged Terrapin

Angola, Botswana, Burundi, Congo(DRC), Congo(ROC), Malawi, Mozambique, Namibia, Rwanda, South Africa, Tanzania, Uganda, Zambia, Zimbabwe

CBFTT Account: Broadley and Boycott (2008)
IUCN Red List: Least Concern (1996)
SARCA Draft: Vulnerable (regional) (2010)

Pelusios nigricans rhodesianus Hewitt 1927:375, *Pelusios niger rhodesianus*, *Pelusios rhodesianus*, *Pelusios castaneus rhodesianus*, *Pelusios rhodesianus rhodesianus*
Type locality: “Mpika district, N.E. Rhodesia” [Zambia].

Serrataequira sinuata (Smith 1838) (11:19)
Serrated Hinged Terrapin

Gerald Kuchling / Kribi, Cameroon

Richard C. Boycott / CBFTT / nr. Lake St. Lucia, KwaZulu-Natal, South Africa

Richard C. Boycott / CBFTT / in Lake St. Lucia, KwaZulu-Natal, South Africa

Richard C. Boycott / CBFTT / Ndumu Game Reserve, KwaZulu-Natal, South Africa
Botswana, Burundi, Congo (DRC), Ethiopia, Kenya, Malawi, Mozambique, Rwanda, Somalia, South Africa, Swaziland, Tanzania, Zambia, Zimbabwe

CBFTT Account: Broadley and Boycott (2009)
SARCA Draft: Least Concern (regional) (2010)
TFTSG Draft Red List: Least Concern (2013)

Sternotherus sinuatus Smith 1838:Reptilia, pl.1, Sternothae-rus (Tanoa) sinuatus, Sternothaerus sinuatus, Pelusios sinuatus, Pelusios sinuatus sinuatus
Type locality: “rivers to the north of 25° south latitude” [South Africa]. Restricted to “the Crocodile/Marico Confluence, N. Transvaal” [South Africa] by Broadley (1981:675).

Sternotherus dentatus Peters 1848:494 (*nomen nudum*), Sternothaerus dentatus
Sternothaerus bottae Boulenger 1895a:9
Type locality: “Bardera...Giuba e dei suoi affluenti” [Italian Somaliland] [Somalia].

Pelusios sinuatus zuluensis Hewitt 1927:371
Type locality: “near the Umsinene River, Zululand” [South Africa].

Pelusios sinuatus leptus Hewitt 1933a:45
Type locality: “Isoka, North-East Rhodesia” [Zambia].

Sternothaerus rudolphi † Arambourg 1947:461 [Pleistocene, Ethiopia (Lake Turkana)], *Pelusios rudolphi*
Type locality: “basin du Lac Rodolphe et de la basse vallée de l’Omo” [Ethiopia]. Emended to “Shungura Formation...Omo River Basin...Ethiopia” by Lapparent de Broin (2000b:59).

Pelusios subniger (Bonnaterre 1789) (12:43)
East African Black Mud Turtle

Testudo subnigra Lacepède 1788:175, synopsis[table] (09:6)
(*nomen conservandum*, ICZN 1989; *nomen suppressum*, ICZN 2005a)
Type locality: Not known. Restricted to “Tamatave, est de Madagascar” by Bour (1979:152).

Testudo nigricans Donndorff 1798:34,
Terrapene nigricans, Kinosternon nigricans, Sternotherus nigricans, Sterno-thaerus nigricans, Sternothaerus nigricans nigricans, Pelusios nigricans, Pelusios nigricans nigricans
Type locality: Not known.

Pelusios subniger parietalis Bour 1983 (12:43)
Seychelles Black Mud Turtle

Botswana, Burundi, Congo (DRC), Madagascar (prehistoric introduction?), Malawi, Mozambique, South Africa, Tanzania, Zambia, Zimbabwe

Introduced: British Indian Ocean Territory (Chagos Archipelago), Glorioso Islands, Mauritius
IUCN Red List: Least Concern (1996)
SARCA Draft: Least Concern (regional) (2010)
TFTSG Draft Red List: Least Concern (2013)

Pelusios subniger subniger (Bonnaterre 1789) (12:43)
East African Black Mud Turtle

Botswana, Burundi, Congo (DRC), Madagascar (prehistoric introduction?), Malawi, Mozambique, South Africa, Tanzania, Zambia, Zimbabwe

Testudo subnigra Bonnaterre 1789:30, *Emys subnigra, Pelu-sios subniger, Sternotherus subniger, Clemmys (Pelusios) subnigra, Clemmys subnigra, Sternothaerus subniger, Sternothaerus (Notoa) subniger, Pelusios subniger, Pelu-sios subniger subniger
Type locality: Not known.

Testudo nigricans Donndorff 1798:34,
Terrapene nigricans, Kinosternon nigricans, Sternotherus nigricans, Sterno-thaerus nigricans, Sternothaerus nigricans nigricans, Pelusios nigricans, Pelusios nigricans nigricans
Type locality: Not known.

Pelusios subniger parietalis Bour 1983 (12:43)
Seychelles Black Mud Turtle
Seychelles (Cerf, Cousin [extirpated], Fregate, La Digue, Mahé, Praslin, Silhouette, St. Anne [extirpated]) (prehistoric introduction?)

CBFTT Account: Gerlach (2008b)

Pelusios subniger parietalis Bour 1983:359

Type locality: “La Digue Island, Seychelles.”

Pelusios upembae Broadley 1981

Upemba Mud Turtle

Pelusios (*subniger* parietalis) Bour 1983:359

Type locality: “La Digue Island, Seychelles.”

Pelusios upembae Broadley 1981

Upemba Mud Turtle

Pelusios bechuanicus upembae Broadley 1981:667

Type locality: “Kanongoa River, tributary of the right bank of the Lualaba River (695 m), Upemba National Park, Shaba Province, Zaire” [Democratic Republic of Congo (DRC)].

Pelusios williamsi Laurent 1965

Williams’ Mud Turtle

Pelusios williamsi Laurent 1965

Williams’ Mud Turtle

Pelusios (*subniger* parietalis) Bour 1983:359

Type locality: “La Digue Island, Seychelles.”

Pelusios upembae Broadley 1981

Upemba Mud Turtle

Pelusios bechuanicus upembae Broadley 1981:667

Type locality: “Kanongoa River, tributary of the right bank of the Lualaba River (695 m), Upemba National Park, Shaba Province, Zaire” [Democratic Republic of Congo (DRC)].

Pelusios williamsi Laurent 1965

Williams’ Mud Turtle

Pelusios williamsi Laurent 1965

Williams’ Mud Turtle

Pelusios (*subniger* parietalis) Bour 1983:359

Type locality: “La Digue Island, Seychelles.”

Pelusios upembae Broadley 1981

Upemba Mud Turtle

Pelusios bechuanicus upembae Broadley 1981:667

Type locality: “Kanongoa River, tributary of the right bank of the Lualaba River (695 m), Upemba National Park, Shaba Province, Zaire” [Democratic Republic of Congo (DRC)].

Pelusios williamsi Laurent 1965

Williams’ Mud Turtle

Pelusios williamsi Laurent 1965

Williams’ Mud Turtle

Pelusios (*subniger* parietalis) Bour 1983:359

Type locality: “La Digue Island, Seychelles.”

Pelusios upembae Broadley 1981

Upemba Mud Turtle

Pelusios bechuanicus upembae Broadley 1981:667

Type locality: “Kanongoa River, tributary of the right bank of the Lualaba River (695 m), Upemba National Park, Shaba Province, Zaire” [Democratic Republic of Congo (DRC)].

Pelusios williamsi Laurent 1965

Williams’ Mud Turtle

Pelusios williamsi Laurent 1965

Williams’ Mud Turtle

Pelusios (*subniger* parietalis) Bour 1983:359

Type locality: “La Digue Island, Seychelles.”

Pelusios upembae Broadley 1981

Upemba Mud Turtle

Pelusios bechuanicus upembae Broadley 1981:667

Type locality: “Kanongoa River, tributary of the right bank of the Lualaba River (695 m), Upemba National Park, Shaba Province, Zaire” [Democratic Republic of Congo (DRC)].

Pelusios williamsi Laurent 1965

Williams’ Mud Turtle

Pelusios williamsi Laurent 1965

Williams’ Mud Turtle

Pelusios (*subniger* parietalis) Bour 1983:359

Type locality: “La Digue Island, Seychelles.”

Pelusios upembae Broadley 1981

Upemba Mud Turtle

Pelusios bechuanicus upembae Broadley 1981:667

Type locality: “Kanongoa River, tributary of the right bank of the Lualaba River (695 m), Upemba National Park, Shaba Province, Zaire” [Democratic Republic of Congo (DRC)].

Pelusios williamsi Laurent 1965

Williams’ Mud Turtle

Pelusios williamsi Laurent 1965

Williams’ Mud Turtle

Pelusios (*subniger* parietalis) Bour 1983:359

Type locality: “La Digue Island, Seychelles.”

Pelusios upembae Broadley 1981

Upemba Mud Turtle

Pelusios bechuanicus upembae Broadley 1981:667

Type locality: “Kanongoa River, tributary of the right bank of the Lualaba River (695 m), Upemba National Park, Shaba Province, Zaire” [Democratic Republic of Congo (DRC)].

Pelusios williamsi Laurent 1965

Williams’ Mud Turtle

Pelusios williamsi Laurent 1965

Williams’ Mud Turtle

Pelusios (*subniger* parietalis) Bour 1983:359

Type locality: “La Digue Island, Seychelles.”

Pelusios upembae Broadley 1981

Upemba Mud Turtle

Pelusios bechuanicus upembae Broadley 1981:667

Type locality: “Kanongoa River, tributary of the right bank of the Lualaba River (695 m), Upemba National Park, Shaba Province, Zaire” [Democratic Republic of Congo (DRC)].

Pelusios williamsi Laurent 1965

Williams’ Mud Turtle

Pelusios williamsi Laurent 1965

Williams’ Mud Turtle

Pelusios (*subniger* parietalis) Bour 1983:359

Type locality: “La Digue Island, Seychelles.”

Pelusios upembae Broadley 1981

Upemba Mud Turtle

Pelusios bechuanicus upembae Broadley 1981:667

Type locality: “Kanongoa River, tributary of the right bank of the Lualaba River (695 m), Upemba National Park, Shaba Province, Zaire” [Democratic Republic of Congo (DRC)].

Pelusios williamsi Laurent 1965

Williams’ Mud Turtle

Pelusios williamsi Laurent 1965

Williams’ Mud Turtle

Pelusios (*subniger* parietalis) Bour 1983:359

Type locality: “La Digue Island, Seychelles.”

Pelusios upembae Broadley 1981

Upemba Mud Turtle

Pelusios bechuanicus upembae Broadley 1981:667

Type locality: “Kanongoa River, tributary of the right bank of the Lualaba River (695 m), Upemba National Park, Shaba Province, Zaire” [Democratic Republic of Congo (DRC)].

Pelusios williamsi Laurent 1965

Williams’ Mud Turtle

Pelusios williamsi Laurent 1965

Williams’ Mud Turtle

Pelusios (*subniger* parietalis) Bour 1983:359

Type locality: “La Digue Island, Seychelles.”

Pelusios upembae Broadley 1981

Upemba Mud Turtle

Pelusios bechuanicus upembae Broadley 1981:667

Type locality: “Kanongoa River, tributary of the right bank of the Lualaba River (695 m), Upemba National Park, Shaba Province, Zaire” [Democratic Republic of Congo (DRC)].

Pelusios williamsi Laurent 1965

Williams’ Mud Turtle

Pelusios williamsi Laurent 1965

Williams’ Mud Turtle

Pelusios (*subniger* parietalis) Bour 1983:359

Type locality: “La Digne Island, Seychelles.”

Pelusios upembae Broadley 1981

Upemba Mud Turtle

Pelusios bechuanicus upembae Broadley 1981:667

Type locality: “Kanongoa River, tributary of the right bank of the Lualaba River (695 m), Upemba National Park, Shaba Province, Zaire” [Democratic Republic of Congo (DRC)].
Podocnemididae Cope 1868b

Hydraspidina Bonaparte 1836:3 (*partim*)

Podocnemididae Cope 1868b:282

Peltocephalidae Gray 1870f:718

Erymnochelys Baur 1888a

Erymnochelys Grandidier 1867:232 (junior homonym, not = *Dumerilia* Leach 1824 [= Coleoptera] or *Dumerilia* Robineau-Desvoidy 1835 [= Diptera] or *Dumerilia* Bocage 1866 [= Sauaria])

Type species: *Dumerilia madagascariensis* Grandidier 1867, by original monotypy.

Erymnochelys madagascariensis (Grandidier 1867)

Madagascan Big-headed Turtle, Rere

Peltocephalus Duméril and Bibron 1835

Peltocephalus Duméril and Bibron 1835:377

Type species: *Peltocephalus tracaya* (= *Emys tracaya* Spix 1824) [= subjective synonym of *Emys dumeriliana* Schlegel 1812].

Peltocephalus dumerilianus (Schlegel 1812)

Big-headed Sideneck Turtle

Erymnochelys madagascariensis

Madagascar

CITES: Appendix II

Emys dumeriliana Schlegel 1812:300, *Podocnemis dumeriliana*, *Hydraspis dumeriliana*, *Peltocephalus dumerilianus*, *Chelonemys dumeriliana*, *Peltocephalus dumeriliana*

Type locality: “America meridionali.” Restricted to “French Guiana” by neotype designation by Bour (2006a:29).

Emys macrocephala Spix 1824:5 (senior homonym, not = *Emys macrocephalus* Gray 1844), *Peltocephalus macrocephala*

Type locality: “Airon ad ripam fluminis Yau, confluentis Rio Negro” [Airão, Rio Jau, Amazonas, Brazil].

Emys tracaya Spix 1824:6, *Hydraspis tracaya*, *Podocnemis tracaya*, *Peltocephalus tracaya*, *Peltocephalus tracaxus*

Type locality: “fluminis Solimoëns” [Rio Solimões, Amazonas, Brazil].

Chelys (Hydraspis) *dumerilliana* Gray 1830c:17 (nomen nudum)

Emys icterocephala Spix in Gray 1830c:17 (nomen nudum)

Peltocephalus tracaya Trotschel 1848:646 (nomen nudum)

Podocnemis Wagler 1830b

Podocnemis Wagler 1830b:135

Type species: *Podocnemis expansa* (= *Emys expansa* Schlegel 1812), by subsequent designation by Fitzinger (1843:29).

Chelonemys Gray 1864d:134 (junior homonym)
Type species: *Chelonemys dumeriliana* sensu Gray 1864 (non *Emys dumeriliana* Schweigger 1812) [= subjective synonym of *Podocnemis unifilis* Troschel 1848], by original monotypy.

Bartlettia Gray 1870f:720 (junior homonym, not = *Bartlettia* Adams 1867 [= Mollusca])

Type species: *Bartlettia pitipi* Gray 1870 [= subjective synonym of *Podocnemis sextuberculata* Coralia 1849], by original monotypy.

Podocnemis erythrocephala (Spix 1824) (10:46) (104)

Red-headed Amazon River Turtle

Bolivia (Beni, Cochabamba, La Paz, Pando, Santa Cruz), Brazil (Amapá, Amazonas, Goiás, Mato Grosso, Pará, Rondônia, Roraima, Tocantins), Colombia (Amazonas, Arauca, Caquetá, Casanare, Guainía, Meta, Putumayo, Vaupés, Vichada), Ecuador, Guyana, Peru (Loreto, Ucayali), Venezuela (Amazonas, Anzoátegui, Apure, Bolívar, Delta Amacuro, Guárico, Monagas)

TFTSG Draft Red List: Critically Endangered (2011)

CITES: Appendix II, as *Podocnemis* spp.

Type locality: “America meridionali.” Restricted to “French Guiana” by lectotype designation by Bour (2006a:35).

Testudo arrau Humboldt 1819a:243 (14:49), *Emys arrau*

Emys amazonica Spix 1824:1

Type locality: “fluvio Solimoens et confluentibus Javary, Rio Branco” [Rio Solimões, Amazonas, Brazil].

Podocnemis expansa (Schweigger 1812)

Giant South American River Turtle, Giant Amazon River Turtle, *Arrau*

Bolivia (Beni, Cochabamba, La Paz, Pando, Santa Cruz), Brazil (Amapá, Amazonas, Goiás, Mato Grosso, Pará, Rondônia, Roraima, Tocantins), Colombia (Amazonas, Arauca, Caquetá, Casanare, Guainía, Meta, Putumayo, Vaupés, Vichada), Ecuador, Guyana, Peru (Loreto, Ucayali), Venezuela (Amazonas, Anzoátegui, Apure, Bolívar, Delta Amacuro, Guárico, Monagas)

TFTSG Draft Red List: Critically Endangered (2011)

CITES: Appendix II, as *Podocnemis* spp.

Type locality: “America meridionali.” Restricted to “French Guiana” by lectotype designation by Bour (2006a:35).

Testudo arrau Humboldt 1819a:243 (14:49), *Emys arrau*

Emys amazonica Spix 1824:1

Type locality: “fluvio Solimoens et confluentibus Javary, Rio Branco” [Rio Solimões, Amazonas, Brazil].
Podocnemis lewyana Duméril 1852 (12:44)
Magdalena River Turtle

Colombia (Antioquia, Atlántico, Bolívar, Boyacá, Caldas, Cesar, Córdoba, Cundinamarca, La Guajira, Magdalena, Santander, Sucre, Tolima)
Introduced: Venezuela (Zulia)

CBFTT Account: Páez, Restrepo, Vargas-Ramírez, and Bock (2009)

IUCN Red List: Critically Endangered A2acd+4acd (2016);
Previously: Endangered (1996)

CITES: Appendix II, as *Podocnemis* spp.

Podocnemis lewyana Duméril 1852:242

Type locality: “Santa Fé de Bogota...et...la République de Venezuela” [Colombia and Venezuela]. Restricted to “Bogotá, Colombia” by holotype [= lectotype] designation by Williams (1954:281).

Podocnemis sextuberculata Cornalia 1849 (10:47) (105)
Six-tubercled Amazon River Turtle, Pitiú

Brazil (Amazonas, Pará, Roraima), Colombia (Amazonas, Caquetá, Putumayo, Vaupés), Ecuador (?), Peru (Loreto)

IUCN Red List: Vulnerable A1acd (1996)
TFTSG Draft Red List: Vulnerable (2011)
CITES: Appendix II, as *Podocnemis* spp.

Podocnemis sextuberculata Cornalia 1849:13 (106)

Type locality: “Fl. Amazonum” [Rio Amazonas, Brazil].

Podocnemis pitiu Coutinho 1868:150 (10:47)

Type locality: “L’Amazone” [Amazonas, Brazil].

Bartlettia pitipii Gray 1870f:720, *Bartlettia pitipiti*

Type locality: “Lakes of the Upper Amazon” [Brazil].
Podocnemis unifilis Troschel 1848
Yellow-spotted River Turtle, Yellow-spotted Sideneck Turtle, Tracaja

Bolivia (Beni, Cochabamba, La Paz, Pando, Santa Cruz), Brazil (Acre, Amapá, Amazonas, Goiás, Mato Grosso, Maranhão, Pará, Rondônia, Roraima, Tocantins), Colombia (Amazonas, Arauca, Caquetá, Casanare, Guainía, Meta, Putumayo, Vaupés, Vichada), Ecuador, French Guiana, Guyana, Peru (Huanuco, Loreto, Madre de Dios, Pasco, Ucayali), Suriname, Venezuela (Amazonas, Anzoátegui, Apure, Barinas, Bolívar, Cojedes, Delta Amacuro, Guárico, Monagas)
TFTSG Draft Red List: Endangered (2011)
CITES: Appendix II, as Podocnemis spp.

Podocnemis vogli Müller 1935
Savanna Sideneck Turtle, Llanos Sideneck Turtle

Colombia (Arauca, Casanare, Guaviare, Meta, Vichada), Venezuela (Anzoátegui, Apure, Barinas, Bolívar, Cojedes, Delta Amacuro, Guárico, Monagas, Portuguesa)
Introduced: Venezuela (Zulia)
TFTSG Draft Red List: Vulnerable (2011)
CITES: Appendix II, as Podocnemis spp.

Emys cayennensis Schweigger 1812:298 (partim, misidentified type, provisional nomen suppressum), Chelys (Hydraspis) cayennensis, Chelys cayennensis, Hydraspis cayennensis, Podocnemis cayennensis
Type locality: "Cayenna" [Cayenne, French Guiana].

Testudo terekay Humboldt 1819a:243 (nomen oblitum), Emys terekay
Type locality: “Haut-Orénoque...l’Apure, l’Uritucu, la Guarico et...les Llanos de Caracas” [= Upper Orinoco, Apure, Uritucu, Guarico, and the Llanos of Caracas, Venezuela].

Chelys (Hydraspis) lata Bell in Gray 1830c:17 (nomen oblitum), Chelys lata, Hydraspis lata
Type locality: “Demerara” [Guyana].

Podocnemis unifilis Troschel 1848:647
Type locality: “Britisch-Guiana...Rupununi und Takatu” [Guyana].

Podocnemis tracaya Coutinho 1868:149
Type locality: “l’Amazone” [Amazonas, Brazil].
Regional Species Richness Maps

Distribution shapefiles for all taxa in these maps are each shown in red at 80% transparency and stacked: lightest red color = one taxon, darkest red color = > 15 taxa. For composite global species richness map, see p. 17.
ANNOTATIONS

Comments on taxonomic change or other annotations in this checklist and previous checklists are indicated by superscripts. New annotations in each new checklist are simple bold numbers in separate parentheses, e.g., (88). Earlier annotations from any of the previous checklists are indicated in subsequent checklists by two-part non-bold superscripts in separate parentheses that indicate the year of publication and the annotation number from that year, e.g., (07:105, 08:25, 14:50). All annotations from previous checklists are now listed at the end of this section in order to facilitate access to these commentaries, and all checklists are available as open-access publications online at www.iucn-tftsg.org/checklist/.

CURRENT CHECKLIST

1. Phylocode Classification: Crawford et al. (2015) performed a genome-scale analysis of turtle phylogeny, sequencing 2381 ultraconserved element loci representing a total of 1,718,154 bp of aligned DNA sequences in 32 turtle taxa representing 14 turtle families. Their recovered phylogeny corresponded to well-supported clades that they concluded were consistent with the temporal appearance of clades and paleobiogeography. They recommended the alternative hierarchical Phylocode classification of turtles presented at the beginning of our Checklist. We continue to use our ICZN-compliant Linnaeana classification as outlined on the same page.

In addition, Pereira et al. (2017) recently used publicly available databases for nucleotide sequences and composed a dataset comprising 13 loci for 294 living species of Testudines, accounting for all living genera and 83% of extant species diversity (as recognized in our checklist); they constructed a Phylocode-based classification scheme somewhat at variance with both Crawford et al. (2015) and our checklist.

2. Macrochelys: Previous molecular studies have demonstrated significant diversity within the long-recognized widespread species Macrochelys temminckii. mtDNA data supported the distinction of three geographic clades, and microsatellite data suggested that six genetic clusters were recognizable (Roman et al. 1999; Echelle et al. 2010). Based on additional mtDNA data, a morphometric (osteological) analysis, and an examination of all available fossil material for the genus, Thomas et al. (2014) demonstrated the existence of three distinct, recent, geographically separated populations: M. suwanniensis (Suwannee River drainage), M. apalachicolae (Apalachicola River and nearby lesser drainages), and a restricted M. temminckii (Yellow-Connor to Mobile Bay to Mississippi to Neches River basins). Independently, Murray et al. (2014) examined morphometric variation in the skull of Macrochelys across most of its range. Their results demonstrated distinct drainage-specific differences in skull morphology, supported the distinction of the Suwannee River turtles, and suggested that “further splitting may eventually be warranted” among the basins west of the Suwannee. Subsequently, Folt and Guyer (2015) reconsidered the published data, critiqued the methods of Thomas et al. (2014), and concluded that the evidence to date supported the distinction of M. suwanniensis, but that M. apalachicolae was not adequately distinguished from M. temminckii (sensu stricto), and thus recommended their synonymization, with which we concur.

3. Macrochelys: Two names for Alligator Snapping Turtles used by Hoser (2013) (Macrochelys temminckii muscata and Macrochelys maxhoseri) in his attempt to name some of these lineages, have been noted by Thomas et al. (2014) to be unavailable for nomenclatural purposes due to technical errors in the descriptions.

4. Names coined by Hoser: Raymond Hoser (2013, 2014a,b, and several other papers) has circumvented conventional standards of scientific analysis and peer-review in his broadly sweeping and extensive new taxonomies and nomenclatures. We regard his actions as confusing and unwarranted acts of nomenclatural disruption under the International Code of Zoological Nomenclature (ICZN 1999), and we do not regard the documents circulated under the name Australasian Journal of Herpetology as scientific publications nor as available publications for the purposes of nomenclature (Kaiser et al. 2013; Kaiser 2014; Rhodin et al. 2015). In collaboration with a wide leadership group representing the global herpetological and zoological communities, we have petitioned the International Commission on Zoological Nomenclature to declare and treat Hoser’s works in his self-produced Australasian Journal of Herpetology as nomenclaturally unavailable (Rhodin et al. 2015), and have noted that all new names created therein are nomenclaturally unavailable pending a ruling by the Commission. Hoser’s production has heretofore focused primarily on snakes, but recently he has proposed names for purportedly distinct new taxa of turtles, including American Macrochelys, Australasian Pelocheles, and Australian Chelodina. We consider all these names to be unavailable unless the ICZN rules them to be available.

5. Caretta caretta: Continued examination of intraspecific genetic structure within this species by Shamblin et al. (2014) using mitochondrial gene sequences from samples from 42 nesting rookeries identified 59 different haplotypes. However, the authors made no taxonomic recommendations, and we agree.

6. Eretmochelys imbricata: Gaos et al. (2016) examined mtDNA haplotype diversity among nesting populations of Hawksbills along the eastern Pacific Ocean. Despite the low genetic diversity across their samples, their phylogenetic analysis suggested that Eastern Pacific Hawksbills are more closely related to those from the Indo-Pacific rather than to those in the Atlantic, despite the recent closure of the Panamanian Portal. In addition, despite the low haplotype diversity overall, differences among the four major eastern Pacific rookeries (El Salvador, Nicaragua, Costa Rica, and Ecuador) led the authors to recommend that these four rookeries should be considered separate management units for conservation purposes.

7. Lepidochelys olivacea: This species was described by Eschscholtz in 1829 in two separate publications (Eschscholtz 1829a, 1829b), the earlier of them in general overlooked until recently (Flores-Villela et al. 2016). Historically, and in our previous checklists, the Zoologischer Atlas (Eschscholtz 1829b) has always been credited as the source for the name Chelonia olivacea, and although we previously listed his other publication from the journal Die Quatember (Eschscholtz 1829a) as the source for two other new names (Chelonia castanea and Chelonia grisea) (TTWG 2014), we assumed that his Zoologischer Atlas had been published first and had nomenclatural priority. However, Flores-Villela et al. (2016) have now shown that the Quatember article was published earlier (January 1829) than the Atlas (after May 1829), and is therefore the original source for the name olivacea. In addition, the relatively overlooked name Chelonia grisea, previously synonymized by others and us under Eretmochelys imbricata, has been shown by Flores-Villela et al. (2016) to more likely represent an anomalous Chelonia mydas, and we follow their suggestion to reassign it as such.

8. Chelonia mydas: Okamoto and Kamezaki (2014) examined plastral coloration and head and shell morphometrics for Chelonia
captured in the Western Pacific off Japan. Their data demonstrated the presence of two distinct phenotypes ("yellow" and "black") and they argued that the black form represented *C. agassizii*, and should be recognized as a full species. However, given previous studies (see annotation 07:4), we continue to consider *C. agassizii* to be a synonym of *C. mydas*, unless integrated range-wide analyses of morphology, coloration, and genetics conclusively demonstrate significant lineage divergence.

Naro-Maciel et al. (2014) examined 15 microsatellite markers across 19 green turtle rookeries across the Atlantic Ocean. These data revealed a strong barrier to dispersal between the northern and southern Atlantic, but not a degree meriting taxonomic changes.

9. **Wagler 1830b and 1830c**: Gutsche and McCranie (2016) stated that Wagler’s 1830 publication *Natürliches System der Amphibien* was issued as two separate parts: first the text (Wagler 1830b), and then the plates (Wagler 1830c), although dates for the publication of each were not provided. We and others had always treated these two parts as a single publication, but it appears that they appeared as separate issues. As a result, the name *Dermatochelys* was established in Wagler 1830b, but the species *Dermatochelys porcata* first appeared in Wagler 1830c. Similarly, the name *Cinosternon hirtipes* was only a nomen nudum in Wagler 1830b, but described by association with the figures in Wagler 1830c, as we previously noted in our annotation 09:11. These changes do not affect any taxonomic or nomenclatural considerations. We also note in passing that the description of *Testudo boiei* Wagler 1830a (= *Chelonoidis carbonarius*) appears to have preceded these others.

10. **Dermochelys coriacea**: Using mtDNA sequences and nuclear microsatellite markers, Molfetti et al. (2013) and Dutton et al. (2013) demonstrated considerable genetic structure within *Dermochelys coriacea* in the Atlantic Ocean basin. Although they advised the recognition of their units for conservation purposes, they made no taxonomic recommendations.

11. **Kinosternon**: Iverson et al. (2013) sequenced three mitochondrial and three nuclear markers for all recognized species of kinosternid turtles, and their analysis revealed strong support for a monophyletic clade of *Sternotherus*, a second monophyletic clade of primarily Meso-American taxa that they named *Cryptochelys*, and a third restricted monophyletic clade of the remaining species formerly included in *Kinosternon*. However, their support for the non-monophyly of the traditional inclusive genus *Kinosternon* was weak. Subsequently, Spinks et al. (2014b) sequenced 14 additional nuclear loci for most (but not all) recognized species, and their analysis of the nuclear data alone supported the reciprocal monophyly of *Sternotherus* and the traditional *Kinosternon* (sensu lato), but did not support a monophyletic *Cryptochelys*. Because two independent data sets have produced different conclusions, we retain the alternative generic arrangement from our last edition until new data emerge or new analyses are performed to settle this complicated issue.

12. **Kinosternon steindachneri**: Bourque (2016) treated this taxon as a distinct species based on morphology, and argued that no morphological or genetic data have been presented to support its continued recognition as a subspecies of *K. subrubrum* (Iverson 1998; Bourque 2012a, b; Iverson et al. 2013; Spinks et al. 2014; Bourque and Schubert 2015). We concur, and therefore, now list *K. steindachneri* as a distinct species.

13. **Kinosternon stejnegeri**: Iverson (1979a) synonymized extant *K. flavescens stejnegeri* Hartweg 1938 with the Pliocene–Pleistocene fossil taxon, *K. arizonense* Gilmore 1923, based on similar morphology. Considered a subspecies, *K. f. arizonense*, by Iverson (1979b), it was subsequently recognized as a distinct species based on genetic analysis by Serb et al. (2001). Recently, McCord (2016) examined all available Pliocene material of *K. arizonense* and compared it with extant specimens, and concluded that the fossil material differs significantly from the extant material and is actually more similar morphologically to *K. flavescens* (sensu stricto). As a consequence, he restricted the name *arizonense* to the Pliocene fossils and resurrected the old name *stejnegeri* for the extant species. This conclusion was also tentatively accepted by Joyce and Bourque (2016), and we follow these recommendations here, accepting the resurrected name *K. stejnegeri* for the extant species previously known as *K. arizonense*.

14. **Kinosternon subrubrum hippocrepis**: Bourque (2016) elevated this taxon to a full species based on morphological data from living and fossil forms; however, without a range-wide analysis of morphometric and/or molecular data supporting that change, we continue to recognize *hippocrepis* as a subspecies of *K. subrubrum*.

15. **Sternotherus depressus**: Scott and Rissler (2015) reported a 32–56% decline in the historical range of *S. depressus*, as well as significant unidirectional mtDNA introgression from *S. minor peltifer*. This hybridization is changing the morphology of *S. depressus* and severely threatens its continued distinction.

16. **Sternotherus minor peltifer**: Bourque (2016) argued that this taxon should be recognized as a full species based on previous published phylogenetic analyses using molecular (Iverson et al. 2013) and morphological data (Bourque and Schubert 2015). In addition, Guyer et al. (2016), based on color differences and the mitochondrial DNA study by Walker et al. (1995), also recommended elevating *S. m. peltifer* to species status. However, Walker et al. (1995) sampled part of only one mitochondrial gene and included no samples from the previously hypothesized area of intergradation along the Gulf Coast (Iverson 1977). Because animals that appear to be morphological intergrades have been described (Iverson 1977), we consider these recommendations premature and continue to recognize *peltifer* as a subspecies of *S. minor*.

17. **Emydidae**: Seidel and Ernst (2017) provided an extensive review of the history and taxonomic status of the phylogeographic relationships of the family and its two subfamilies, but recommended no significant taxonomic changes.

18. **Chrysemys picta**: Jensen et al. (2014a) examined genetic variation among populations of *C. picta* at the northwestern range limit in British Columbia (*C. p. bellii*). Although they documented very little variation in regional mitochondrial sequences, they found two unique mitochondrial haplotypes when compared to previously published range-wide data. In contrast, based on nine microsatellite loci, they identified six distinct local population clusters. They urged that these six geographic units be managed separately, but made no taxonomic recommendations; however, their data did support the continued recognition of *C. dorsalis* and *C. picta* as separate species. In addition, Jensen et al. (2015a) examined variation in one mitochondrial and one nuclear gene across the range of the genus. The nuclear gene provided no resolution, but the mitochondrial data demonstrated the reciprocal monophyly of *C. dorsalis* versus *C. picta* (sensu stricto), but no clear pattern among the subspecies of the latter. Because the available evidence for the recognition of *C. dorsalis* as a species vs. subspecies is primarily mitochondrial (see TTWG annotations 07:11 and 10:16), we continue to list two alternatives for its classification.

19. **Graptemys**: Praschag et al. (2017) examined over 3200 bp of mtDNA sequence data and 7800 bp of nuclear DNA (across 12 loci) for 89 specimens of all recognized taxa of the genus...

20. *Graptemys caglei*: Ward et al. (2013) examined microsatellite variation across the range of *Graptemys caglei* in the Guadalupe and San Marcos Rivers of Texas. They found weak but identifiable divergence between populations in the Upper Guadalupe River versus those in the Middle Guadalupe and San Marcos Rivers. They made no taxonomic recommendations, but noted that turtles in these two regions also differed in life history, morphology, and coloration.

21. *Graptemys ernsti* and *G. barbouri*: Godwin et al. (2014) confirmed the previously unrecognized presence of both *Graptemys ernsti* and *G. barbouri* in the Choctawhatchee River basin, and demonstrated hybridization between those two species in that basin. Based on the available evidence they concluded that both species were likely present in that basin prior to human intervention. In a follow-up study, Ennen et al. (2016) examined morphometric, colorimetric, microsatellite and mitochondrial DNA variation in *G. ernsti*, across the three inhabited basins. They demonstrated no morphometric differences between turtles in two of the basins (no data for the Pea River, a tributary of the Choctawhatchee), weak colorimetric differences between turtles from the Yellow vs. Conecuh/Pea basins, and both microsatellite and mtDNA evidence for the distinction of turtles from the Yellow River vs. those from the other basins. They declined to recognize those populations taxonomically, and hesitated to even recommend their recognition as Evolutionarily Significant Units, and we concur with these conclusions. Although it is now clear that both *G. ernsti* and *G. barbouri* are established in the Choctawhatchee River basin, whether either of them is native to that system is still an open question (Godwin et al. 2014; Ennen et al. 2016).

22. *Graptemys nigrinoda*: Ennen et al. (2014) examined morphometric and colorimetric characters, as well as sequence variation in a single mitochondrial gene, across the range of *Graptemys nigrinoda*. Morphological variation was primarily clinal, and mitochondrial haplotypes differed by less than 0.3% and were not related to geography. They recommended the synonymy of *G. n. delticola* with the nominate form, and we have followed their recommendation.

23. *Graptemys pseudogeographica*: Lindeman et al. (2015) demonstrated that False Map Turtles from the Calcasieu River basin in southwestern Louisiana differ from those in all other basins in having a unique eye color and a variable chin pattern. They made no taxonomic recommendations, but encouraged further range-wide morphological and genetic study of this species in light of these findings.

24. *Malaclemys terrapin*: Hart et al. (2014) examined 12 nuclear microsatellite loci from 21 populations of *Malaclemys terrapin* from across the species’ range, and identified four genetic clusters that did not correspond to currently accepted, morphology-based subspecies descriptions. Despite gaps in their coastal sampling along the east coast of Florida and Georgia, and the Gulf Coast of Florida, their recommended management units were Massachusetts (part of the range of *M. t. terrapin*), New York to South Carolina (most of the range of *M. t. terrapin*), and of the range of *M. t. centrata*), the Florida Keys to Tampa Bay (the range of *M. t. rhizophorum* and part of that of *M. t. macropsilota*), and Louisiana and Texas (the combined ranges of *M. t. pileata* and *M. t. littoralis*). In addition, based on 16 microsatellite loci (12 shared by Hart et al. 2014), Drabeck et al. (2014) also found low diversity and an absence of structure among populations of *M. terrapin* along the Gulf Coast of Louisiana and Texas. Both studies questioned the current subspecies designations, but made no explicit taxonomic recommendations, and we agree. More studies with better geographic sampling are clearly needed.

25. *Pseudemys concinna*: In a generally overlooked publication, Guérin (1829) provided an illustration as indication of a species that he named *Emys concinna*, preceding the description of *Testudo concinna* by Le Conte (1830). However, the species appears to represent what is now considered *Trachemys scripta elegans*, described by Wied (1839). Whereas *Emys concinna* Guérin 1829 is technically a senior homonym of *Testudo concinna* Le Conte 1830 (later placed in the genus *Emys*) and precedes the description of *Emys elegans* Wied 1839, it is also a name and attribution that has never been used since its appearance and we therefore declare it a *nomen oblitum*, not requiring any change in status or usage of the two subsequently published widely-used and accepted names.

26. *Central American Trachemys*: The taxonomy of Meso-American *Trachemys* sliders has been a quagmire for decades. Because of the level of disagreement among recent authors concerning this group, with no clear resolution in sight, our last checklist listed as many as three taxonomic options for some taxa. However, in an attempt to settle the confusion, Parham et al. (2015) examined variation in one mitochondrial and one nuclear gene across every named *Trachemys* taxon from Mexico. Their analysis revealed that the samples of “*ornata*” from Acapulco used by Fritz et al. (2012) clustered with turtles from the Caribbean versant, and not with confirmed *ornata* from near its type locality. Hence, the species name *ornata* should be restricted to the western versant of Mexico, and the name *venusta* should be restricted to the eastern drainages of Mexico and Central America. Furthermore, they confirmed the finding of Fritz et al. (2012) that *grayi* is not closely related to *venusta*, but the sister taxon of *emolli*. We agree with these insights (although we remain equivocal regarding whether *emolli* is a distinct species or a subspecies of *grayi*) and have modified our checklist accordingly. Additionally, Fritz et al. (2012) showed that *panamensis* is very closely related to *grayi*, and should be considered a subspecies of that taxon, rather than of *venusta*, further corroborating the split between western and Caribbean versant taxa; we have now made that change in our checklist. Also, as a consequence of the recognition that *ornata* is a western versant taxon, *callirostris* is now considered either a...
distinct species or a subspecies of *venusta*, rather than of *ornata*, as it was designated in our previous checklist.

27. *Trachemys adiutrix* or *T. dorhigni adiutrix*: Using a niche modelling approach, Rodrigues et al. (2016) supported the subspecies status of the Maranhão slider. The invasive potential of the nominotypical subspecies was better explained when the different climatic niches of both taxa were combined, reflecting the common pattern of lack of niche conservatism between subspecies.

28. *Trachemys grayi*: The species *Callichelys concinna* Gray 1873a, described from San Mateo, Tehuantepec, Oaxaca, Mexico, has unfortunately been overlooked in all previous checklists, including our own (Siebenrock 1909a; Wermuth and Mertens 1961, 1977; Fritz and Havaš 2007; TTWG 2014). However, Gray (1873j) and Boulenger (1889) synonymized it with *T. grayi*, and Harfush-Meléndez and Buskirk (2008) noted it in their analysis of the distribution of *T. grayi*, and we now include it in our checklist.

29. *Clemmys guttata*: Davy and Murphy (2014) examined variation in 11 nuclear microsatellite loci across Canadian populations of *Clemmys guttata*. They identified significant generic structure, with a minimum of six distinct subpopulations, with the most distinctive population being in Hastings County, Ontario. They made no taxonomic recommendations, but strongly urged management and protection of the latter population, which numbers less than 50. An expansion of this study across the entire range of *C. guttata* would be invaluable.

30. *Emys orbicularis orbicularis*: The identity of the Pleistocene fossil names *Clemmys schlotheimii* † Fitzinger 1835 and *Trionyx schlotheimii* † Fitzinger 1835 has previously been uncertain, and we did not even include *T. schlotheimii* in our previous checklists. However, Karl and Paust (2014) examined the original fossil material, designated lectotypes of both taxa, and confirmed that both are synonyms of *Emys orbicularis*.

31. *Emys orbicularis orbicularis*: The Pleistocene fossil taxon *Testudo (Emys) canstadiensis* † Plieninger 1847 was included under the synonymy of *Testudo hermanni* in our previous checklist (TTWG 2014), based on presumed synonymy suggested by Auffenberg (1974); however, the specimen is actually an *Emys orbicularis*, based on synonymization by Karl and Tichy (2002), and we corrected it in our fossil checklist (TEWG 2015), and herein.

32. *Emys orbicularis occidentalis*: Based on both mitochondrial DNA sequences and 15 nuclear microsatellite markers, Stuckas et al. (2014) identified two distinct genetic units within *Emys orbicularis* in North Africa, one from Morocco (identified as *E. o. occidentalis*) and the other from eastern Algeria and Tunisia (undescribed). The former was found to be very similar to Iberian specimens (identified as *E. o. fritzjuergenobi*). The authors declined to name the new taxon for want of morphological data, but synonymized *E. o. fritzjuergenobi* under *E. o. occidentalis*, and we reflect that change here.

33. *Emys orbicularis persica*: We spell the name of this taxon as *Emys orbicularis persica*, following Fritz (1998). However, Eichwald (1831:196) recognized three varieties (“var.”) of *Emys europaea* Schneider 1783: the nominotypical, not named, α by inference, and β and γ, with names given as “ibericae var. β” and “minoris var. γ persicae.” One might therefore assume that the valid names should be *Emys europaea persicae* and *Emys europaea ibericae*. However, the names *ibericae* and *persicae* are adjectives, referring to the countries of Iberia and Persia, respectively, and as a result, ICZN Article 11.9.2 applies: “An adjectival species-group name proposed in Latin text but written otherwise than in the nominative singular because of the requirements of Latin grammar is available provided that it meets the other requirements of availability, but it is to be corrected to the nominative singular if necessary.” Therefore, *persica* and *iberica* are the valid names, and these were subsequently used by Eichwald (1840:47).

34. *Emys trinacris*: Vamberger et al. (2015) examined mitochondrial and nuclear microsatellite variation (15 markers) in *Emys* from southern Italy. Their results revealed negligent gene flow between *E. orbicularis* and *E. trinacris*, with intergradation evident between *E. o. galloitalica* and *E. o. hellenica*. Their data support the continued recognition of *E. trinacris* as a species, and *galloitalica* and *hellenica* as subspecies of *E. orbicularis*.

35. *Emys or Actinemys pallida*: Spinks et al. (2014a) examined 89 nuclear single nucleotide polymorphisms (SNPs) and a mitochondrial gene sequence from range-wide samples of *Emys* or *Actinemys marmorata*, and compared those results with earlier work (Spinks et al. 2010) using nuclear gene sequence data. The mitochondrial data resolved four poorly supported clades, whereas the previous nuclear sequence data revealed only two main groups with considerable admixture between them. However, the SNP analysis demonstrated strong support for two geographic clusters: a northern group from the southern San Joaquin valley to Washington, and a southern group from the Central Coastal Range of California and southern California to Baja California. These results are remarkably (though not perfectly) consistent with Seeliger’s (1945) morphological work, who described the subspecies *pallida* for the southern populations. Furthermore, secondary analyses by Spinks et al. (2014a) of the molecular data within each of these two groups recognized two subgroups in the southern cluster, one from the coastal range and southern California, and the other from Baja California. Although populations from Baja were also recognized as morphologically distinct (though undescribed) by Seeliger (1945), Spinks et al. only noted that species recognition may emerge from future studies. Hence, they recommended that the two California lineages be recognized as separate species (rather than subspecies as defined by Seeliger 1945), and we follow that recommendation here.

36. *Emys or Emydoidae blandingii*: Based on variation across 12 microsatellite loci, Davy et al. (2014) identified four distinct genetic units among populations of *Emydoidae blandingii* in Ontario, Canada, and suggested that they should be managed separately. Similarly, based on eight microsatellites, Sethuraman et al. (2014) identified moderate but significant differentiation among Midwestern USA populations, with four or five unique genetic clusters, but were unable to explain the close genetic relationship between a population in western Nebraska to those in eastern Illinois, rather than with intervening populations in Iowa. McCluskey et al. (2016) examined variation in seven microsatellites in this species in New York, and identified two or possibly three genetic units there. None of these studies made taxonomic recommendations. Range-wide genetic studies of *E. blandingii* are clearly needed, as is careful population management of this genetically diverse species.

37. *Terrapene carolina complex*: These North American box turtles remain the center of considerable taxonomic controversy (see TTWG 2014, annotation 7:27). Based primarily on mtDNA data, Martin et al. (2013) recommended the recognition of the western forms (triangula, mexicana, and yucatana) as a polytypic species (*T. mexicana* being the oldest name) separate from the eastern forms (under *T. carolina*). However, in a brief summary of the turtle taxonomy issues, Fritz and Havas (2013) declined to accept this major change for the genus *Terrapene*, primarily because of evidence for introgression between the
proposed species. Martin et al. (2014) responded with evidence of interspecific hybridization between other well-accepted species pairs, and reaffirmed their conclusion that T. mexicana was a distinct species by the phylogenetic species concept. Fritz and Havas (2014) replied with three lines of evidence as to why they considered it to be premature to recognize T. mexicana as distinct from T. carolina. First, intergradation is common where they are sympatric, and indeed, Butler et al. (2011) demonstrated panmixia (rather than occasional hybridization) in those areas. Second, mexicana was resolved as monophyletic by Martin et al. (2013) with relatively weak support based on mtDNA, and no support when based on a single nuclear gene. Third, previous study of mitochondrial and nuclear DNA sequence data (Spinks et al. 2009; seven nuclear loci) did not resolve triunguis as reciprocally monophyletic relative to eastern forms of T. carolina. A recent analysis of 30 nuclear and one mitochondrial loci (Spinks et al. 2016) indicated that while triunguis appears to be monophyletic and distinct, it is nested within a paraphyletic carolina; given the phylogenetic uncertainty surrounding much of this complex and the demonstrated hybridization among taxa, these authors also recommended that the traditional carolina taxonomy (all taxa as subspecies of carolina) be retained pending a comprehensive, genomic-level analysis of all contained taxa. Unfortunately, some authors (e.g., Guyer et al. 2015; Powell et al. 2016) have chosen to recognize the western populations as T. triunguis (rather than T. mexicana), without justification. Since the taxonomic issues here appear relatively unresolved, we continue to recognize the competing alternative taxonomies, pending additional sampling of the nuclear genome.

38. Terrapene carolina carolina: In a nearly range-wide study of variation across eleven microsatellite loci for the subspecies T. c. carolina, Kimble et al. (2014) found surprisingly little genetic structure, except that the Appalachian Mountains represented a modest barrier to gene flow among populations.

39. Platysternon megacephalum: In the present checklist we reallocate the placement of Platysternon megacephalum tristernalis Schleich and Gruber 1984 by moving it from the synonymy of P. m. megacephalum into the synonymy of P. m. peguense. Ernst and Laemmerzahl (2002) originally placed P. m. tristernalis in the synonymy of the nominotypical subspecies, which was followed by Fritz and Havas (2007) and all previous editions of our checklist. However, Vetter and van Dijk (2006) identified the holotype of tristernalis from southwestern Yunnan as representing peguense, the taxon occurring in adjacent northwestern Laos, and Zheng et al. (2013) identified animals apparent from the tristernalis-topotypic area of southwestern Yunnan as peguense, both morphologically and genetically, and we agree with these assessments. In addition, Ernst and Laemmerzahl (2002) noted that the populations on Hainan appear to be intergrades between P. m. peguense and P. m. shiui, as also reflected on our current map.

Using the duplicate control region sequences of the mitochondrial genome of 20 P. megacephalum representing all three subspecies, Zheng et al. (2013) found these morphologically defined taxa to also be genetically distinct, with P. m. megacephalum and P. m. shiui identified as sister taxa. More comprehensive geographic surveys and the application of additional genetic markers to samples from across the species’ entire range should hopefully refine current taxonomy and provide a better understanding of the geographic range of the individual taxa.

40. Cuora: Tiedemann et al. (2014) sampled 16 nuclear microsatellite markers across all members of the Cuora trifasciata complex (C. aurocapitata, C. pani, C. Zhoui, C. trifasciata, and the controversial Vietnamese C. cyclornata) (see previous annotations on the status of cyclornata Blanck et al. 2006a; TTWG 2007b, 07:36; TTWG 2009, 09:23; TTWG 2012, 12:22). The analyses by Tiedemann et al. (2014) confirmed the genetic distinction of each of these five taxa, and they recommended their recognition at the species level. In addition, their data corroborated the genetic distinction of the two morphotypes within cyclornata that were previously described as C. c. cyclornata and C. c. meieri (Blanck et al. 2006a). Finally, they also corroborated the genetic distinction of two morphotypes within the restricted C. trifasciata, one from the Chinese mainland (C. t. trifasciata according to the authors) and the other an undescribed subspecies from Hainan Island.

Independently, Li et al. (2015) sequenced the entire mitochondrial genome of nine species of Cuora; their phylogenetic analysis revealed that C. trifasciata (sensu lato) is polyphyletic, and that Chinese (trifasciata) and Vietnamese (cyclornata) populations are distinctly different. They also recommended the species recognition of C. cyclornata.

Given that morphology and mitochondrial and nuclear DNA data each support the recognition of C. cyclornata as a species distinct from C. trifasciata, with the former comprising two genetic lineages, we now follow Blanck et al. (2006a) in recognizing C. cyclornata with two subspecies, C. c. cyclornata and C. c. meieri.

41. Cuora amboinensis: In a morphological and colorimetric study of populations of Cuora amboinensis, Ernst et al. (2016) recommended the synonymy of C. a. lineata with C. a. kamaroma, and of C. a. couro with C. a. amboinensis (suggesting that C. a. couro was an intergrade between C. a. kamaroma and C. a. amboinensis). However, their samples of lineata and couro were small, their analyses and conclusions were based primarily on color patterns, and they did not discuss the size of the inguinal scute (apparently diagnostic for at least lineata), nor did they present statistical or graphical results of their morphometric analyses (i.e., separately from color data).

Subsequently, Protiva et al. (2016) analyzed shell shape and mitochondrial DNA from C. amboinensis from primarily Borneo, Sumatra, and Seram. They disagreed with the findings of Ernst et al. (2016), and documented morphologic and genetic differentiation between Bornean vs. Sumatran populations, affirming the distinctiveness of C. a. couro from Sumatra and C. a. kamaroma from Borneo. Additionally, they identified a deeply divergent lineage from Sumatra that they indicated might require taxonomic recognition based on further work and improved sampling. Based on this, we consider the synonymizations by Ernst et al. (2016) to be premature, and await comprehensive genetic studies of C. amboinensis before altering the taxonomy.

42. Cuora aurocapitata, C. cyclornata, and C. trifasciata: Blanck et al. (2017) analyzed variation in these three Cuora species from across their range, using morphometric principal components analysis (PCA) and microsatellite data, comparing their results with previous genetic work by Tiedemann et al. (2014) and Li et al. (2015). They concluded that all three species are polytypic and described a new subspecies within each: C. aurocapitata dabieshani, C. cyclornata annamatica, and C. trifasciata luteocephala. We tentatively accept these named taxa as new subspecies pending further analysis, but note that the described lineages are not completely distinctive and that the mixing of individuals across the clades suggests that this may be too fine an application of the lineage approach to defining taxa.

43. Cuora flavomarginata: The map for this species has been updated and revised extensively by re-evaluating most previously recorded localities. We have also added many localities provided
by T. Blanck based on compilations of Chinese survey literature and field data.

44. *Cyclemys atripons* and *C. oldhamii*: Vamberger et al. (2017b) examined a recently discovered *Cyclemys* population from Phnom Kulen National Park in northwestern Cambodia using external morphology, 17 unlinked microsatellite loci, and the mitochondrial cytochrome b gene. Morphologically, the turtles resemble *C. oldhamii*, but have mitochondrial haplotypes of *C. atripons*, while having microsatellite loci distinct from *C. atripons*. The authors concluded that this population represents either a natural hybrid swarm of *C. atripons* and *C. oldhamii* or a distinct undescribed species with introgressed mitochondria of *C. atripons*, without drawing taxonomic consequences. This underscores that genetic differentiation in *Cyclemys* is complex and still incompletely understood.

45. *Cyclemys pulchriatria*: Using a turtle kept in Shanghai Zoo, Li et al. (2017) published a complete mitochondrial genome (mt genome) assigned to *Cyclemys pulchriatria* and calculated a phylogenetic tree using complete mt genomes of other geoemydid species from GenBank. The topology of their tree conflicted with the trees published by Fritz et al. (2008) and Stuart and Fritz (2008) using the mitochondrial cytochrome b gene. When the cytochrome b sequences of the mt genomes used by Li et al. (2017) are compared to the data set of Fritz et al. (2008), it turns out that the sequences of ‘*C. atripons*’ and ‘*C. pulchriatria*’ used by Li et al. match the *C. pulchriatria* from the data set of Fritz et al., while the sequence of ‘*C. dentata*’ used by Li et al. match the *C. atripons* from the data set of Fritz et al. (Fritz, pers. comm.). The data of Fritz et al. (2008) are considered taxonomically reliable. This underlines the pitfalls of sequencing animals with unclear identification and using uncritical taxonomic identifications of GenBank data.

46. *Malayemys species*: Brophy (2004) examined morphometric variation in *Malayemys subtrijuga* Schlegel and Müller 1845 (sensu lato) across its known range and concluded that turtles from the Mekong River basin (Laos, Cambodia, and Vietnam) differed (primarily in color pattern) from those in the Chao Phraya River basin (Thailand), and resurrected the name *macrocephala* (Gray 1859) for *Malayemys* from the latter basin.

Despite the facts 1) that Schlegel and Müller (1845) reported the type locality of *subtrijuga* as “Java”, 2) that at least three syntypes are known (RMNH 6082, 6084–6085: Hubrecht 1881; although two others [BMNH 1947.3.4.53 (specimen “m” listed in Boulenger 1889) and MNHN 7964 may also be among the original type series]; King and Burke 1989; Iverson 1992), 3) that field data associated with the RMNH syntypes indicate collection “most probably in the most western province of Bantam [=Bantan]” (Hubrecht 1881), 4) that numerous specimens of this taxon from “Java” were available in the 1800s (in at least eight European Museums; see Specimens Examined in Brophy 2004), 5) that this species has been recorded from at least six localities on Java (Brophy 2002); and 6) that Brophy’s own morphometric analysis (2002: Figs. 30–31; 2004: Figs. 6–7) demonstrated that Javan specimens were distinct from specimens from both the Chao Phrya and Mekong basins (with the latter two samples actually overlapping in morphometric hyperspace).

Brophy (2004) argued a) that the type locality of *subtrijuga* (“Java”) was in error, b) that *Malayemys* does not occur nor has it occurred on Java, and c) that the holotype must have originated from the Chao Phraya basin. Hence, Brophy (2004) assigned the name *subtrijuga* to the population of *Malayemys* inhabiting the Mekong basin (but refrained from restricting the type locality of *subtrijuga*, citing uncertainty about whether the Javan specimens might be native), and the name *macrocephala* to the population in the Chao Phraya basin. Furthermore, Brophy (2004) distinguished these two populations primarily on color patterns of the head.

More recently, Sumontha et al. (2016) and Ihlow et al. (2016) observed that the head pattern in *Malayemys* from the Mekong tributaries of the Khorat Plateau (northeastern Thailand) and adjacent Laos, differed from that of specimens from elsewhere in the Mekong basin. Based solely on color differences, Sumontha et al. (2016) described a population from the northern Khorat Plateau as *Malayemys isan*. Nearly simultaneously (but see below), Ihlow et al. (2016) examined color pattern and some morphometrics, as well as mtDNA and nuclear microsatellite variation across three Southeast Asian mainland regions of *Malayemys* distribution (Chao Phraya basin, Mekong basin, and Khorat Plateau), and concluded that each of these regions has its own distinctive species, based on each of their data sets, and therefore described the form that they recorded from three locations on the Khorat Plateau as *M. khoratensis*. Two of those locations of *M. khoratensis* are effectively sympatric with the *M. isan* population, and color patterns in the two taxa are very similar, suggesting that the two taxa are subjectively synonymous. Although the description of *M. isan* by Sumontha et al. appeared online first, their paper did not comply with ICZN standards for digital publication, whereas that by Ihlow et al. did (see below); therefore, we conclude that *M. isan* is a junior subjective synonym of *M. khoratensis*.

Unfortunately, neither of these papers mentioned the possibility of taxonomically recognizing the Javan population as a fourth, distinctive taxon, whose continued occurrence is confirmed by ongoing exports for commercial trade (UNEP-WCMC 2017). If further phylogenetic research demonstrates the Javan population to be taxonomically distinct, the name *Emys subtrijuga* Schlegel and Müller 1845 would apply to that population, as would its later synonyms *Cistuda gibbosa* Bleeker 1857, *Emys nuchalis* Blyth 1863, and *Damonia oblonga* Gray 1871. Furthermore, Gray 1870c also described *Damonia crassiceps* from “China”, the locality probably erroneous but possibly representing the Mekong River basin population. Finally, none of these papers have addressed Schweigger’s 1812 name *Emys herrmanni*, which is considered by most authors a nomen dubium, synonymous with *M. subtrijuga*.

It is problematic that none of these type specimens have been included in any morphometric or genetic analysis to date. For example, if a Javan population does or did exist, and it was found to be distinctive (as Brophy’s morphometric analyses suggested), then the name *subtrijuga* should be applied there, and the Mekong population might be identifiable as *crassiceps*.

In conclusion, until a more comprehensive analysis of coloration and pattern, morphometrics, and both mitochondrial and nuclear DNA variation among all populations (including Java) is undertaken, with the inclusion of all of the type specimens mentioned above, we cannot be certain which name applies precisely to which population of *Malayemys*. Finally, the TTWG is not unanimous in its support for the recognition of *macrocephala* or *khoratensis* as full species, and whether or not *isan* is synonymous with or distinct from *khoratensis*. However, to minimize taxonomic changes as we await further data, we here recognize three species in the genus *Malayemys*: *subtrijuga*, *macrocephala*, and *khoratensis*.

47. *Malayemys khoratensis*: In early 2016 a distinctive clade of Snail-eating turtles (*Malayemys*) from the Khorat Plateau of eastern Thailand was described as a new species with two different names in two separate articles (Ihlow et al. 2016; Sumontha et al. 2016). The name *M. khoratensis* Ihlow et al. 2016 was published on 6 April 2016, the date when the electronic
version of the article, published in the journal *PLoS One*, met the ICZN Code for nomenclatural availability of articles under article 8.5.3 (ICZN 2012). The name *M. isan* Sumontha et al. 2016 was published electronically on 26 March 2016 in the journal *Taprobanica*; however, the Zoobank registration of this article failed to meet the requirements of ICZN article 8.5.3.1, rendering the electronic version unavailable for the purposes of nomenclature. It must instead be considered as published when it first met the requirements of ICZN article 8.4.1, i.e., when numerous identical hard copies printed on paper became available. There is no evidence of the journal *Taprobanica* 8(1) having been printed prior to 13 April 2016, when copies were requested and were simultaneously sent to the archiving libraries as listed on the journal’s website (Thomson and Lambertz, in press). Therefore, the date of publication of the journal *Taprobanica* 8(1) and the contained article by Sumontha et al. (2016) is to be corrected to 13 April under ICZN article 21.4, the first date for which there is evidence of its physical existence. As a result, the name *Malayemys khoratensis* has nomenclatural priority, and *Malayemys isan* becomes a junior subjective synonym (see above annotation).

48. *Damonia crassiceps* Gray 1870c: This taxon has been listed under the synonymy of *Malayemys subtrijuga* by most authors since Smith (1931). However, Sumontha et al. (2016) questioned its identification as representing either this species or genus, based on the description of the drawing of the species as lacking facial stripes, but did not suggest an alternative taxonomy.

49. *Mauremys annamensis* and *M. mutica*: Zhao et al. (2016a) sequenced the entire mitochondrial genomes of three specimens of *Mauremys mutica* without published locality data, but purported to originate from Taiwan, China, and Vietnam or Hainan. Phylogenetic analysis revealed that the latter genome was more similar to that of *M. annamensis* than to the other more northerly mutica genomes, rendering *M. mutica* paraphyletic. Zhao et al. (2016b) examined variation in the mitochondrial barcode gene COI among larger sample sizes of *M. annamensis* and *M. mutica*. They identified reciprocally monophyletic northern (including Taiwan) and southern (Vietnam, Hainan and *M. annamensis*) clades, but the latter showed no monophyly among the constituent populations. They speculated that *M. annamensis* might be of hybrid origin. Furthermore, Zhou et al. (2015) compared the entire mitochondrial genome of samples of eight species of *Mauremys*, and their results also nested *annamensis* within *mutica*, sister to *mutica* from southern China (near Vietnam). Unfortunately, they included no material from Vietnam, and most of their samples were purchased from the pet trade or food markets. More extensive geographic sampling (including *M. kami* from the Ryukyus) and nuclear analysis will be necessary before any taxonomic changes are warranted.

Independently, Somerová et al. (2015) examined variation in a mitochondrial gene and a nuclear intron in European zoo specimens of *M. annamensis*, and also resolved *M. mutica* as paraphyletic with respect to *annamensis*. In addition, their analysis also revealed two distinct, reciprocally monophyletic mitochondrial clades within *annamensis*, which they recommended be maintained separately in captive breeding operations. Unfortunately, the natural geographic provenance of these two clades was unknown.

50. *Mauremys caspica* and *Mauremys rivulata*: Using microsatellite loci and nuclear and mitochondrial DNA sequences, Vamberger et al. (2017a) showed that the two species hybridize only rarely along their contact zone in Turkey. However, there is evidence for introgression between both species. In addition, they found hybrid evidence on Cyprus and, unexpectedly, terrapin populations in Israel and Jordan turned out to be a hybrid swarm of the two species, morphologically resembling *M. rivulata*. Ecological paleomodeling suggested that the two species formerly had temporary contact across what is now the Syrian Desert during more humid climatic episodes.

51. *Mauremys leprosa*: An analysis of variation in two mitochondrial markers and one nuclear gene across the range of *Mauremys leprosa* by Verissimo et al. (2016) confirmed two distinct genetic lineages that generally correspond to the two currently recognized subspecies. One is distributed from southern France through Iberia to Morocco, north of the Atlas Mountains (*M. leprosa leprosa*); the other occurs from northern Libya and Tunisia westward to Morocco, both north and south of the Atlas mountains (*M. leprosa saharica*); in northern Morocco there is secondary contact between these subspecies. In northeastern Iberia and southern France, some native populations have been genetically impacted by introduced *M. l. saharica* (Palacios et al. 2015).

52. *Mauremys reevesii*: The historic native distribution of this species has been difficult to determine accurately, as the species has been traded extensively in China for several thousand years, and has apparently been introduced to Taiwan and Japan in historic times (see the genetic analysis by Suzuki et al. 2011). The populations in Korea may also have been introduced prehistorically, but could represent natural distribution during an interglacial warming period. Our previous distribution map in the last checklist was based on Iverson (1992) and the EmySystem database plus input from the CBFTT account byLovich et al. (2011). We have now updated and revised this map extensively by re-evaluating most localities and restricting the distribution to areas below approximately 600 m elevation. We have also added more localities provided by T. Blanck (based on compilations of Chinese survey literature and field data) and D. Gaillard. While generally a lowland species, some populations (e.g., in Anhui) appear to occur up to elevations of ca. 500 m in hill regions, but in more southern regions (e.g., Hunan and Jiangxi) the species appears to be limited to lowland areas below 300 m (T. Blanck, unpubl. data). Most northern Chinese localities for *M. reevesii* appear to be trade specimens from ports and market centers (as also concluded by Pope 1935:46). Many southern and eastern coastal specimens are also trade specimens from coastal ports and markets or possibly locally invasive from markets. However, ancient Chinese writings seem to indicate that this species apparently occurred along the south coast, at least in Guangdong (T. Blanck, unpubl. data). Native wild populations do occur in the Chengdu basin of the upper Yangtze in Sichuan and all along the central Yangtze lowland basin, notably in Anhui, Guizhao, Hubei, Hunan, and Jiangxi. There also appears to be a native population in the Wei Valley of Shaanxi. Other scattered records north of the Yangtze may or may not represent native populations. Further genetic studies of Korean and southern and eastern coastal specimens with comparisons to specimens from the central Yangtze and Sichuan portions of the range are clearly needed.

Oh et al. (2017) examined geographic variation in mitochondrial cyt b sequences across the range of *M. reevesii*. Their results were complicated by the translocation of this species by humans since prehistoric times. They suggested that the two main natural populations in China and Korea were weakly but distinctly divergent genetically; however, introgression as a result of translocations is diluting that difference, precluding any taxonomic recognition.

Microsatellite loci for samples from throughout the range of *Mauremys rivulata*. The mitochondrial sequence data showed no evident structuring. However, the microsatellite data revealed a distinct genetic break in southern Turkey, separating eastern and western populations. This break is likely to be caused by introgressed alleles from *M. caspica* in the eastern portion of the distribution range of *M. rivulata* (Vamberger et al. 2017a). Vamberger et al. (2014) attributed the lack of clear substructure among the western populations of *M. rivulata* to trans-Mediterranean dispersal.

54. *Melanochelys trigua parkeri*: This taxon was described as a large-bodied, low-shelled subspecies endemic to Sri Lanka, but recent surveys at all historically recorded localities have encountered mainly the more common and widespread smaller Sri Lankan subspecies *M. t. thermalis* (A. de Silva, unpubl. data). These two taxa need genetic evaluation to determine if and how they may be distinct, and if distinct, whether they are undergoing introgression and intergradation.

55. *Alabracrylnea and Cylindraspis*: Based on contemporary Indian Ocean currents, and historic fluctuations in sea levels, Wilme et al. (2017) proposed that insular Indian Ocean populations of tortoises were the result of introductions by humans approximately 4000 ybp. However, given that previous work dates the colonization of these islands by tortoises at 9.5–22 mybp, and fossils of *Alabracrhyacea* have been dated to at least 138,000 ybp (Cheke and Hume 2008; Gerlach and Paquette 2014; Cheke et al. 2017; Hansen et al. 2017; Hawlitschek et al. 2017), this hypothesis is untenable.

56. *Alabracryle gigantea and Testudo*: Besnard et al. (2016) used shotgun sequencing to elucidate the entire mitochondrial genome of *Alabracryle gigantea*. Phylogenetic analysis of the aligned sequence of this tortoise with the available mitochondrial genomes of twelve other tortoise species generally supported the results of Le et al. (2006), except for the placement of *Malacochersus* and *Testudo horsfieldi*. However, the analysis by Besnard et al. suggested a paraphyletic genus *Testudo*, although with reduced bootstrap support (77–78%). Synthesis of these data with nuclear markers is needed before any taxonomic changes are warranted.

57. *Alabracryle gigantea*: Turnbull et al. (2015) examined variation in body size and sexual size dimorphism among four subpopulations of Aldabra tortoises. They speculated that these differences might have a genetic basis, and recommended population genetic studies.

58. *Chelonioides*: The gender of the tortoise genus name *Chelonioides* Fitzinger (1835) has long been assumed to be feminine (e.g., Agassiz 1857) because its root is the feminine Greek noun *Chelone* (not *Chelos* as assumed by Olson and David [2014]), and the Latinized suffix *-oides* (from the Greek *-eides*, meaning form or shape [or “like” in English]). However, according to the ICZN (Article 30.1.4.4) genus names ending in *-oides* must be considered masculine unless the original author indicated gender directly or indirectly (i.e., by usage). Because Fitzinger gave no direct indication or orthography indicating that he considered the name *Chelonioides* to be feminine (or neuter), Olson and David (2014) argued that it should be considered masculine. However, Fitzinger did provide indirect evidence that he considered the genus name masculine, by his clear rendition of other reptile genera he described as masculine (e.g., *Dracontoides* and *Elapoidis*). In either case, the conclusion is the same—that a strict application of the Code would render *Chelonioides* masculine, and require the emendation of the suffix of many of the species currently recognized within that genus. The name *vicina* is treated as a noun in apposition (Art. 31.2.2) and thus is unaffected by the gender of the genus name. While the conversions to *carbonarius*, *denticulatus*, *niger*, and *phantasticus* imply disruption to a few well-established and widely-used names, they should not lead to any significant confusion, and in the interest of Code compliance, we adopt these changed endings.

59. *Chelonioides chilenis*: Sánchez et al. (2015) examined variation in the karyotype of *Chelonioides chilenis* across its range. They identified two karyomorphs, one from tortoises in the Dry Chaco Ecoregion, and one from the Monte de Steppes and Plains Ecoregion. However, these karyomorphs were independent of the external morphotypes of *donosobarrosci, petersi, or chilenis*, and therefore they followed Fritz et al. (2012a) in recognizing only a single species (*C. chilenis*) in this complex.

60. *Chelonioides niger complex*: Molecular studies of Galápagos tortoises have surged over the last several years, although most of the work has been more directed at population genetics than establishing species boundaries and their taxonomic implications. The general working assumption is that separate island populations previously recognized as subspecies of *Chelonioides niger [= C. nigrarv] (or synonyms thereof) are now accepted as species (e.g., Caccione et al. 2002; Russello et al. 2005, 2007; Poulakakis et al. 2008, 2012, 2015; Chiari et al. 2009; TTTG 2009 [annotation 09:32], 2014; Edwards et al. 2014; Garrick et al. 2014), and we continue to recognize them as such, now also resurrecting the three previously synonymized southern Isabela taxa (*guntheri, microphyes, and vandenburghii*) from their synonymy under *C. vicina*. However, Loire et al. (2013) examined the population genomics of five Galápagos tortoise taxa (purportedly representing three named island populations) based on 248 nuclear genes. Their results suggested panmixis across their samples, with little genetic differentiation, and they questioned the species-level recognition of the various island taxa. Expansion of this study to include Galápagos-wide sampling would clearly be helpful in settling some of the taxonomic issues facing these tortoises.

Edwards et al. (2014) examined 14 microsatellite loci for tortoises from southern Isabela from the ranges of *C. vicina* and *C. guntheri* (the latter was synonymized with the former based on mtDNA data in Poulakakis et al. 2012). Not only did they find support for the distinction of those two taxa, but they also identified a third, unnamed, geographically intermediate genetic cluster they referred to as the “*aplastados*” [*flattened*] type. Although they made no taxonomic recommendations, and an expansion of this study to include other Isabela populations is needed, these data warrant our removal of *C. guntheri* from the synonymy of *C. vicina*, with full species recognition. Simultaneously, based on 12 microsatellite loci and mtDNA sequence data, Garrick et al. (2014; see also Emerson and Faria 2014) identified two distinct but coalescing genetic lineages within *C. becki* on northern Isabela that appear to represent two different colonizations from Santiago (*C. darwini*). They also found some evidence of introgression of *C. vandenburghii* into the genome of *C. becki*. Hence, they concluded that “species boundaries in the group may be somewhat porous,” and questioned the species-level status of *C. darwini* relative to *C. becki*.

Clearly, the evolutionary history of colonizations and divergences by tortoises in the Galápagos has been very complex, and much more reticulate than previously realized. Sorting out this history is an on-going challenge. However, as we noted in a previous checklist (TTWG annotation 12:31), genotyping of the many type specimens of named Galápagos tortoises is desperately needed, so that the correct names may be applied to all genetic lineages. Until those data are available, confusion
and nomenclatural uncertainty will no doubt continue, such as some authors’ use of *elephantopus* instead of *niger* or *nigra* (see TTWG annotation 09:33), and *ephippium* instead of *duncensis* (e.g., Poulakakis et al. 2012; Jensen et al. 2015b; Hennessy 2015).

61. *Chelonoïdis donfaustoi*: Chiari et al. (2009) and Poulakakis et al. (2015) analyzed mitochondrial DNA and nuclear microsatellite characters in the two giant tortoise populations on Santa Cruz (Reserva and Cerro Fatal). Both studies found the populations to be genetically different and Poulakakis et al. (2015) demonstrated that the Reserva population represented the previously described *C. porteri*, and that the Cerro Fatal population was distinct and most similar to *C. chathamensis* from San Cristóbal. Despite minimal morphological differences from *C. porteri*, and that the holotype of *C. porteri* is a hybrid with Reserva nuclear DNA and Cerro Fatal mtDNA, they described the Cerro Fatal population as a new species, and we tentatively agree.

62. *Chelonoïdis niger*: Olson (2015) investigated the history of some early names applied to Galapagos tortoises. He concluded that the provenance of the single type specimen (MNHN 9550) of both *Testudo californiana* Quoy and Gaimard 1824a and *Testudo niger* Quoy and Gaimard 1824b (= *Chelonoïdis niger*) was “extremely unlikely” to be determined based on historical information, and hence the names should be considered *nomina dubia* and their use abandoned. Olson also concluded that one of the two syntypes of *Testudo niger* Duméril and Bibron 1835, designated the lectotype by Günther (1875a:268), was apparently lost, and since the paratype (MNHN 9313) is a juvenile, he also recommended treating that name as a *nomina dubia*.

In addition, Olson and Humphrey (2017) investigated the origin of the type specimen of *Testudo elephantopus* Harlan 1827, and concluded that it may have come from Charles Island (Floreana), and suggested that the name *elephantopus* therefore replace the name *Testudo niger* Quoy and Gaimard 1824b, currently used for that island’s species.

However, genetic analysis of the types currently in progress will hopefully demonstrate their geographic origins satisfactorily, and the allegedly lost lectotype of *niger* (BMNH 1949.1.4.37) actually remains extant at the British Museum (P. Campbell, in litt., 2017). We therefore consider all these recommendations by Olson (2015) and Olson and Humphrey (2017) as premature and unnecessary at this time.

63. *Chelonoïdis phantastius*: In our previous checklists we indicated that this species was Extinct, based on that supposition by Pritchard (1996), but its formal conservation status has not previously been assessed using IUCN Red List criteria (IUCN 2001). This has now been done by the TFFTSG using updated Red Listing guidelines in regard to determining whether a species is actually Extinct or not (IUCN 2016). Although only a single individual of this species has ever been collected (in 1906), sightings and signs from 1964, 2009, and 2013 suggest that a few individual tortoises may remain extant in the exceedingly fragmented and hard-to-access landscape of Fernandina, most of which is covered by uninhabitable lava flows (A. Rhodin, L. Cayot, J. Gibbs, R. Kiester, and W. Tapia, in press). As such, the TFFTSG now determines this species to be Critically Endangered (Possibly Extinct) and has submitted that assessment to the IUCN Red List for publication.

64. *Chersia*, *Homopus*, and *Psammobates*: Based on three mitochondrial and two nuclear genes, Hofmeyr et al. (2016) resolved a paraphyletic *Homopus* with respect to *Chersia*, and resurrected the genus *Chersia* for the five-toed species (*signatus, boulengeri, and solus*) formerly in the genus *Homopus*, and restricted the genus *Homopus* to the four-toed species (*areolatus and femoralis*). We have tentatively accepted those changes here. The authors also noted strong support (Hofmeyr and Daniels, in prep.) for deep genetic divergence among the currently recognized subspecies of *Psammobates tentorius*, suggesting that they deserved species status. They also indicated the presence of phylogeographic structure within *Chersia angulata* and *Homopus signatus*, suggesting possible future taxonomic changes in those taxa. We await these forthcoming publications before making any further changes to the checklist.

65. *Geochelone elegans*: Schweigger (1812:325) described *Testudo stellata* based on the same specimens and plate previously described and figured by Schoepff (1795:111) as *Testudo elegans*. However, Schweigger coined the new name *stellata* as a *nomen novum* because Schoepff had based his description of *elegans* partly on a Seba (1734) specimen (pl. 79, fig. 3) that Schweigger (1812:325) concluded had been incorrectly identified, and he instead synonymized that figure under *Testudo rotunda* Lateville. Schweigger therefore coined a new name for Schoepff’s species, renaming it *stellata* and stating: “Habitat in India orientali. (Schoepf. sub falso nomine: test. elegans Seb.)”. However, the description of *T. elegans* by Schoepff was nomenclaturally available, and therefore *T. stellata* Schweigger has the same type specimens as *T. elegans*, according to Article 72(e) of the ICZN Code, and thus becomes its objective junior synonym.

66. Date of Publication of Blyth 1854 [*“1853”*]: The date of publication of this article in issue number 7 of volume 22 of the Journal of the Asiatic Society of Bengal has historically been listed as 1853, the printed date on its page-headers. However, a note in the Proceedings published in the same issue 7 on p. 684 is dated 4 January 1854, indicating that the issue was actually not published until 1854, consistent also with the imprint date of 1854 on the bound volume of all 7 issues of volume 22. This change of date affects the following taxa: *Testudo phyreii* [= *Manouria emys phyreii*], *Testudo elongata* [= *Indotestudo elongata*], *Testudo megalopus* [= *Geochelone elegans*], *Testudo ibera* [= *Testudo graeca ibera*], and *Homopus burnesii* [= *Testudo horsfieldii horsfieldii*].

67. *Gopherus*: In the recent book on the biology of North American tortoises (edited by Rostal et al. 2014), Bramble and Hutchison (2014) reviewed and augmented the previous morphological data for the five known living species at that time, as well as the fossil forms, and concluded that the available evidence (including molecular data) supported the reciprocal monophyly of *Xerobates*, including *agassizii, berlandieri*, and *morafkai*, and *Gopherus* (*sensu stricto*), including *flavomarginatus* and *polypheus*. They recommended recognition of *Xerobates* and *Gopherus* as sister genera. In the same volume, Murphy (2014) provided a critical review of the systematics of the broad genus *Gopherus* and its members, and also concluded that *flavomarginatus* and *polypheus* are sister taxa, and that *berlandieri* is sister to the *agassizii* group (including *morafkai*; see also Reid et al. 2011, not cited in Rostal et al. 2014). However, he made no recommendation about the use of *Xerobates*, and included all species in the broader genus *Gopherus*, as most authors since Crumly (1994) have done. Although most of the other authors of chapters in this book used the genus *Gopherus* (*sensu lato*), in his review of fossils, Franz (2014) recognized *Xerobates* and *Gopherus*. As noted by Murphy (2014), broad nuclear sampling is needed to resolve definitively the relationships within this species group. Until such time, and considering that the name *Gopherus* could still apply to all currently included species even if the two identified clades are reciprocally monophyletic, we retain *Gopherus* as the sole genus name.
68. *Gopherus evgoodei*: The genetic distinctiveness of the southern Sonoran / northern Sinaloan population of Desert Tortoises has long been recognized (reviews in Edwards et al. 2015a,b, 2016), and has now been formally described as a new species by Edwards et al. (2016).

69. *Indotestudo forstenii*: The type specimen of *I. forstenii* was recorded by Schlegel and Müller (1845) as having been collected by Forsten on “Gilolo, Indischen Archipel” (now Sulawesi, Indonesia). However, no further specimens of *I. forstenii* have ever been recorded or found anywhere on that island since that time (D. Iskandar, A. Riyanto, pers. comm.), and the species does not appear to occur on Halmahera or its adjacent islands. The collector, Eltio Alegondas Forsten, spent a few months in 1841 collecting botanical and zoological specimens on Ternate island just off the west coast of Halmahera, where his collectors also obtained some material from mainland Halmahera. However, he also made extensive collections later in 1841–1842 on northern Sulawesi, where he spent time at Gorontalo (http://www.nationaalherbarium.nl/FMCollectors/F/ForstenEA.htm), where *I. forstenii* does occur. We hypothesize that the type specimen was therefore probably obtained by Forsten near Gorontalo, Sulawesi, Indonesia, and that it was then mislabeled as to its exact origin, or possibly that it was acquired from Ternate or Halmahera as a regionally traded specimen originating from Sulawesi. We no longer consider Halmahera to be part of the natural range of *I. forstenii*, and hereby formally restrict its type locality to “near Gorontalo, Sulawesi, Indonesia”.

70. *Testudo*: Based on a phylogenetic analysis of morphological traits for twelve fossil and the five extant species in the genus *Testudo* (sensu lato), Luján et al. (2016) recognized three monophyletic subgenera: *Chersine for hermanni*, *Agrionemys for horsfieldii*, and *Testudo for graeca, marginata*, and *kleinmanni*. Additionally, Vasilyev et al. (2014) studied variation in the 12S rRNA mitochondrial gene and three RAPD markers among individuals of a number of species of *Testudo* (sensu lato). Although *graeca, marginata*, *kleinmanni* (including synonymous *werneri*), and *horsfieldii* were resolved as monophyletic in the mtDNA analysis, *hermannii* was not; however, the RAPD analysis resolved each of those taxa as monophyletic. Support for the recognition of three monophyletic clades (corresponding to *testudo marginata, kleinmanni*, and *graeca* sensu stricto) was ambiguous, with no support from the mtDNA, and only weak support from the RAPD data. Based on the combination of morphology of extant and fossil species and acknowledging the results of molecular genetics studies of *Testudo* by others, Luján et al. (2016) recommended that *Chersine* and *Agrionemys* (as well as the fossil *Paleotestudo*) be recognized as valid subgenera of *Testudo* (sensu lato). We now adopt that recommendation here, discontinuing our previous listing of alternative generic designations.

71. *Testudo (Testudo) graeca*: In a paper previously not recorded in our checklist, Türkozan et al. (2010) analyzed morphometric variation in a large sampling of *Testudo graeca* from throughout Turkey. They determined that the putative subspecies *anamurensis* and *antakynesis* are not distinct from each other or from *terrestris* (and therefore synonymized under *terrestris*), and that *armeniaca* and *perse* are distinct. Further, they noted that the populations from northern and southern Turkey, possibly corresponding to the *ibera* and *terrestris* mtDNA clades, respectively, also appeared to be morphometrically distinct. They made no taxonomic recommendations other than maintaining a conservative approach pending additional morphologic and genetic assessment of more material from both within and outside Turkey. Our checklist has reflected these conclusions for many years, although we have listed *perse* as a synonym under the distinct taxon *buxtoni* since 2007, a placement reconfirmed by Parham et al. (2012) (see TTWG annotations 07:73 and 12:36). Our current updated map with its subspecies delineations has benefitted from review and input by Oguz Türkozan and Peter Mikulíček. Notably, unpublished mtDNA genetic work in progress by Türkozan and colleagues now appears to confirm the earlier impression that *ibera* and *terrestris* represent well-separated northern and southern populations of *T. graeca*. Their distribution patterns reflect clear separation by the so-called Anatolian Diagonal, with only a few areas of intergradation in southwestern Turkey. Additionally, *buxtoni* appears to intergrade slightly with *terrestris* in the southeastern corner of Turkey.

Using the cyt b gene, Javanbakht et al. (2017) examined the phylogeography of the subspecies of *T. graeca* in Iran and Transcaucasia and refined the knowledge of their distribution. Based on species distribution models, they showed that the distribution ranges changed little since the Last Glacial Maximum.

Using three mitochondrial DNA fragments (cyt b, 12S, ND4 plus adjacent DNA coding for tRNAs), Graciá et al. (2017a) studied differentiation of the *Testudo graeca* complex. According to fossil-calibrated molecular clock calculations, they inferred a dual diversification burst. The eastern subspecies, including the last common ancestor of the North African taxa, radiated in the Mio-Pliocene, whereas a second radiation in North Africa took place during the Pleistocene. Based on a Libyan tortoise of unknown exact provenance, a new North African lineage was discovered. The recent introduction of most Western European populations was confirmed, with the exception of populations in southeastern Spain, which are older.

72. *Testudo (Testudo) graeca* and *Testudo floweri*: Meiri et al. (2011) examined body size variation in *Testudo graeca* across the Levant, and demonstrated that these tortoises follow Bergmann’s Rule, with the smallest tortoises found at the southern end of the range in the Negev Desert. The small Negev tortoises had earlier been described as *T. floweri* by Bodenheimer (1935), and these authors agreed that this taxon is synonymous with *T. graeca*. Werner et al. (2016) then expanded that analysis to include all *T. graeca* (sensu lato; see TTWG 2014) from Morocco to Iran. They also found a general correlation of body size with latitude. However, their analyses of sexual size dimorphism demonstrated that it seems to scale differently among tortoises in Anatolia versus the Levant, and concluded that this might suggest that those two populations might deserve consideration as “separate entities” (presumably with taxonomic consequences).

73. *Testudo (Testudo) kleinmanni*: Based on morphological differences between *Testudo kleinmanni* on opposites sides of the Nile River, Perälä (2001) described the eastern population as *T. werneri*. Subsequent studies (see TTWG 2007, annotation 07:74) did not support this distinction and *werneri* was synonymized with *kleinmanni*. However, Werner (2016) has re-emphasized the apparent morphological differences between the populations and has claimed that some tortoises from west of the Nile have been translocated to the east to northern Sinai, potentially confounding the recent studies. Therefore, he suggested that *werneri* should be recognized as a distinct subspecies. Until further genetic work tests this scenario, we continue to retain *werneri* in synonymy.

74. *Testudo (Chersine) hermanni*: Based on an analysis of 17 nuclear microsatellite loci and broad geographic sampling, Zenboudjii et al. (2016) identified three major genetic clusters within *Testudo hermanni hermanni*: one continental (Spain, France and Italy), one insular (Corsica, Sardinia, and Sicily), and one an island supporting two clusters (Menorca). There is
still debate as to which populations are autochthonous and which are the result of human introductions (or reintroductions). Perez et al. (2014; see also TTWG 2014 comment 07:36), based on mtDNA and microsatellites, concluded that the Spanish, Corsican, and Sardinian populations were likely introduced from Sicily by humans. However, although Zenboudji et al. (2016) agreed that the contemporary population on Sardinia is the result of introductions from Sicily following an earlier extirpation on Sardinia, they argued that the Corsican population is natural and genetically distinct. They also concluded that the population in northeastern Spain (Albera) is also a relict, natural population. Menorca supports two distinct genetic populations. The one in the west is closely related to mainland populations, and hence is likely an introduction from a now extirpated mainland source. The eastern population is more distinct, but more closely related to the other insular populations, but whether this represents an ancient autochthonous divergence or an ancient human introduction of a lineage of unknown provenance could not be determined. Zenboudji et al. (2016) also noted a number of examples of mismatched genotypes in several populations, representing introduced individuals (and their offspring) from other populations. Finally, they recommended that six populations be considered genetic management units for conservation purposes: 1) Albera (Spain) + western Menorca; 2) France (Var); 3) Italy; 4) Sardinia + Sicily; 5) Corsica; and 6) eastern Menorca.

75. Cyclanorbis senegalensis: Based on mitochondrial DNA sequence data, Mazuch et al. (2016) reported the presence of *C. senegalensis* in western Ethiopia for the first time, and also found significant genetic divergence between western (Togo and Benin) and eastern (Ethiopia) populations. They called for further phylogeographic study, but made no taxonomic recommendations.

76. Amyda cartilaginea or A. ornata: Fritz et al. (2014a) examined variation in mitochondrial and nuclear DNA and color patterns across the range of *Amyda cartilaginea* (sensu lato). Their mtDNA tree was not highly resolved; however, because of the concordance of the identified clades with color pattern and geography (paleodrainages), the authors recognized two named species with four named subspecies within what was previously recognized as *A. cartilaginea*. They restricted *A. cartilaginea* (sensu stricto) to the southern portion of the Greater Sundas, with the nominate subspecies in southern Borneo and Java, and a new subspecies, *maculosa*, in the northern portion of the Greater Sundas (northwestern Borneo and southern Sumatra). Populations of *A. cartilaginea* (sensu lato) in northern Sumatra and Peninsular Malaysia were not assessed or assigned to subspecies. They also identified, but did not describe, a potential candidate species from northeastern Borneo. They resurrected the older name *ornata* (Gray 1861) for the Southeast Asian mainland species, with the nominate subspecies confined to the Mekong basin, and resurrected the name *phyreii* (Theobald 1868) for the subspecies in Thailand and Myanmar. They also identified, but did not describe, a third possible subspecies from Bangladesh. Regrettably, no specimens from southern Myanmar, southern peninsular Thailand, or Peninsular Malaysia were included. In view of the relatively weak resolution of their named mtDNA clades, but reasonable concordance of those clades with paleogeographic drainage basins and color patterns, we list their proposed taxonomic changes provisionally, pending additional geographic sampling and further genetic and morphologic work.

77. Apalone mutica calvata: In a guide to Alabama turtles, Guyer et al. (2015) elevated *Apalone mutica calvata* to a full species based on its distinctive color pattern, its geographic isolation, and the mtDNA data (part of only one gene) presented by Weisrock and Janzen (2000). Powell et al. (2016) followed their recommendation. However, because of the small sample size and small DNA fragment available to Weisrock and Janzen (2000) and incomplete sampling in the presumed area of overlap in southeastern Louisiana, we consider this change premature, and continue to recognize *calvata* as a subspecies of *A. mutica*.

78. Nilssonia and N. nigricans: Based on mitochondrial Cytochrome C Oxidase Subunit I (mtCOI) barcode sequences, Kundu et al. (2016) provided a phylogenetic analysis of the Asian softshell turtles allied with the genus *Nilssonia*. Their results confirmed the presence of *N. nigricans* in the wild in Assam, India, as well as provided additional support for the synonymy of *Aspidemetes* with *Nilssonia* (see also TTWG 2011, annotation 11:15).

79. Pelochelys cantorii: Hosier (2014a) coined a new subspecific and two new species names for two purported varieties of *Pelochelys cantorii*. Since the ICZN has been petitioned by Rhodin et al. (2015) (see Annotation 4) to declare these and other Hosier names unavailable under the Code (Article 82.1), we maintain prevailing usage and do not recognize these names.

80. Pelodiscus sinensis and P. maackii: Suzuki and Hikida (2014) examined mitochondrial cytochrome b sequence data from specimens of *Pelodiscus* across Japan and compared them with previously published data from Fritz et al. (2010b) from across the wider species range. They identified two lineages from Japan, corresponding to the previously recognized *P. sinensis* and *P. maackii*. The latter was widely distributed in Japan, whereas the former had only a sporadic distribution, leading the authors to conclude that *maackii* was native to Japan and *sinensis* was introduced. They also noted that if future nuclear DNA data supported this scenario, the older name *japonicus* (Temminck and Schlegel 1838) could be available for the lineage currently recognized as *maackii* (Brandr 1857).

81. Pelodiscus sinensis: The publication date of F.J.F. Meyen’s *Reise um die Erde*, in which *Trionyx (Aspidonectes) sinensis* (= *Pelodiscus sinensis*) was first described by A.F.A. Wiegmann, has been a source of controversy. Although frequently cited as appearing in 1835, Bauer and Adler (2001) in a previously overlooked publication determined that the description of *sinensis* first appeared in print in 1834, and we have now corrected that date here.

82. Pelodiscus sinensis: As clarified by Adler (2016), the name *Trionyx tuberculatus* was first used by Cantor (1842a), but without a description or indication, and thus a *nomen nudum*; then subsequently formally and validly described a few months later (Cantor 1842b).

83. Rafetus euphraticus: We note that in the original description of *Testudo euphratica* published by Daudin (1801) that he specifically credited Olivier with providing him with the description of the new species. We therefore amend the authorship of the original name to *Testudo euphratica* Olivier in Daudin 1801.

84. Rafetus euphraticus: Ihlow et al. (2014) examined variation in two mitochondrial genome fragments across nearly the entire range of the species, and found no significant genetic variation.

85. Rafetus swinhoei: Le et al. (2014) analyzed sequence data from two mitochondrial loci and one nuclear gene from all known populations of *Rafetus swinhoei* in China and Vietnam. Their results demonstrated minimal divergence among populations, and warranted no taxonomic changes. Despite the long history in China of human use and transport of turtles, the authors cautioned against speculation that the Chinese distribution is unnatural.

86. Chelidae: A few recent authors have followed Storr (1978) in using the family name Chelidae (Michael and Lindermeyer 2010; Wilson and Swann 2013), a grammatically correct derivation from the Greek type genus *Chelus*, genitive singular *Chelous*.
However, the spelling Chelidae has been in prevailing usage globally since Lindholm (1929) and most authors continue to use it. Under ICZN Article 29.5, the original spelling of a family-level name is to be maintained when it is in prevailing usage, whether or not its derivation from the name of the type genus is in accordance with grammatical procedures. We therefore regard the name Chelidae as an unjustified emendation, given the long-standing prevalence of Chelidae in the literature, and we strongly recommend and concur with the continued usage of Chelidae.

87. Acanthochelys radiolata: Garbin et al. (2016) examined morphological variation in Acanthochelys radiolata across its range. Although they described significant variation in this species (especially in color and shape), they could identify no geographic pattern to this variation and concluded that A. radiolata is a single, highly variable species. In addition, they considered records from Mato Grosso and Sao Paulo States to be in error.

88. Chelus fimbriata: Zug (1977) clarified that the genus name for the matamata is Chelus, not Chelys, as originally proposed by Dumeril (1805:76). Most authors since then have treated the generic name as feminine, rendering the species name as Chelus fimbriata. However, Ferreira et al. (2016), following the recommendation of Vlachos (cited as a pers. comm., but also discussed in Vlachos 2015), argued that the genus name Chelus is actually masculine (and the species name therefore Chelus fimbriatus) because it was supposedly based on Latinization of the classical Greek feminine word γέλυς, and according to ICZN (1999) Art. 30.1.3, a Latinized suffix should take the gender of the Latin suffix. However, according to Appendix B of the 1961 and 1985 ICZN Codes, as well as Art. 30.1.2 and 30.1.3 of the 1999 Code, there is a distinction between transcription or transliteration vs. Latinization of a Greek word. Specifically, for the Greek letter upsilon (υ), its Latin equivalent (i.e., transliteration) is ‘u’, whereas the Latinized version is ‘y’ (ICZN 1985, App. B). Hence, the name Chelus is considered a transliteration, not a Latinization, of γέλυς, whereas Chelys is considered a Latinization. Unfortunately, Vlachos (2015) transposed the terms “transliteration” and “Latinization” in his Table 1—he rightly used “Latinized form” to name his column L, (where he gives “y”), as the Latinized form of upsilon, but used “transliteration” for it in the caption, causing considerable confusion. Chelus and Chelys should not be considered homonyms (1999: Art. 56.2; 1985: Art. 56.b), and in accordance with ICZN 1999 Art. 30.1.2 (1985: Art. 30a), the gender of both Chelus and Chelys is feminine. The correct species name is therefore Chelus fimbriata, as it has been rendered for several decades, and we continue to use it as such.

89. Mesolemmys raniceps: Rivas et al. (2015) discussed the alleged distribution of this species in Venezuela, concluding that of the three specimens recorded from there, two were misidentified, and one (the type specimen of Hydaspis maculata), was misidentified and incorrectly restricted to Venezuela. Hence, we delete Venezuela from the range of M. raniceps, and synonymize H. maculata under M. raniceps instead of under M. nasutus where it was previously placed.

90. Phrynops geoffroanus and P. tuberosus: In a previous checklist (TTWG 2010, Annotation 10:44), we noted that the distribution and taxonomy of these two taxa remained highly problematic and subject to differing opinions as to their extent and inter-relationships, and in our last checklist (TTWG 2014) we provided coarse and uncritical distribution maps for them. In this checklist we now present new revised distributional maps that document most known localities of these taxa, sourced from a combination of the EmySystem database (with several corrections), recently published literature, and previous research on many collected specimens by Rhodin and Mittermeier during their work on the P. geoffroanus complex (Rhodin and Mittermeier 1983; unpubl. data). Morphological analysis at that time indicated the presence of several apparently allopatric and differentiated populations of P. geoffroanus corresponding to various level 3 and 4 hydrosheds, with several areas of close parapatry and possible intergradation. We now depict these distributional patterns in our revised maps, showing the distributional limits of the two taxa to delineate the hydroshed-restricted extent of their mostly separate populations, and showing the various subpopulations of P. geoffroanus. Many of these differentiated populations have now also been preliminarily substantiated as genetically distinct lineages by Carvalho et al. (2016). We anticipate that the P. geoffroanus complex will eventually be recognized as a polytypic species complex with several distinct lineages, notably the southeastern Brazilian coastal, the Rio São Francisco basin, the Rio Paraná basin, the lower Amazon basin, the Colombian, and the Peruvian-Bolivian populations.

91. Platemys platycephala melanopta: Mendes-Pinto et al. (2011) reported the collection of a Platemys platycephala in southwestern Pará, Brazil, that was diagnosable as the subspecies P. p. melanopta. This record lies nearly 2000 km from the known range of melanopta, well within the known range of the nominate subspecies, and calls into question the validity of the subspecies melanopta which was described based primarily on color patterns. A re-evaluation of geographic variation and genetics in this species is needed.

92. Chelodina (Chelodina) longicollis: Hodges et al. (2015) studied mitochondrial phylogeography of Chelodina longicollis, a highly terrestrial mobile freshwater species, to determine if its population genetic structure would correspond to hydrological boundaries or not. They found two ancient haplogroups broadly with east-west partitioning across the Great Dividing Range, but made no taxonomic recommendations. Each haplogroup was characterized by complex genetic structure, demographically stable subpopulation, and signals of isolation by distance; but the patterns were also overlaid with signatures of introgression and recent gene flow, likely facilitated by late Pleistocene and ongoing anthropogenic landscape changes.

93. Chelodina (Macrochelodina) expansa: Hodges et al. (2014) carried out a phylogeographic study of Chelodina expansa based on mitochondrial gene variation to identify two major clades of mitochondrial haplotypes. The first comprised populations from the inland Murray-Darling Basin and the Mary River in southeast Queensland; the second comprised populations from coastal catchments north of the Mary River. They did not regard it as appropriate to provide taxonomic recognition for these populations east and west of the Great Dividing Range (as previously proposed for other similarly distributed taxa by Cann 1998), because the mitochondrial analysis demonstrated that the morphological variation observed was not concordant with the spatial population structure defined by the molecular data (views subsequently discussed further by Spinks et al. 2015). Nevertheless, Hoser (2014b) inappropriately applied novel names to two of the mitochondrial clades identified by Hodges et al. (2014). However, since the ICZN has been petitioned by Rhodin et al. (2015) (see Annotation 4 on Hoser) to declare these and other Hoser names unavailable under the Code (Article 82.1), we maintain prevailing usage and do not use his names.

94. Chelodina (Macrochelodina) kuchlingi and C. walloyarrina: Both of these purported taxa remain enigmatic and poorly known, with their apparent distinctiveness incompletely evaluated, and we remain uncertain whether they are indeed valid
and recognizable taxa (as either species or subspecies), or poorly differentiated lineages of *C. oblonga* (formerly *C. rugosa*) and *C. burrungandjii*, respectively, or possibly their hybrid intergrades. Ellis and Georges (2015), in their catalogue of turtle type specimens held at the Western Australian Museum, synonymized *C. kuchlingi* under *C. oblonga* and *C. walloyarrina* under *C. burrungandjii*, following the earlier recommendation by Georges and Thomson (2010), but their action was not based on new data or analysis. However, we note that prior to the description of *Chelodina walloyarrina* from the Kimberleys by McCord and Joseph-Ouni (2007b), and not addressed in our earlier comment (TTWG 2010, annotation 10:38), is that Thomson et al. (2000) noted morphological differences between Kimberley specimens (= *C. walloyarrina*) and *C. burrungandjii* from Arnhem Land, while Georges et al. (2002) compared the still undescribed Kimberley form and *C. burrungandjii* from Arnhem Land species using allozyme data (45 independent nuclear loci), which showed no fixed differences between these populations. As we noted in our prior checklist (TTWG 2014, annotation 14:42), further analysis of the phylogeographic relationships among all these lineages is still in progress by Kuchling, Georges, and others, and based on our precautionary principles in regard to data-driven analysis in the recognition and protection of biodiversity, we remain reluctant to formally synonymize these taxa until more conclusive genetic and morphologic data emerge.

95. *Elseya*: Thomson et al. (2015) divided the broad genus *Elseya* into three subgenera based on genetics and skeletal morphology: *Elseya* (*Elseya*), *Elseya* (*Hanwarachelys*), and *Elseya* (*Pelocomas*).

96. *Elseya flaviventris*: Allopatric populations of the *Elseya dentata* group from the Arnhem Land region of Northern Australia were first suggested to be unique by Legler (1981) based on morphology. Subsequent allozyme electrophoretic analyses by Georges and Adams (1992, 1996) and morphological work by several authors (reviewed in Thomson and Georges 2016) supported the distinction of these populations at the species level, and Thomson and Georges (2016) formally described this species as *Elseya* (*Elseya*) *flaviventris*, which we accept.

97. *Elseya rhodini*: As indicated in our last checklist (Annotation 14:45), the population of *Elseya* (formerly included under *E. novaeguineae*) from the southern versant of New Guinea, previously noted by Rhodin and Genorupa (2000) and by Georges et al. (2014) to be genetically and morphologically differentiated from other New Guinean *Elseya*, has since been formally described as *Elseya* (*Hanwarachelys*) *rhodini* by Thomson et al. (2015). We accept this new species as distinct.

98. *Emydura macquarii krefftii*: Todd et al. (2014) examined variation in mitochondrial and nuclear microsatellite markers across the widespread range of *Emydura macquarii krefftii*. The mitochondrial data revealed 1) a distinct divergence between northern (Burdekin River northward) and southern (Fitzroy River and southward) populations of *E. m. krefftii*, 2) that *E. m. emmotti* was most closely related to but highly divergent from the northern *krefftii* clade, 3) that *E. m. nigra* and *E. m. macquarii* were nested within the southern *krefftii* clade, and 4) that populations in the upper Burnett River were highly divergent from other southern clade populations. Their examination of twelve microsatellite loci within only *krefftii* also demonstrated support for the same north-south divergence as for the mtDNA data, but did not support the distinction of the upper Burnett population (possibly a human translocation, according to the authors), or the taxonomic distinction among the subspecies *nigra, macquarii*, and southern *krefftii*. They made no explicit taxonomic recommendations, but did note that the north-south divergence was within the range exhibited for other accepted chelonian taxa. Further analysis is clearly indicated.

99. *Myuchelys purvisi*: Legler (1981) foreshadowed splitting the genus *Elseya* into two major clades, one containing *Elseya dentata* and related species, the other containing *Elseya latisternum* and its close relatives, many of which were undescribed at that time. A subsequent study based on 54 allozyme loci (Georges and Adams 1994) established that Legler’s “latisternum group” was indeed a clade (monophyletic), and this was the foundation for the description of the new genus *Myuchelys* (Thomson and Georges 2009) with four contained species: *M. purvisi*, *M. georgesi*, *M. bellii*, and *M. latisternum* as type. Unfortunately, morphological characters that diagnose that genus are symplesiomorphies.

Two subsequent analyses based on a limited set of nuclear and mitochondrial sequence data were equivocal on the monophyly of *Myuchelys*. Georges et al. (1998) recovered *Myuchelys* as paraphyletic with respect to *Elseya* based on analyses of two mitochondrial genes (12S rRNA and 16S rRNA), but without statistical support. More recently, analyses of a single nuclear locus (c-mos) provided moderate support (83% bootstrap support values) for grouping *Emydura macquarii*, *Myuchelys latisternum*, and *M. georgesi* as a clade to the exclusion of *M. purvisi*, a result confirmed by analysis of mtDNA (Fielder et al. 2012). However, Georges and Adams (1994), Georges et al. (1998), and Fielder et al. (2012) all maintained that the uncertainty surrounding incongruence among these analyses should preclude taxonomic revisions and therefore did not propose revisions to correct the potential paraphyly of *Myuchelys* with respect to *Emydura*.

Subsequently, Le et al. (2013) generated phylogenies for the chelid genera *Elseya, Emydura, Myuchelys, Elusor*, and *Rheodytes* using two mtDNA markers and a single nuDNA marker. Their phylogeny also recovered *Myuchelys* as paraphyletic, again owing to the position of *M. purvisi*, and they assigned *purvisi* to a new genus, *Flaviemys*, to maintain monophyly of *Myuchelys*. A more comprehensive analysis (Spinks et al. 2015) using 13 independent nuclear DNA markers recovered *Myuchelys*, including *M. purvisi*, as a well-supported clade, in agreement with the previous allozyme data. Thus, based on the weight of evidence, the taxonomic revision of Le et al. (2013), using their more limited sequence information, was considered by Spinks et al. (2015) to be premature.

On the basis of conflicting evidence from the mitochondrial and nuclear DNA evidence, and because *M. purvisi* and *M. georgesi* are so morphologically similar as to have long been regarded as a cryptic species pair (but see Thomson and Georges 1996), we have retained *Myuchelys* based on the weight of evidence suggesting that it is a well-supported monophyletic group, and placed *Flaviemys* into its synonymy, following the recommendation of Spinks et al. (2015).

100. *Pseudemydura*inae, Pseudemydura, P. umbrina*: The affinities of *Pseudemydura* among the Chelidae are not well established. Early work using serological comparisons revealed that *Pseudemydura, Emydura-Elseya*, and *Chelodina* formed an unresolved trichotomy (Burbridge et al. 1974). Many of the defining morphological characters of *Pseudemydura* have been regarded as autapomorphies, and so not useful for phylogenetic analysis. Nevertheless, Gaffney (1977) placed *Pseudemydura* as sister to all the remaining extant chelids of both Australasia and South America (as the new subfamily Pseudemydurae), while admitting that his case, based on a single retained primitive character, was weak. Subsequent DNA sequence studies were unable to resolve the conundrum. 12S mitochondrial rRNA data were unable to conclusively establish the relationships of
Pseudemydura, but tentatively resolved it as sister to the other Australasian short-necked genera—Emydura, Elseya, Myuchelys, Rhoeodytes and Elasor (Seddon et al. 1997). Additional sequence analysis from mt 16S rRNA and nuclear c-mos supported this arrangement, but bootstrap support remained poor (Georges et al. 1998). A more recent analysis, using the same data drawn from Genbank, resolved Pseudemydura as sister to Chelodina (Gullan et al. 2012). Subsequently, in a broad analysis of previously published sequence data representing 13 mitochondrial and nuclear DNA loci and including 83% of all extant turtle species (as per our checklist), Pereira et al. (2017) resolved Pseudemydura as sister to all short-necked Australasian chelids, with those two clades sister to Chelodina. Most recently, Zhang et al. (2017) analyzed the whole mitogenome of Pseudemydura and demonstrated it to be sister to all Australasian chelid turtles (subfamily Chelodininae), with strong bootstrap support; consequently, they proposed resurrection of the subfamily Pseudemydurinae Gaffney 1977, which we adopt here.

101. Pelomedusa: Vargas-Ramirez et al. (2010) and Wong et al. (2010) reported deeply divergent mitochondrial clades within what was then recognized as the monotypic species Pelomedusa subrufa, with less, but concordant, variation in nuclear DNA markers. The extent of mitochondrial divergences of up to 20% of the cytochrome b gene exceeds pairwise divergences between any other congeneric chelonian species. Based on mitochondrial DNA variation, Petzold et al. (2014) and Nagy et al. (2015) identified at least thirteen terminal clades (see also Fritz et al. 2014b). Petzold et al. (2014) recommended full species status for some of these clades. They restricted P. subrufa (sensu stricto) to southern Angola, Botswana, southeastern Democratic Republic of the Congo, Madagascar (presumably introduced), Malawi, Namibia, South Africa, and Tanzania. Older names were resurrected from the synonymy of P. subrufa for three of the clades: P. galeata (Schlegel 1792; South Africa), P. gehaefi (Rüppell 1835; Eritrea and possibly Sudan), and P. olivacea (Schlegel 1812; Benin, Burkina Faso, Niger, Nigeria, and Senegal). Six other species were newly described: P. barbata (Saudi Arabia and Yemen), P. kobe (Tanzania), P. neumanni (Kenya and Tanzania), P. schweinfurthi (Central African Republic and South Sudan), P. somalica (Somalia and Ethiopia; see also Fritz et al. 2015b), and P. variabilis (Ghana and Ivory Coast). The authors also identified two clades that they considered candidate species but did not describe: one from Cameroon, and the other from Sudan. Further candidate species could correspond to distinct clades within P. galeata and P. somalica (Fritz et al. 2015b), and Nagy et al. (2015) added another possible candidate species from the southeastern Democratic Republic of the Congo. All these studies, however, relied primarily on mitochondrial data and preliminary geographic sampling, but also included some morphologic work and sequencing and allocation of type specimens (see also Fritz et al. 2015a). We remain uncertain whether all taxa described and/or identified are valid and at what systematic level (species vs. subspecies vs. ESUs), pending corroborating data from nuclear genes. However, based on the data and extensive analyses presented, we tentatively accept the proposed taxonomic arrangement while urging and awaiting further work, notably analysis of nuclear loci, more detailed morphologic work, and further geographic sampling, especially from areas between assigned species. We document these unsampled and unassigned areas as Pelomedusa subrufa (sensu lato) species complex.

102. Pelusios: Kindler et al. (2016) examined sequence variation in three mitochondrial and three nuclear genes in Pelusios, and found no phylogenetic structure in P. chapini, P. gabonensis, or P. nanus; however, they identified significant structure within P. rhodesianus (with two deeply divergent clades), P. carinatus, and P. castaneus. Both their mtDNA and nDNA data also suggested that rhodesianus was paraphyletic with respect to carinatus. But because their geographic sampling was incomplete and there was discordance between their mtDNA and nDNA data, the authors made no new taxonomic decisions regarding these six taxa.

103. Pelusios castaneus seychellensis: Kindler et al. (2016), in their wider phylogeographic study of Pelusios, found that their mtDNA data nested the lectotype of P. seychellensis deep within a variable P. castaneus, and sister to specimens from the Republic of Congo, agreeing with Stuckas et al. (2013), leading them to treat seychellensis as a junior synonym of castaneus. We addressed the status of seychellensis previously in Annotation 14:47 and interpreted it at that time as a subspecies of P. castaneus. We maintain that interpretation at this time; however, we acknowledge the possibility that the types of seychellensis could conceivably have been mislabeled or based on transported specimens, in which case seychellensis should indeed be synonymized with castaneus.

104. Podocnemis erythrocephala: Santos et al. (2016) examined variation in a single mitochondrial gene across the range of Podocnemis erythrocephala. They identified considerable genetic structure among populations, with four distinct genotypes that they deemed “management units,” but made no taxonomic recommendations.

105. Podocnemis sextuberculata: Podocnemis sextuberculata and Pentonix americana (nomen dubium) (= Pelomedusa subrufa) were first described on p. 13 of Cornalia (1849), but the descriptions (with minor changes) were reprinted on p. 312 in the Appendix of Osculati (1850), who collected the holotype of sextuberculata described by Cornalia. The two publications have created some confusion about dates and pagination for these two names, and we correct our previously cited paginations here.

PREVIOUS CHECKLIST ANNOTATIONS

2007 Checklist Annotations

- **TTWG 2007b (CRM 4:173–199)**: This new species name appeared pre-07:1. Bowen et al. (1992) showed that recognition of Chelonia mydas Bocourt 1868 renders mydas paraphyletic, and agassizii is no longer generally recognized as either a distinct species or subspecies. See Parham and Zug (1996) and Karl and Bowen (1999) for a complete review.
- **07:6. Kinosternon species:** Serb et al. (2001) elevated two former subspecies of flavescens (arizonense and durangense) to full species status.
- **07:7. Kinosternon chimalhuaca:** This new species name appeared prematurely and erroneously first in the hobbyist literature, with the full original description published a few months later (Berry et al., 1996, 1997).
- **07:8. Kinosternon scorpioides scorpioides:** Includes the previously recognized subspecies seriei Freiberg 1936 and carajasensis Cunha 1970 in synonymy (Cabrera and Colantonio, 1997).
- **07:9. Sternotherus:** This genus was included as a junior synonym of Kinosternon by Iverson (1992) and David (1994) based on work by Seidel et
al. (1986) and Iverson (1991). However, this view was never widely accepted, and Iverson (1998) showed that the species referred to either Sternotherus or Kinosternon formed reciprocally monophyletic clades and recommended that both genera be used.

07.10. Sternotherus depressus: Whereas some earlier authors had placed this taxon as a subspecies of minor, Walker et al. (1998) showed that depressus was genetically distinct from minor.

07.11. Chrysemys picta dorsalis: This subspecies of Chrysemys picta was elevated to full species status by Starkey et al. (2003), who recognized two distinct genetic lineages: C. dorsalis and C. picta. They did not find genetic support for the other subspecies of C. picta (belli, margarita) but did not recommend that they be abandoned. Fritz and Havas (2006, 2007) argued that full species status of dorsalis was not fully demonstrated and retained it and the other two taxa as subspecies of C. picta, agreeing also with Ernst et al. (2006).

07.12. Graptemys oauhtitinensis sabiniensis: Based on molecular and morphological data, Stephens and Wiens (2003) suggested that sabiniensis may not be closely related to oauhtitinensis. However, statistical support for this was weak, and they did not discuss or recommend a taxonomic change. Further study of this complex may warrant the elevation of the sympatric taxon sabiniensis to full species status.

07.14. Pseudemys concinna floridana: This taxon was previously considered a separate species, but was designated a subspecies of concinna by Seidel (1994). Jackson (1995) argued for the retention of floridana as a full species, but Seidel (1995) rejected this argument.

07.15. Pseudemys concinna sawanniensis: Previously considered a subspecies of concinna, Seidel (1994) argued for the elevation of this taxon to full species status, but Jackson (1995) argued for its subspecific status.

07.16. Pseudemys gorjazi: This taxon was previously considered a subspecies of concinna, but was elevated to species status by Ernst (1990) without argumentation, but then supported through analysis by Seidel (1994).

07.17. Pseudemys peninsularis: This taxon was previously considered a subspecies of floridana, but was elevated to species status by Seidel (1994). Jackson (1995) argued for the retention of peninsularis as a subspecies of floridana, but Seidel (1995) reaffirmed his recognition.

07.18. Trachemys species: Seidel (2002) recommended elevating nine Mosooamerican taxa, previously recognized as subspecies of Trachemys scripta, to species rank.

07.19. Trachemys subspecies: Seidel (2002) also recommended reassigning five previously subspecies of scripta, to subspecies of his various elevated Trachemys species.

07.20. Trachemys dorbigni: Includes the previously recognized subspecies brasilensis Freiberg 1969 in synonymy, based on morphological work (di Barco and Larriera, 1993).

07.21. Emydidae and the turtles formerly known as Clemmys: The four traditional species of Clemmys (guttata [type], insculpta, mahanbergii, and marmorata) do not form a monophyletic group with respect to the two monotypic genera Emys orbicularis and Emydidea blondingii in phylogenies based on DNA data (Bickham et al., 1996; Burke et al., 1996; Lenk et al. 1999; Feldman and Parham, 2002). While there is a general agreement that insculpta and mahanbergii are sister-species and should be placed in the genus Glyptemys (Holman and Fritz, 2001; Parham and Feldman, 2002), there are two schemes presented for marmorata and blandinigii. Holman and Fritz (2001) recommended that marmorata be placed in the monotypic genus Actinemys, retaining both Emys orbicularis and Emydidea blondingii as additional monotypic genera. Other authors (Bickham et al., 1996; Feldman and Parham, 2002; Parham and Feldman, 2002) recommended that marmorata and blandinigii be placed into an expanded Emys, a scheme favored in the most recent analysis of variation in marmorata (Spinks and Shaffer, 2005).

07.22. Emys or Actinemys marmorata: Previously, two subspecies were distinguished, including pallida Seeliger 1945, but genetic analysis by Spinks and Shaffer (2005) demonstrated that the typical and previously recognized subspecies pallida were within the same phylogenetic clade and so pallida should not be considered valid.

07.23. Emys orbicularis ibericus: Includes the recently described subspecies lauret Fritz 1994 in synonymy (Fritz, 1998).

07.25. Mexican Terrapene carolina: Stephens and Wiens (2003) suggested that Mexican subspecies of T. carolina may warrant full species status. While this convention has been adopted previously (Smith et al., 1996), almost all other workers recognize these as subspecies.

07.26. Platysternidae: Kreuz et al. (2005) confirmed that mtDNA placed Platysternus solidus within the Testudinidae, and Parham et al. (2006a) supported this finding with mtDNA.

07.28. Testudinidae or Testuguria: Shaffer et al. (1997) coined the name ‘Testudinidae’ for the clade that united Testudinidae with Bataguridae/Geoemydidae. Joyce et al. (2004) listed Testudinidae as an undesirable derivative of Testudo being to similar to both ‘Testudinidae’ and ‘Testudinidae’. In that same paper, the authors coined the new clade name ‘Testuguria’ for that same clade (while neglecting to list Testudinidae as an objective senior synonym). Parham et al. (2006a) explicitly argued for the use of Testuguria over Testudinidae.

07.29. Bataguridae or Geoemydidae: Both names are being used to refer to this group of predominantly Asian testudinids. McDowell (1964) used the name Bataguridae for this group (as a subfamily) which was changed to Bataguridae (as a family) by Gaffney and Meylan (1988). Bour and Dubois (1986) showed that Geoemydidae has priority, and David (1994), Spinks et al. (2004) and others have embraced this view. However, this approach was questioned by Joyce et al. (2004) who, working in a rank-free phylogenetic taxonomy framework, recommended the continued use of Bataguridae. In the interest of reconciling phylogenetic nomenclature with traditional Linnaean rules of priority, Parham et al. (2006a) endorsed a phylogenetic codification of Geoemydidae.

07.30. Batagur: Pruschag et al. (2007b) and Le et al. (2007) demonstrated that species of Kachuga were genetically paraphyletic with respect to those referred to Batagur and Callagur and recommended that only one genus be recognized, and the name Batagur has priority.

07.31. Batagur baska: The subspecies ranongensis Nutaphand 1979 is not well differentiated and has been synonymized under baska by Fritz and Havas (2006, 2007), but no specific morphologic or genetic analysis has yet been performed to formally evaluate the status of this taxon.

07.32. Cuora: Phylogenies based on DNA data (Honda et al., 2002a; Stuart and Parham, 2004; Parham et al., 2004; Spinks et al., 2004) have shown that continued recognition of the genus Pyxidea for mouhotii would render Cuora paraphyletic. All of these studies recommended expanding Cuora to include mouhotii. Other schemes for Cuora have not been published in the recent scientific literature, though there has been some use of Cistoclemmys for flavomarginata and galbinifrons (e.g., Zhao et al., 1997; Zhao, 1997; Yasukawa and Ota, 1999).

07.33. Hybrid species: The validity of six taxa of Cuora, Mauereus [including Ocaldia], and Sacalia recently described from pet trade specimens has been refuted by genetic studies that have shown them to be based on hybrids (Parham et al., 2001; Wink et al., 2001; Spinks et al., 2004; Stuart and Parham, 2004, 2007). The taxa shown to be hybrids are: Cuora galbinifrons serrata Iverson and McCord 1992b, Mauereus iversoni Pritchard and McCord 1991, Mauereus pritchardi McCord 1997, Ocaldia glyptistoma McCord and Iverson 1994, Ocaldia philippensis McCord and Iverson 1992, and Sacalia pseudocellata Iverson and McCord 1992a.

07.34. Cuora flavomarginata sinensis: Some authors recognize this taxon as a valid subspecies (McCord and Iverson, 1991; Fong et al., 2002) while others synonymize it with flavomarginata (Yasukawa and Ota, 1999; Fritz and Havas, 2006, 2007).

07.35. Cuora galbinifrons: The taxon bourreti and picturata, originally described as subspecies of Cuora galbinifrons, were elevated to species rank by Stuart and Parham (2004) based on concordance of morphological with molecular differentiation. Fritz et al. (2006c) returned bourreti to subspecies rank based on osteological characters shown by market specimens, and suggested that picturata warrants the same ranking; Fritz and Havas (2006, 2007) subsequently listed picturata at subspecies rank based on morphologically indistinguishable pet trade specimens. Includes the previously recognized hainanensis Li 1958 in synonymy (Zong and Pan, 1989; Iverson and McCord, 1992b).

07.36. Cuora trisulcata: Blanck et al. (2006a) recommended that Cuora trisulcata be split into two species (including its newly named species cyclornata and its new subspecies meieri) based on paraphyletic mtDNA.
haplotypes and morphological differences. Spinks and Shaffer (2007) showed that *trifasciata* as traditionally recognized is monophyletic based on mtDNA and therefore recommended that *cyclocura* should not be recognized, pending additional study.

07:37. *Cuora yunnanensis*: This species has been listed as extinct by the IUCN since 1996 (www.iucnredlist.org), based on several decades of not finding any surviving animals despite intensive searches. Recently, a pair of animals representing this species were found in markets (Zhou and Zhao, 2004; Zhou, 2005), with subsequent confirmation through genetic analysis (He et al., 2007).

07:38. *Cyclemys*: Ivenson (1992) recognized two taxa of *Cyclemys* (*dena* and *tchefonensis*). Later, *atriopon* and *pulchristrata* were described and *oldhumi* was resurrected (Ivenson and McCorrd, 1997; Fritz et al., 1997). Genetic analysis by Guicking et al. (2002) also supported the validity of *shanensis*.

07:39. *Geoemyda*: Yasukawa et al. (1992) elevated *japonica* to species status (previously considered a subspecies of *spengleri*).

07:40. *Hardella thurii*: Praschag et al. (2007b) found no genetic or morphologic evidence for continued recognition of the subspecies *indiv Gray 1870b*, and synonymized it under *thurii*.

07:41. *Heosemys annandali* [formerly in *Herrys*]: Spinks et al. (2004) showed that *annandali* was nested among species of *Heosemys*. Diesmos et al. (2005) formally moved *annandali* into *Heosemys*. *Leucopocephalon yuwonoi* [formerly in *Geoemyda* or *Herrys*]: Originally described as a species of *Geoemyda* (McCord et al., 1995), Fritz and Obst (1996) placed *yuwonoi* in *Heosemys*. McCorrd et al. (2000) showed that *yuwonoi* was not closely related to the type species of *Geoemyda* or *Heosemus*, but instead sister to *Notochelys platynota*, and erected a new genus, *Leucopocephalon*, for *yuwonoi*.

07:43. *Malayemys macrocephala*: Brophy (2004) proposed the recognition of this species as distinct from *subriuse* based on morphological grounds.

07:44. *Mauremys* [including species formerly in *Annamemys*, *Chineyns*, or *Ocadia*]: Ivenson and McCorrd (1994) included *annanensis* under an expanded *Mauremys*. Subsequent phylogenies based on DNA data (Honda et al., 2002b; Barth et al., 2004; Feldman and Parham, 2004; Spinks et al., 2004) showed that the genera *Ocadia* and *Chinemys* rendered *Mauremys* paraphyletic. Based on these results, some authors (Feldman and Parham, 2004; Spinks et al., 2004) recommended synonymizing *Ocadia* and *Chinemys* under *Mauremys*. Barth et al. (2004) presented this same scheme as well as one that would retain *Chinemys* and *Ocadia* and further divide *Mauremys* into the genera *Cathaiemys* and *Emmenia*. Barth et al. (2004) did not favor one scheme over the other and a competing scheme for *Mauremys* has not been formally proposed in the scientific literature.

07:45. *Mauremys leprosa*: Fritz et al. (2006a) explicitly synonymized several subspecies of *leprosa* recently described by Schleich (1996a) (*atlantica*, *leprosa* recently described by Schleich (1996a)), and Fritz and Havas (2006, 2007) recognized only one extant species of Indian Ocean giant tortoise *Chelonioides* *dentricala*. If this claim is correct, then the names *Alabdrachelys gigantae* might not be applicable to *Alabdrachelys tortoises*. Whether Fritz’s neotype designation or Bour’s specimen rediscovery prevails nomenclaturally remains a matter of ongoing debate, but since 2006 was the most recently published authority we use the name *dussumieri* rather than *gigancea* in our list.

07:54. *Alabdrachelys or *Dipsochelys* species*: Gerlach and Canning (1998) recognized six species of tortoises in *Alabdrachelys*, *Madagascar*, and the *Seychelles* (three of which were extinct: *abrupta*, *daudini*, and *grandidieri*). The two species from Madagascar became extinct prior to modern times (*abrupta* Grandidier 1868 in ca. 1250 AD and *grandidieri* Vallant 1885b in ca. 950 AD) so we do not include them in our list of modern taxa. Palkovacs et al. (2002, 2003) questioned the validity of multiple extant species based on their analysis of genetic data, recognizing only a single living taxon (*Dipsochelys dussumieri*). Gerlach and Bour (2003) reemphasized the validity of the extant species based on the observation that the hatchings are diagnostic. Fritz and Havas (2006, 2007) recognized only one extant species of Indian Ocean giant tortoise which they referred to *Alabdrachelys gigantae*, but did not address the findings of Gerlach and Bour (2003) or Bour (2006). As we consider the issues surrounding the validity of these species as remaining unresolved, we list all these species as potentially valid.

07:55. *Alabdrachelys or *Dipsochelys dussumieri*: Ivenson (1992) listed this species as *Geochelone gigantae*. A total of 1812. Many authors now use *dussumieri* for the Aldabra tortoise (see above), but others persist in using the older name *gigantae* (e.g., Fritz and Havas, 2006, 2007), and others have used the name *elephantina* Duméril and Bibron 1835 (David, 1994; Devaux, 2007).

07:56. *Astrochelys or *Angonoka yinphora*: Le et al. (2006) named *Angonoka* for *yinphora* because of its uncertain phylogenetic position. Fritz and Bininda-Emmons (2007) recovered a weak sister relationship between *yinphora* and *Astrochelys radiata* under some algorithms and recommended that *yinphora* be placed in *Astrochelys*.

07:57. *Chelonioides* *petersi*: According to Cabrera (1998), citing morphologic and osteologic work by Fernández (1988), *Chelonioides chilensis* should be divided into two species, *chilensis* and *petersi* Freiberg 1973, but he considered the taxon *domosabrosi* Freiberg 1973 to be synonymous with *chilensis*. Fritz and Havas (2006, 2007) speculated that *petersi* may not be valid and synonymized it under *chilensis*, citing phenotypic plasticity in other tortoise species as a reason for not accepting the reported differences between *petersi* and *chilensis*.

07:58. *Chelonioides* *nigra*: Most recent authors have considered the various taxa of Galapagos tortoises as subspecies of *nigra* (e.g., Pritchard, 1996; Caccone et al., 1999; Fritz and Havas, 2006, 2007), but Caccone et al. (2002) and Russell et al. (2005) treated them as distinct species. The nomenclatural and survival status of these taxa was discussed in detail by Pritchard (1996).

07:59. *Chelonioides* *chathamensis*: This taxon described from western Chatham Island (*Santariland*) appears to have been extinguished from its original range, but a population of tortoises persists on eastern Chatham Island that was considered a possible separate subspecies by Pritchard (1996). Pending genetic analysis and resolution of this issue we continue to list *chathamensis* as the extant taxon from Chatham, whereas Fritz and Havas (2006, 2007) listed it as extinct, but made no mention of the extant population.
Chelonioidis nigra duncanensis: This taxon from Duncan Island (Pinzón) was historically usually referred to *epyphium* Günther 1875a, but Pritchard (1996) demonstrated that *epyphium* was a synonym of *abingdonii* and therefore resurrected the old nomen nudum *duncanensis* Garman 1917.
Chelonioidis nigra: The nomen nudum *nigra* is considered to be extinct and is therefore included separately on this list.
Chelonioidis nigra phantastica: This taxon was considered to be extinct by Pritchard (1996) but Fritz and Havas (2006, 2007) have used *nigra*.

Chelonioidis nigra porteri: This taxon from Indefatigable Island (Santa Cruz) has often been referred to *nigra* Duméril and Bibron 1835, but most recent authors, including Pritchard (1996) and Fritz and Havas (2006, 2007) have used *porteri*.

Chelonioidis nigra vicina: This widespread taxon from Albermarle Island (Isabela) was previously recognized as one of several valid taxa on that island, including *becki* Rothschild 1901, *microphys* Günther 1875a, *guentheri* Baur 1889, and *vandenburghi* De Sola 1930. Pritchard (1996) synonymized *microphys*, *guentheri*, and *vandenburghi* under *vicina*, and recognized only *vicina* and *becki* from Albermarle.

Cylindraspis indica: Includes the recently described *borbonica* Bour 1978 in synonymy, based on genetic work by Austin and Arnold (2001).

Cylindraspis vosmaeri: Fritz and Havas (2006) credited Fitzinger 1826 with authorship of this name, but corrected it to Suckow 1798 in their 2007 checklist.

Homopus: A separate taxon of *Homopus* was referred to *H. bergeri* Lindholm 1906 by Branch (1989). However, that name was a junior synonym of *Psammobates tenorius verroxii* Smith 1839 (Branch, 1992; Boycott and Bouquin, 2000), and the new taxon was recently described as *H. solus* by Branch (2007).

Indotestudo travancorica: This taxon was previously considered a subspecies of *forstenii* (Hoogmoed and Crumly, 1984; Iverson, 1992), but was resurrected to species status by Pritchard (2000) based on morphology, a conclusion supported by mtDNA analysis by Iverson et al. (2001c).

Kinixys belliana: Fritz and Havas (2006, 2007) recognized only *belliana* and *nogueyi*, following Broadley (1993) uncritically, but others (Iverson, 1992; David, 1994; Iverson et al., 2001a) also recognized *domerguei* and *zymb thesis*. As the phylogeography of this broadly distributed species complex has not been analyzed, we list the four most widely recognized subspecies.

Pyxis arachnoides: The three recognized subspecies have recently been confirmed as genetically distinct lineages (Chiarini et al., 2005).

Reticulochelys or Psammobates pardinus: Based on genetic analysis, Le et al. (2006) recommended that this taxon be included in an expanded genus *Psammobates*. Fritz and Bininda-Emonds (2007) argued for the retention of a monophyletic *Psammobates* exclusive of *pardinus*. Le et al. (2006) also found a high level of mitochondrial divergence between two specimens assigned to the two subspecies *pardinus* and *babcocki*. In conjunction with morphological distinctions between these two taxa (Loveridge and Williams, 1957; Broadley, 1989), the preliminary genetic data suggest that they may be different at the species level.

Testudo or Agrionemys: The species *horsfieldii* and *hermanni* have been alternatively placed in the genera *Testudo* or *Agrionemys* (Khosatzky and Mlynarski, 1966; Gmira 1993, 1995) and *hermanni* also recently in *Euristestudo*. Lapparent de Broin et al. (2006a) created the name *Euristestudo* for *hermanni*, but Fritz and Bininda-Emonds (2007) demonstrated that older genus names (*Chersine* and *Medaesia*) are available for that species. Fritz and Bininda-Emonds (2007) recovered a weakly monophyletic clade that included *horsfieldii*, *hermanni*, and the three core species of *Testudo* (*graeca*, *kleinmanni*, and *marginata*). Based on this phylogeny they recommended that all of these species be placed in the genus *Testudo*. The genetic support for some nodes within this clade is not strong and the decision to lump or split is subjective (e.g., whether *Agrionemys* should be used for *horsfieldii* is open to debate), therefore the taxonomy of this group may remain in flux for some time.

Testudo graeca: This species complex has been the subject of massive taxonomic revisions at the species and subspecies level. These revisions have resulted in the naming and elevation of numerous taxa (e.g., Perilli, 2002a,b,c). Several studies (van der Kuyl et al., 2002, 2005; Harris et al., 2003; Carretero et al., 2005; Parham et al., 2006b,c; Fritz et al., 2007) have explicitly redefined the validity of many of these taxonomic acts. Fritz et al. (2007) proposed a taxonomic scheme that recognized five mitochondrial clades in the eastern part of the range of *T. graeca* as subspecies, but did not address the status of several North African subspecies. Since this is the most recent taxonomic suggestion, it is listed here. However, in their recent checklist, Fritz and Havas (2006, 2007) included not only the eleven taxa we list, but also *anamurensis* (Weissinger 1987, *antakensis* Perilli 1996, *flowers* Bodenheimer 1935, *niiokiki* Chkhikvadze and Tunyev 1986, *pallasi* Chkhikvadze and Bakradze 2002, and *persei* Perilli 2002c. The relationships within this species complex remain uncertain and we expect its taxonomy to continue fluctuating.

Testudo kleinmanni: Baha el Din (2006), Široký and Fritz (2007), and Attum et al. (2007) explicitly rejected the validity of *werneri* Perilli 2001 as a species distinct from *kleinmanni*.

Testudo marginata: Fritz et al. (2005b) explicitly rejected the validity of *weissingeri* Bour 1996 as a subspecies of *marginata*.

Testudo hermanni: Fritz et al. (2006b) explicitly rejected the validity of *heregoe novicensis* Werner 1899 (previously resurrected by Perilli, 2002b) and recommended that *boettgeri* be considered a subspecies of *hermanni*.

Testudo horsfieldii: In a conference proceedings, Perilli (2002a) elevated two subspecies of *horsfieldii* (*kazachstanica* and *rastanovi*) to full species status. This was accepted by Lapparent de Broin et al. (2006b), but warrants reconsideration, especially considering the evidence for unjustified taxonomic inflation in related tortoises in the same work (van der Kuyl et al., 2002, 2005; Fritz et al., 2005b, 2006b; Parham et al., 2006c).

Carettochelys insculpta: This subspecies from northern Australia described by Wells (2002a) was only weakly defined as different from the nomen nudum from New Guinea. We list it tentatively pending further analysis, as did Fritz and Havas (2006), although they excluded it from their 2007 checklist.

Apalone spinifera: This taxon has usually been designated a subspecies of *spinifera* (usually with the original spelling *ater*), but others (e.g., Flores-Villela, 1993; David, 1994) have listed it as a full species, though usually without specific argumentation.

Aspideretes or Nilssonia: Engstrom et al. (2004) found *Aspideretes* to be paraphyletic with respect to *Nilssonia* based on morphologic and genetic criteria. Praschag et al. (2007) formally synonymized *Aspideretes* into an expanded concept of *Nilssonia* based on their analysis of mtDNA of all five included taxa.

Aspideretes or Nilssonia nigricans: Recent morphologic and genetic work on this species previously known only from a single captive population has demonstrated that it also occurs in the wild (Praschag and Gemel, 2002; Praschag et al., 2007a).

Pelodiscus: The genus has recently been recognized as including up to four separate species by some authorities (David, 1994; Zhao, 1997; Chen et al., 2005, 2006; Fritz and Havas, 2006, 2007). Relationships within the genus are far from resolved and also complicated by translocation and mixing of huge numbers of farm-raised individuals from many parts of the range.

Rafetus swinhoei: Includes the recently described *Pelochelys taiwanaensis* Zhang 1984 (Farkas, 1992) and *Rafetetus leoloi* Duc 2000 in synonymy (Farkas and Webb, 2003).

Acantochelys macrocephala: Includes the recently described *Phrynops mexicanus* Fritz and Pauler 1992 in synonymy (Fritz and Pauler, 1999).

Chelodina: This genus was split into three genera by Wells and Wellington (1985), using *Chelodina* for the narrower-headed shorter-necked species (*longicollis, novaeguineae*), and establishing *Macrochelodina* for the broader-headed longer-necked species (*oblonga, expansa, rugosa, siebenrocki*), and *Hesperochelodina* for *steinadami*. Iverson et al. (2001b) refuted the availability of the name *Hesperochelodina*, but validated *Macrochelodina*. Georges et al. (2002) retained *Chelodina* for the entire genus, but identified three phylogenetic clades within the genus and recommended recognition of three subgenera (but did not name them). Fritz and Havas (2006, 2007) accepted two of these clades (*Chelodina* and *Macrochelodina*) as separate genera.

Chelodina canni: This taxon is the same as the previously described *rankini* Wells and Wellington 1985, but that name was declared invalid as a nomen nudum by Iverson et al. (2001b). Wells (2007a) recently disputed this interpretation and redescribed *rankini*, but *canni* McCord and Thomson 2002 retains nomenclatural precedence and *rankini* Wells 2007a is therefore a junior synonym of *canni*.

Chelodina mccordi rotenesi: This recently named subspecies described in the hobbyist literature needs genetic confirmation of its distinctive-
ness, but we recognize it pending further analysis.

07:88. Chelodina oblonga: Thomson (2000) showed that the holotype of oblonga Gray 1841 is a specimen of what is currently regarded as Chelodina rugosa Ogilby 1890. An application is before the International Commission for Zoological Nomenclature (ICZN) to conserve current usage of the name C. r. oblonga for the northern snake-necked turtle and to apply the earlier available name Chelodina collei Gray 1856a to the long-necked species of southwestern Australia, while retaining the nomenclatural availability of the name oblonga for potential future designation of distinct populations of rugosa (Thomson, 2006). Though no decision has yet been rendered by the ICZN, Fritz and Havas (2006, 2007) used the name collei for this southwestern population.

07:89. Chelodina timorensis: This species recently described in the hobbyist literature by McCord et al. (2007b) was also described a few months later as a new subspecies of maccordi (‘timorensensis’) by Kuchling et al. (2007), but the McCord et al. description has chronologic precedence. Concerns surrounding the history and methodology of the description of timorensis by McCord et al. are discussed by Kuchling et al. (2007) and serve to emphasize our recommendations (made in our other chapter in this volume) to follow certain procedural guidelines for descriptions of new taxa (Turtle Taxonomy Working Group, 2007a).

07:90. Chelodina kuchlingi: This species was described from a single specimen, leading to doubts about its validity (Georges and Thomson, 2006; Fritz and Havas, 2006, 2007), but it remains listed pending further exploration of its remote area of provenance.

07:91. Chelodina rugosa: The species siebenrocki Werner 1901 was considered valid by Rhodin and Mittermeier (1976) and Rhodin and Genorupa (2000), but synonymized under rugosa by Georges et al. (2002) based on weakly differentiated allozymes within the broader rugosa complex.

07:92. Elseya: This genus has been recognized as consisting of two separate lineages (Georges and Rose, 1996; Georges and Thomson, 2006). It was subsequently split into two genera, Elseya and Wollumbinia, by Wells (2007c), with latisternum designated genotype of Wollumbinia. Papers by Wells (2002a,b; 2007a,c) and Wells and Wellington (1985) have been self-published without any peer review and also highlight our recommendations to follow certain procedural guidelines for descriptions of new taxa (Turtle Taxonomy Working Group, 2007a).

07:93. Elseya abrotherstoni: This species was considered valid by Rhodin and Genorupa (2000), Thomson et al. (2006), and Georges and Thomson (2006).

07:94. Elseya jukesii: The name jukesii Wells 2002b was a nomen nudum since the specimen was designated, but the species was recently redescribed by Wells (2007b).

07:95. Elseya schultzei: This species was listed by Thomson et al. (2006) and Georges and Thomson (2006), but neither morphologic nor genetic data have been analyzed from the type population and its status remains unclear.

07:96. Elseya stirlingi: The previously named taxon stirlingi Wells and Wellington 1985 was declared invalid as a nomen nudum by Iverson et al. (2001b); though spelled erroneously as stirlingi, but was recently redescribed as a valid species by Wells (2007b).

07:97. Elseya or Wollumbinia bellii: The taxon dorriani Wells 2002b is a nomen nudum without a type designation, but was recently considered a valid subspecies of bellii by Wells (2007c).

07:98. Emydura macquarii: The taxonomy of E. macquarii was previously reviewed by Georges and Adams (1996). Later, Cann et al. (2003) and McCord et al. (2003) described two new subspecies, but taxa previously described by Cann in 1998 (binjing, dharra, dharuk, and gunabarra), plus signata Ahl 1932 were not specifically evaluated by those authors. However, these taxa were all recognized as subspecies of macquarii by Fritz and Havas (2006, 2007), and since phylogeographic variation in the macquarii species complex has not yet been fully resolved with adequate genetic work, we tentatively list all these subspecies as valid, pending further analysis.

07:99. Emydura subglobosa worrelli: Originally described as Tropicochelymus worrelli, this taxon was synonymized under Emydura victoriae Gray 1842 by Ives (1992) and the nomenclatural validity of the species name questioned by Iverson et al. (2001b). Cann (1998b) considered it a distinct species, but Georges and Thomson (2006), partially based on electrophoretic work by Georges and Rose (1996), concluded that it was best referred to as a subspecies of subglobosa Krefft 1876. Fritz and Havas (2006, 2007) also listed it as a subspecies of subglobosa, but Georges et al. (2006) referred to it as a species, though without providing data or argument.

07:101. Mesoclemmys helliostoma: Rueda-Almonacid et al. (2007) questioned the validity of this taxon which is completely sympatric with runcipes, suggesting that it may simply represent a juvenile color morph of that taxon, and recommended genetic analysis.

07:102. Pelomedusa subrubra: Gasperetti et al. (1993) recommended that the two previously recognized subspecies (nigra Gray 1863b and olivacea Schweigger 1812) be abandoned.

07:103. Pelusios sycellensis: The taxonomic status of this species is unclear. Gerlach and Canning (2001) concluded that it is extinct.

07:104. Podocnemidae or Podocnemididae: Cope (1868) used the name Podocnemididae to refer to this clade. Baur (1893b) later referred to this group as Podocnemidae. Joyce et al. (2004) phylogenetically defined Baur’s name (Podocnemidae) to refer to this clade.

07:105. Podocnemis unifilis: This long-recognized species was briefly referred to as P. cayennensis Schweigger 1812 by David (1994), but that name was previously often used for what is now recognized as P. eurypezaphelus (Mittermeier and Wilson, 1974), and most authors have continued to use unifilis.

2008 Checklist Annotations

Rhodin et al. 2008 (000.1-38.checklist.v1) (09-2-27)

08:2. Chelodina or Macrodiremys: The southwestern long-necked turtle of Australia (Chelodina oblonga or collei, see annotation below) represents one of three lineages that were considered unnamed subgenera of Chelodina by Georges et al. (2002). McCord and Joseph-Ouni (2007b) created the name Macrodiremys for oblonga or collei, designating Chelodina oblonga Gray 1841, as type species by original designation and monotypy, and elevated this to a full monotypic genus. Whether Chelodina sensu stricto will be a subspecies of Chelodina sensu lato along with Macrodiremys and Macrochelodina or if all three will be used as full genera is subjective and not yet stable.

08:3. Chelodina or Macrodiremys oblonga: Within Chelodina, the specific epithet oblonga has long been applied to a long-necked species in southwestern Australia. Thomson (2000) showed that the holotype of oblonga Gray 1841 is a specimen of what is currently regarded as Chelodina rugosa Ogilby 1890 from northern Australia. An application (Thomson 2006, 2007) is before the International Commission of Zoological Nomenclature (ICZN) to conserve current usage of the name C. r. Gray 1890 for the northern snake-necked turtle and to apply the next available name, Chelodina collei Gray 1856a, to the long-necked species of southwestern Australia. Separately, McCord and Joseph-Ouni (2007b) designated the holotype of collei as the neotype of oblonga which would render collei a junior synonym of oblonga which would be incompatible with an identification of the holotype and name oblonga as pertaining to the northern Australian taxon. We list the southwestern long-necked species as oblonga because McCord and Joseph-Ouni (2007b) is the latest published action but note that, given the differing taxonomic acts and opinions, this name may remain unstable in the coming years.

08:4. Macrochelodina or Chelodina walloyarrina: McCord and Joseph-Ouni (2007b) described the new species Macrochelodina walloyarrina based on morphological criteria.

08:5. Chelydra serpentina: Shaffer et al. (2008) recommended synonymization of Chelydra serpentina osceola Stejneger 1918 into Chelydra serpentina (Linnaeus 1766) based on range-wide patterns in variability of mtDNA.

08:6. Cyclemys: Fritz et al. (2008b) performed a revision of the genus based on molecular and morphological data that included the description of three new species (enigmatica, fusca, and gemelli).

08:7. Cyclemys dentata: Stuart and Fritz (2008) analyzed mtDNA from type specimens of Cyclemys bellii Gray 1863e, Cyclemys orbiculata Bell 1834 and Cyclemys ovata Gray 1863e, and confirmed their previous morphology-based synonymizations with Cyclemys dentata (Gray 1831d) as accurate.
8.8. *Cyllemys oldhamii*: Stuart and Fritz (2008) placed the names *shanensis* Annandale 1918, and *tcheponensis* Bouret 1939a, into the synonymy of *oldhamii*, based on the absence of significant genetic variation between the type specimen of *oldhamii*, topotypes of *shanensis*, and samples of *tcheponensis* from near the type locality.

8.9. *Bagaturia* Huynghue et al. (2008) examined mtDNA variation within *Bagaturia baska* sensu lato and recommended that the southern populations should be elevated to full species status and for which the available name *affinis* Cantor 1847 should be used.

8.10. *Caretochelys insculpta*: Fritz and Havas (2007) and Georges et al. (2008) indicated that *Caretochelys insculpta* caini Wells 2002a is not an available name because it had not been published in accordance with criteria established by the International Code of Zoological Nomenclature.

8.11. *Kiniyxis nogueyi*: This taxon was treated as a full species by McCord et al. (2005) with minimal argumentation for the change from traditional recognition as a subspecies of *K. belliana*.

8.12. *Rhinoclemmys punctularia*: Testudo scabra Linnaeus 1758 has previously been referred (as a nomen dubium) to the synonymies of both *Melanochelys trijuga* (Schweigger 1812) and *Rhinoclemmys punctularia* (Daudin 1801) (see Fritz and Havas 2007). Examination of the holotype specimen still extant in the Uppsala Linnaean collection indicates that it appears to be a *Rhinoclemmys punctularia* (Rhodin and Carr, in press) [2009]. However, since the name *Testudo scabra* has not been used as the name for a recognized taxon since the early 1800s, it remains a nomen oblitum and does not replace the name *punctularia* Daudin 1801, recognized and used as valid since its description, and also protected by the ICZN (1963) as a nomen conservandum.

8.13. *Alkabrunchelys* or *Dipsochelys*: The generic and specific names of the Aldabra tortoise are still being debated (reviewed in TTWG 2007). The original type specimen of *Testudo gigantea* Schweigger 1812 is a *Chelonioides denticulata* from Brazil (Bour 2006), but since the name *gigantea* had been associated with tortoises from Aldabra for a long time, Frazier (2006) designated a neotype from Aldabra, leading to some confusion. The matter is currently being petitioned to the International Commission on Zoological Nomenclature (Frazier 2008).

8.14. *Chelondis nigra victima*: The type locality for *Testudo microphyes* Günther 1875a was given as follows: “I suppose that the specimen… has come from Hood’s Island,” and Pritchard (1996) concluded that the name *microphyes* was a nomen dubium since its type specimen was not identifiable as either a Hood Island tortoise or any other recognizable taxon. Fritz and Havas (2007) indicated that Günther (1877) had subsequently designated the type locality for *microphyes* as “Tagus Cove, northern Albanarile Island” and they placed *microphyes* in the synonymy of *Testudo victima* Günther 1875a, but this is not necessarily correct. Günther (1877) simply referred later-collected specimens from Tagus Cove to his type-based concept of *microphyes*—the name *microphyes* therefore remains a nomen dubium until such time as the original type specimen can perhaps be identified as to its exact provenance using genetic analysis.

8.15. *Agrionemys* or *Testudo horsfieldii*: Vasilyev et al. (2008) demonstrated minimal mitochondrial variation between populations of *horsfieldii* Gray 1844 and *aegachtiecaria* Chikhikvadze, Aminarishvili, and Aetaev 1990 and so recommended that these taxa be considered subspecies of *Agrionemys horsfieldii*. Elsewhere in the paper they referred to *A. rastamovi* as a third subspecies, but made no definitive comment on taxonomic status or validity.

8.16. *Podocnemis unifilis*: The terminal taxon *lata* Bell in Gray 1830x has previously been included under the synonymy of *Peltocaphas dumerilianus* (Schweigger 1812) by many previous authors, including Fritz and Havas (2007), but Bell (in *Gray* 1830e) described *Chelys* (Hydraspsis) *lata* as having a depressed black shell and orange-spotted head more typical of *Podocnemis unifilis* or *P. expansa*. Later, Gray (1870) placed *Hydraspis lata* in the synonymy of his concept of *Chelomnus dumerilianus (= Podocnemis unifilis) and added *P. unifilis*, *P. cayennensis*, and *P. cryptochrome* to the same synonymy, while differentiating *Peltocaphas tracusa* (= *Peltocaphas dumerilianus*) as a distinct taxon. Though *Chelys* (Hydraspis) *lata* Bell in *Gray* 1830e is an older name than *Podocnemis unifilis* Trochel 1848, it is a nomen oblitum not used for a valid taxon since its description, and therefore does not replace *unifilis* as the valid name for the species.

8.17. *Trachemys decussata*: Authorship of this taxon was actually first by Bell (in Griffith and Pidgeon 1830) with a plate. Seidel (1988a) listed the author as Gray 1831:28 (= *Gray* 1831d), and Fritz and Havas (2007) listed the author as Gray 1831:11 (= *Gray* 1830e). Griffith and Pidgeon 1830 was published in September 1830, whereas Gray 1830e was published in December 1830, and Gray 1831d was published in May 1831.

8.18. *Graphemys geographica*: The name *lesueurii* Gray 1830d (= *lesueurii* Gray 1830e) was shown by Bour and Dubois (1983) to be a junior synonym of *graphica* LeSueur 1827 rather than a senior synonym of *pseudographica* Gray 1831 as recorded by Fritz and Havas (2007).

8.19. *Graphemys pseudographica*: The name *pseudographica* Gray 1831d was originally published only as a nomen nudum of a *Le Sueur* manuscript name in junior synonymy under *geographica* LeSueur 1827, but gradually achieved wide usage by many authors. Holbrook (1842) was the first to actually describe the taxon under the name *pseudographica*, and arguably his name should perhaps be associated with it, but Stejneger and Barbour (1917) established the name as *pseudographica* Gray 1831d as pointed out by Bour and Dubois (1983), who agreed that Gray should be listed as the author.

8.20. *Cryptodira* and *Plereodira*: These subordinal names were based on the French vernacular names, Cryptodères and Plereodères, originally used by Duméril and Bibron 1834. Copé (1864, 1865, 1868b) has generally been credited with authorship of these names, and he was the first to use the exact names Cryptodira in 1868 and Plerodira in 1865, but previously used the name Plerodira in 1864. Cope was preceded by Lichtenstein (1856) who used Cryptodera and Plerodera as subordinal names, but in a printed catalogue distributed to zoological colleagues and museums, and not apparently sold in bookstores, so therefore perhaps not nomenclaturally available.

8.21. *Cuora evelynae*: In the previous checklist (TTWG 2007), *Cuora flavomarginata* (Gray 1863e) had three subspecies. Ernst et al. (2008) recommended returning *Cuora evelynae* Ernst and Lovich 1990 to full species status, based on new morphological and previously published molecular data. They also argued that the mainland populations assigned to taxon *sinensis* Hsi 1930 are synonymous with nomenclatural *flavomarginata*.

8.22. *Apalone spinifer*: In the previous checklist (TTWG 2007), seven subspecies of *spinifer* LeSueur 1827 were listed. McGaugh et al. (2008) performed a rangewide phylogeographic study that uncovered patterns of discordant molecular and morphological variation. These authors conservatively refrained from making sweeping nomenclatural changes, but noted that there was “little utility” in recognizing the taxon *hartwegi* Conant and Goin 1948 and synonymized it under *spinifer*.

8.23. *Apalone spinifer atra*: In the previous checklist (TTWG 2007), *atra* Webb and Legler 1960 was referred to as a subspecies of *spinifer* LeSueur 1827 as it is here. This taxon is sometimes considered a full species (e.g., argumentation cited in Flores-Villela 1993). Several recent studies on *atra* used multiple outgroups (McGaugh and Janzen 2008, McGaugh et al. 2008) have argued in support of subspecies status based on low levels of genetic distinctiveness and habitat-driven color variation. The subspecific status of *atra* was followed by Cerdá-Ardura et al. (2008).

8.24. *Sacalia quadrilocellata*: Shi et al. (2008) performed a mitochondrial survey of *S. quadrilocellata* based on known-locality and trade specimens. They found that populations on Hainan are genetically distinct and can also be diagnosed by morphological characters. They did not elevate these populations to species status, but noted that eventual study might validate this conclusion, in which case the name *Sacalia insulinsensis* (Adler 1962) would be available. They also noted that samples of *S. quadrilocellata* from northern Vietnam are genetically distinct from those from Laos and the type region of central Vietnam, but there appear to be no obvious morphological differences between these populations.

2009 Checklist Annotations

TTWG 2009 (000.39-84.checklist.v.2) (09:3-49)

9.3. *Chelydridae*: Chandler and Janzen (2009) analyzed the phylogenetic position of the Chelydridae based on molecular sequence data, and found weak support for a sister group relationship with either the Kinosternoidae (Kinosternoidae + Dermatemydidae) or Chelonioidea (Chelonioidea + Dermochelyidae). In a more extensive analysis, Barley et al. (in press) show that Chelydridae is sister to Kinosternoidae.

9.4. *Macrochelys temminckii*: Roman et al. (1999) showed that *M.
temminckii could be divided into three major mitochondrial clades which they treated as Evolutionarily Significant Units (ESUs). They noted that samples from the Suwannee drainage in Florida showed high divergence from the rest of the range. Echelle et al. (2009) performed a microsatellite study and further subdivided M. temminckii into six ESUs. They also noted that the Suwannee population was the most distinct and concluded that it might eventually be recognized as a distinct taxonomic unit.

09:5. Cheloniidae: Bowen and Karl (2007) reviewed population genetics and phylogeography of marine turtles and while they noted mtDNA divergence between Indo-Pacific and Atlantic Chelonia mydas and Eretmochelys imbricata, they recognized no taxa below the species level.

09:6. Lacépède 1788 and Bonnaterre 1789: The International Commission on Zoological Nomenclature (ICZN) previously rejected the names created by Lacépède in his 1788 Histoire Naturelle des Serpens and subsequent editions since they were published in non-binomial works (ICZN 1987). However, all names published in his earlier 1788 volume, Histoire Naturelle de Quadrupèdes Ovipares (which contained all his turtle descriptions), continued to be nomenclaturally available until recently, when they were also rejected as being published in a non-binomial work (ICZN 2005). A few of these turtle names from the 1788 Histoire Naturelle de Quadrupèdes Ovipares volume had already been individually suppressed by the ICZN (1963). Therefore, Bonnaterre (1789), who republished Lacépède’s descriptions with proper binomials, becomes the authorship source for these rejected Lacépède turtle names.

09:7. Testudo nasicornis: Testudo nasicornis Lacépède 1788 was described as distinct from Testudo cauana Lacépède 1788 (= Caretta caretta) based on the possession of a soft nasal projection and on being fit for human consumption like Testudo marina (= Chelonias mydas). The species was included in the synonymy of various other marine turtle taxa until Loveridge and Williams (1957) placed it alongside Testudo cauana in the synonymy of Caretta caretta (Linnaeus, 1758). Bonnaterre (1789) provided an amplified description and drawing of Testudo nasicornis, but his concept of the taxon differed from that of Lacépède. The authorship source for these rejected Lacépède turtle names.

09:8. Meyer 1790 species names: Meyer (1790), in a long-overlooked review article, provided short diagnoses and replacement names (nominana nova) for four species described by Lacépède (1788). These names have never appeared in any subsequent synonymies and are clearly nomen nudum. The Meyer names are Testudo bomarius for Testudo viridissaquamae (= Lepidochelys kempii or Chelonia mydas), Testudo latiuscula for Testudo cauana (= Caretta caretta), Testudo sonneratii for Testudo punctata (= Lissemyx punctata punctata), and Testudo rubra for Testudo subgrafa (= Pelomedusa subgrafa).

09:9. Eretmochelys imbricata: This checklist (TTWG 2007b; Rhodin et al. 2008) has previously treated bissa as a valid subspecies of imbricata in the absence of a definitive, data-based synonymization. Whereas genetic results have demonstrated distinct genetic lineages in the Atlantic and Indo-Pacific Oceans, no genetic studies or reviews (Okayama et al. 1999; Bowen and Karl 2007) have argued for continued recognition of the subspecies bissa. The phylogenetic structure within Eretmochelys is comparable to that within Chelonia, for which only a single monotypic species is currently recognized, and thus we now treat bissa as a synonym of imbricata.

09:10. Kinosternon arizonense: The authorship of this name was given as arizonense by Gilmore 1922 in our previous checklist as well as in TTWG (2007b) and Fritz and Havas (2007). However, the article appeared in February 1923 and the year is therefore corrected.

09:11. Kinosternon hirtipes: The authorship of this name was given as Wagler 1833 in our previous checklist as well as in TTWG (2007b) and Fritz and Havas (2007), whereas previous authors (e.g., Iverson 1992) have recognized hirtipes Wagler 1830, a name sometimes interpreted as a nomen nudum. However, the ICZN (1999) rules for availability of names published prior to 1931 (Article 12) state that species names must be accompanied by a “description or definition” or by an “indication”. The 1830 citation for hirtipes is not accompanied by a description or definition, but is accompanied by an indication—the associated illustration of the holotype of the taxon being named (see Article 12.27). Wagler 1830 is therefore the correct authorship designation.

09:12. Deirochelyinae: Spinks et al. (2009b) performed a phylogenetic analysis of the Emydidae based on mitochondrial and nuclear DNA. Their mitochondrial phylogeny did not recover a monophyletic Deirochelyinae, they instead placed Deirochelys as the sister to the rest of Emydidae. In contrast, their nuclear data recovered a monophyletic Deirochelyinae.

09:13. Pseudemys: Spinks et al. (2009b) performed a phylogenetic analysis of Emydidae based on mitochondrial and nuclear DNA. Although their sampling within Pseudemys was limited and uneven, their samples of concinna and floridana did not yield a monophyletic P. concinna with respect to peninsularis (mtDNA and nuclear DNA) or nelsoni (nuclear DNA only). Further genetic and morphological study of known locality samples will be necessary in order to resolve the taxonomic status of the terminal taxa within Pseudemys.

09:15. Trachemys scripta: Rhodin and Carr (2009) demonstrated that the original authorship of the taxon name scripta should be attributed to Thunberg in Schoepf (1792), rather than just Schoepf.

09:16. Emys or Actinemys and Emys or Emydoidae: Using nuclear markers, Spinks and Shaffer (2009) re-emphasized a close phylogenetic relationship among marmorata, orbicularis/trimaculatus, and blandingi as was previously shown from mitochondrial DNA (see Feldman and Parham 2002 and case summary in annotation 21 of TTWG 2007b). Spinks and Shaffer (2009) also showed that those species share a complex evolutionary history including prehistoric hybridization, and that blandingi and orbicularis/trimaculatus are sister taxa. In light of this evidence they strongly recommended that all these species be included in the genus Emys rather than continued recognition of the genera Actinemys and Emydoidae. Other authors (Iverson et al. 2008) argue for the continued recognition of all three genera in this clade.

09:17. Emys orbicularis orbicularis: Fritz et al. (2009b) demonstrated that the mitochondrial DNA differentiation of the two previously recognized subspecies colchica and latescafas were insufficient to continue to recognize them as distinct and therefore synonymized the two under orbicularis.

09:18. Emys orbicularis affinis: Velo-Antón et al. (2008) performed a genetic analysis of multiple populations of Emys orbicularis on the Iberian peninsula and found no significant genetic divergence between the two previously-defined subspecies hispanica and fritzjuergenboshi, and therefore synonymized the former under the latter.

09:19. Emys orbicularis persica: Fritz et al. (2009b) demonstrated that the mitochondrial DNA differentiation of the previously recognized subspecies iberica was insufficient to continue to recognize it as distinct and therefore synonymized it under persica, thereby also bringing karue under the synonymy of persica.

09:20. Geoemydidae and Rhinoclemmys: Le and McCord (2008) evaluated the molecular phylogeny of Rhinoclemmys and other geemydid genera and confirmed the monophyly of the Geoemydidae, but recommended that Rhinoclemmys be afforded subspecific recognition as the Rhinoclemmysinae, a grouping concept first proposed by Gray (1873) as the Tribe Rhinoclemmyinae.

09:21. Batagur affinis edwardmolli: Prashag et al. (2009) assessed the taxonomic status of B. affinis using mitochondrial and nuclear genetic analysis, and described the populations of Cambodia and the eastern coast of Peninsular Malaysia as the new subspecies edwardmolli, with the populations of western Peninsular Malaysia and Sumatra (Indonesia) retained as the monotypic subspecies affinis.

09:22. Cuora galbinifrons complex: In our previous checklists we listed the three taxa galbinifrons, bourreti, and picturata as subspecies of galbinifrons. However, the preponderance of well-documented evidence now supports the elevation of these three taxa to recognition as three closely related full species, based on both morphology and genetics (Stuart and Parham 2004, Spinks et al. 2009a).

09:23. Cuora trifasciata: Spinks et al. (2009a) assessed the validity of the recently described Cuora cyclornata Blanck, McCord, and Le 2006a
using a combination of mitochondrial and nuclear genetic markers. Their genetic evidence elucidates a complex history of introgression involving *Cuora trifasciata* and the *Cuora pani* complex. They also provide a critique of the morphological analysis of Blanck et al. (2006), concluding that the available evidence is not sufficient to diagnose *C. cyclornata*. Following their previous analysis of the group (Spinks et al. 2004), they continue to recommend that *C. cyclornata* be considered a junior synonym of *C. trifasciata*.

09:24. **Cyclemys species**: Praschag et al. (2009) analyzed mitochondrial and nuclear genes in these species, and found that *genus* *Cyclemys* and *Chinemys* were distinct but closely related, and that *atrichosoma* and *dentata* and *pulchristriata* were also well-differentiated and formed a well-supported clade. The taxonomy of the genus *Cyclemys* has been subject to intense debate over the past several years and will likely continue for some time before it is stabilized.

09:25. **Geoemyda spengleri**: Gong et al. (2009) demonstrated phylogeographic structure in mitochondrial DNA within this taxon.

09:26. **Mauremys**: Hirayama et al. (2007) recommended splitting the genus *Mauremys* (sensu Feldman and Parham 2004) into five genera (*Mauremys*, *Cathayemys*, *Chinemys*, *Ocadia*, and an unnamed new genus) based on the morphology of the palate. The relative utility of single character typological taxonomies and monotypic genera versus restricting familiar names to well-defined evolutionary clades has been discussed elsewhere for *Mauremys* and *turtles in general* (Parham and Feldman 2002; Feldman and Parham 2004; Spinks et al. 2004; Turtle Taxonomy Working Group 2007a; Spinks et al. 2009). Following the philosophy outlined in these papers we retain the larger aggregate *Mauremys* and recommend consideration of subgenera for phenetically distinctive subdivisions (e.g., *Parham* and Feldman 2002; Smith and Chiszar 2006).

09:27. **Mauremys caspica**: Fritz et al. (2008a) performed a rangewide genetic survey of *Mauremys caspica*. Their study revealed discordant patterns of morphological and genetic differentiation in this species. They did not recommend abandoning the current subspecies, but highlighted the need for future taxonomic revision.

09:28. **Rhinochelys punctata** : Barrio-AMorós and Narbaiza (2008) elevated this taxon to species status based on a brief statement about head coloration and allopatric distribution, a change we reflected in our previous checklist; however, based on the relative lack of supportive data, we treat it again as a subspecies pending further analysis.

09:29. **Aldabrachelys or Dipsochelys**: The nomenclatural validity of the generic and specific names of the Aldabra tortoise (*Aldabrachelys gigantea or Dipsochelys dussumieri*) is currently being debated (reviewed in TTWG 2007b and Rhodin et al. 2008). There is recent disagreement regarding the type specimen of *Testudo gigantea*, the type species of *Aldabrachelys*, that was presumed lost. Fritz et al. (2006) designated an Aldabra neotype for *T. gigantea*, an act that would validate the use of both *Aldabrachelys* and the terminal taxon name *gigantea*. Around the same time, Bour (2006) reported to have rediscovered the original lost type specimen, which is actually an individual of the South Aldabra tortoise (*Dipsochelys dussumieri*). Following their previous checklist; however, based on the relative lack of supportive data, we treat it again as a subspecies pending further analysis.

09:30. **Aldabrachelys or Dipsochelys species**: Gerlach and Canning (1998) recognized six species of tortoises in *Aldabrachelys*, *Dipsochelys*, and *Seychelles* (three extinct: *gigantea* or *dussumieri*, *arnoldi*, and *hololissa*; and three extinct: *abrupta*, *daudinii*, and *grandilidierni*). The two species from Madagascar became extinct prior to modern times (*Testudo abrupta* Grandilidierni 1868 in ca. 1250 AD and *Testudo grandilidierni* Vaillant 1885B in ca. 950 AD) so we do not include them in our list of modern taxa. Palkovacs et al. (2002, 2003) rejected the validity of multiple extinct species inhabiting the Indian Ocean Islands based on their analysis of genetic data, recognizing only a single living taxon (*gigantea or dussumieri*). Gerlach and Bour (2003) re-emphasized the validity of their recognized species based on the observation that the hatchlings are distinguishable; therefore morphologic and perhaps genetic research in the future may resolve this taxonomic issue.

09:31. **Astrochelys ypinorha**: Le et al. (2006) proposed the genus name *Angonoka* for the single taxon *ypinorha*, but Fritz and Bininda-Emonds (2007) showed that this species is closely related to *radiata* and so placed both species in the genus *Astrochelys* Gray 1873. The genus name *Angonoka* has not been adopted by other authors and we recommend the use of the genus name *Astrochelys* for both *radiata* and *ypinorha*.

09:32. **Chelonioides nigra species complex**: Many recent authors and our previous two checklists have considered the various taxa of Galapagos tortoises as subspecies (e.g., Pritchard 1996; Caccone et al. 1999; Beheragary et al. 2003; Fritz and Havas 2007; TTWG 2007b; Rhodin et al. 2008). However, previous authors have considered them as full species based on morphology (Bour 1980; Frits 1983; Ernst and Barbour 1989) and recently several researchers (Caccone et al. 2002; Russello et al. 2005, 2007; Poullakakis et al. 2008; Chiari et al. 2009) have re-elevated them to species based on congeneric patterns of mitochondrial and nuclear variation. Given the allopatric distribution of Galapagos taxa, combined with the concordant patterns of mitochondrial, nuclear, and morphological variation, we support their recognition as distinct species. In raising these taxa to species, we prefer to highlight their close monophyletic relationship (as distinct from mainland South American *Chelonioides*) by listing them as a species complex.

09:33. **Chelonioides nigra**: The correct epithet for the extinct Floreana tortoise is *nigra* Quoy and Gaimard 1824. Poullakakis et al. (2008) used the epithet *elephantopus* Harlan 1827, but this is in error because that name is younger and the now-lost holotype of *elephantopus* cannot be assigned to any island based on descriptions (Pritchard 1996). Extinct on Floreana since the 1850s, hybrid descendants of this species were recently discovered on Isla Isabela (Poullakakis et al. 2008; Parham 2008) indicating that the lineage persists but has interbred with *becki* Rothschild 1901. Captive cross-breeding of these *becki x nigra* hybrids could be used to partially reconstitute the *nigra* lineage.

09:34. **Chelonioides abingdonii**: Hybrid descendants of *C. abingdonii* have recently been found on Volcan Wolf on Isla Isabela (Russello et al. 2007), and since only a single male (*Lonesome George*) of this species survives, the lineage could be partially reconstituted by captive cross-breeding.

09:35. **Chelonioides porteri**: Chiari et al. (2009) performed an extensive analysis of morphological, mitochondrial, and nuclear genetic variation in the two separate populations of tortoises on Santa Cruz presently referred to the taxon *porteri*. They demonstrated that the Cerro Fatou Population is genetically and morphologically distinct from the La Caseta population and warrants a formal new taxon description, currently in preparation.

09:36. **Chelonioides vicina**: Pritchard (1996) previously synonymized *guentheri* Baaw 1899 under this taxon (see TTWG 2007b) based on lack of morphological distinctiveness. Recent genetic work by Croft et al. (2006) has confirmed a lack of significant genetic distinctiveness between these previously recognized taxa on southern Isabela Island.

09:37. **Chersina angulata**: Daniels et al. (2007) have demonstrated that this taxon includes two parapatric mitochondrial lineages. These lineages are morphomorphically distinct and also show ecological and behavioral differences. Taken together, these data suggest the existence of more than one taxon within *C. angulata* and the matter is under further study (Daniels et al. 2007; Hofmeyr 2009).

09:38. **Cylindraspis indica**: In our previous checklist (Rhodin et al. 2008) we followed Fritz and Havas (2007) in synonymizing *Testudo tabulata* *africana* Schweigger 1812 under *Chersina angulata* (Schweigger 1812). However, Bour (1985) previously identified the type specimen of *africana* as being a *Cylindraspis gruilli*, and Bour (2008) reaffirmed it as a synonym of *Cylindraspis indica*.

09:39. **Kiniyxis belliana nogueyi**: This taxon was treated as a full species by McCord et al. (2005) with minimal argumentation for the change from traditional recognition as a subspecies of *K. belliana*, and we followed that usage in our previous checklist. However, we now agree with Branch (2008) and traditional usage, and therefore restore nogueyi to a subspecies of *belliana*.

09:40. **Testudo or Chersine or Agrionemys**: The type species and synonyms of the genera *Chersine* Merrem 1820 and *Medaestia* Woussow 1916 have recently come under discussion. Bour and Olter (2008) argued that *Testudo gravesi* Linnaeus 1758 is the type of *Medaestia* and that *Testudo hermanni* or the clade (*hermanni + horsfieldii*) is *Chersine* Merrem 1820, while *Eurotestudo* and perhaps *Medaestia* are objective junior synonyms. *Agrionemys* is a subjective junior synonym if
horsfieldii is considered congeneric with hermanni outside the genus Testudo, but remains available for a monotypic genus containing horsfieldii.

09:41. **Testudo graeca graeca**: Fritz et al. (2009c) demonstrated that the mitochondrial haplotype of totypic T. g. whitei is identical to samples of T. g. graeca, a taxon with overall low genetic variation. They therefore recommended placement of whitei Bennett in White 1836 in the synonymy of graeca Linnaeus 1758.

09:42. **Testudo graeca marokkensis**: Fritz et al. (2009c) demonstrated that T. g. lamberti and T. g. marokkensis share the same mitochondrial haplotype. They also questioned the morphometric analyses and proposed geographical separation of lamberti and marokkensis that were used to justify these taxa, and recommended combining them into a single subspecies. Since both lamberti and marokkensis were proposed in the same publication (Piel and Perälä 2004), they invoked the principle of first reviser and chose marokkensis as the valid name.

09:43. **Testudo or Agrionemys horsfieldii**: Arecent study by Hitchens et al. (2008) showed that carpal osteological characters used previously to elevate the subspecies kazachstanica and rustanovi to species level are ontogenetically variable. In addition, Fritz et al. (2009a) have demonstrated the presence of three major mitochondrial haplotype clades that do not correspond well with the presently understood geographic distribution of the three currently recognized morphologically-defined subspecies. Whether or not to continue to recognize kazachstanica and rustanovi as distinct subspecies remains uncertain, but we retain them on the list pending further analysis and resolution.

09:44. **Lissyms punctata**: Rohilla et al. (2009) demonstrated some geographic differentiation in allozymes in this wide-ranging taxon.

09:45. **Wollumbinia or Myuchelys**: Thomson and Georges (2009) described the new genus Myuchelys for these taxa (but not including dorsii Wells 2009), choosing not to recognize the previous description of Wollumbinia Wells 2007c as nomenclaturally available. Whether Wells’ work, distributed online without adequate hardcopy dissemination, is nomenclaturally available needs to be decided by the International Commission on Zoological Nomenclature, and we therefore list both names.

09:46. **Wollumbinia or Myuchelys dorsii**: Wells (2009) described the new species Wollumbinia dorsii, but whether the name is nomenclaturally available is open to question, as the description was distributed online without adequate hardcopy dissemination. As Australian chelid taxonomy is in a state of flux and the validity of Wells’ multiple papers in his Australian Biodiversity Record is under question, we list the name here. However, we make no determination as to its validity either nomenclaturally or taxonomically.

09:47. **Wollumbinia or Myuchelys latisternum**: Wells (2009) resurrected the taxon Wollumbinia spinosa (originally Euchelymys spinosa Gray 1871a) as a separate variety, based on the supposed distinctiveness of the single holotype without known locality data collected in 1866 (as noted by Cann 1998). Whether this resurrection will be accepted as valid is open to question, as no further specimens of the taxon have been identified and its distribution is unknown. We therefore retain spinosa as a junior synonym of latisternum pending further data.

09:48. **Podocnemidae**: Vargas-Ramirez et al. (2008) performed mitochondrial and nuclear genetic analysis of all eight extant species and demonstrated strong support for the Madagascan genus Erymnochelys being sister to a strongly monophyletic South American Podocnemis, and the South American Pelochelys being sister to Erymnochelys + Podocnemis. This phylogenetic analysis renders the occasionally used subfamilial clade name Podocnemidae Broin 1988 (for Podocnemis and Pelochelys) paraphyletic.

09:49. **Podocnemis unifilis**: As we noted in our previous two checklists (TTWG 2007b; Rhodin et al. 2008), most authors since Troschel 1848 have used the name unifilis for this species (the yellow-spotted river turtle), though some early authors erroneously used the epithet dumeriliana Schweigger 1812. Recently, the name unifilis was referred to the synonymy of cayennensis Schweigger 1812 by David (1994), but the latter name has historically been used for what is now recognized as P. erythrocephalus (the red-headed Amazon River turtle) (Mittermeier and Wilson, 1974). Bour (2006a) then redefined what he concluded to be one of the original three specimens used by Schweigger in his concept of cayennensis and designated it as lectotype, but noted that this specimen was actually a representative of the taxon currently known as unifilis, and he recommended that the name cayennensis therefore be used instead of unifilis. However, since the measurements of the lectotype provided by Bour do not correspond exactly with those originally provided by Schweigger, and since Schweigger evidently had examined three specimens for his description, it remains unclear whether the lectotype has been correctly identified. In view of the long history of stable usage of the epithet unifilis for the yellow-spotted river turtle, we recommend its continued usage; suppression of cayennensis by petition to the ICZN may be needed for nomenclatural stabilization.

2010 Checklist Annotations

TTWG 2010 (000.85–164.checklist.v3.1). (04.41)

10:04. **Testudines**: In a paper published too close to our manuscript deadline to fully analyze its implications, Dubois and Bour (2010b) discuss the distinction between nomenclature at family-series and class-series rank, and its application to the widely used Order group name Testudines Batsch 1788. Arguing that group names established at a family-series level cannot be applied at a class-series level, and that the family-group name based on the genus Testudo is already validly applied at the Family level (as “Testudinidae Batsch 1788”), they conclude that the name Testudines Batsch 1788 cannot also be applied to the Order of turtles, but do not suggest an available name for the Order. However, the International Code of Zoological Nomenclature does not regulate use of names above the superfamiliy level, and there remain a variety of uncertainties and possible alternative interpretations on the validity, format, use, and authorship attribution of these names. Additionally, some modern authors continue to use and defend the use of the original name Testudines Linnaeus 1758 to designate all modern turtles, even though the name was used primarily in a vernacular fashion in the original publication. Therefore, we do not make any changes at this time, but continue to refer to all turtles as the Order Testudines Batsch 1788, and expect to revisit this issue in more detail in a future checklist.

Additionally, in recent years, the rank level of turtles has been recommended by some to be elevated from its traditional rank of Order within the Class Reptilia to full Class rank on its own (e.g., Collins et al. 2010). Under this scheme, Reptilia would be the Class containing only squamates and tuatars (traditionally known as the Lepidosauria), Class Eusuchia would contain the crocodiles, Mammalia the mammals, and Aves the birds. This possible class-level rank for turtles is to some extent supported by studies indicating the paraphyly of the traditional Class Reptilia with regard to birds. However, other studies indicate a sister-group relationship between turtles and diapsid reptiles, or placement of turtles within diapsids, and hence, uncertainty about the phylogenetic relationship of turtles to other groups abounds (e.g., Laurin and Reisz 1995, deBraga and Rieppel 1997, Kirsch and Mayer 1998, Modesto and Anderson 2004, Bhulhar and Bever 2009). Considering that the monophyly of turtles has never been challenged, and that ranking of turtles at class-level provides no improved resolution of the group’s phylogenetic position, but simply shifts its distinctiveness to a different rank, we continue to treat turtles as an Order, with no implied judgment of its placement among other living and fossil tetrapods groups.

10:05. **Caretta caretta**: Dubois and Bour (2010a) noted that Garsault (1764) depicted and named a marine turtle as Testudo marina, which they considered a junior synonym of Caretta caretta (Linnaeus 1758) based on morphology and geography. Testudo marina Garsault 1764 is also a senior homonym of Testudo marina Wilhelm 1794, a junior synonym of Dermochelys coriacea (Vandelli 1761).

10:06. **Chrysemys dorsalis or picta dorsalis**: Phylogeography of the entire Chrysemys/picta complex was studied by Starkey et al. (2003), who demonstrated two distinct mtDNA genetic lineages: dorsalis and picta. They recommended elevating dorsalis to species status, but did not find genetic support for the other traditional subspecies (bellii, marginata), although they recommended that they not be abandoned. Ernst et al. (2006) documented morphologic intergradation between dorsalis and marginata in Missouri, but did not express an opinion as to the validity of the proposed elevation of dorsalis by Starkey et al., although they referred to their work. Fritz and Havas (2007) suggested that full specific status of dorsalis was not fully demonstrated by Starkey et al.’s data and retained it and the other two taxa as subspecies of picta. Iverson et al. (2008) agreed with Starkey et al.’s analysis and listed dorsalis as a full species, as have other recent authors and database managers (e.g., McAllister et al. 2007, NatureServe), while others retain dorsalis as subspecies rank (e.g., Ernst and Lovich 2009, ITIS). The sequencing of the entire Chrysemys picta genome is the next step in draft form and should help resolve this problem. We now choose to list this taxon provisionally at species rank, recognizing the validity of arguments on either side of the issue, which remains unresolved.

10:07. **Gray 1830e and Gray 1831d**: The date of publication of Gray 1830e (A Synopsis of the Species of the Class Reptilia) is cited by most sources as
1831, since the title page of Griffith and Pidgeon, Volume 9 (Reptilia), in which the Synopsis appears as a Supplement, is dated 1831. However, Gray’s Synopsis is dated on its first page as having been written in October 1830, and Volume 9 of Griffith and Pidgeon was actually published in three separate sections from 1830 to 1831 (see Cowan 1969). The first section, Part 25 (pp. 1–192), which included Griffith and Pidgeon’s own text of Sauria, appeared in September 1830 (this part also includes three new Bell and Gray names that we cite as Bell 1830a and Gray 1830c). The second section, Part 26 (part of Sauria plus Ophidia and probably including Gray’s Supplement) was apparently published in December 1830; this date was interpolated by Cowan (1969) as the planned three-month time interval between the publication dates of Parts 25 and 27. The last section, Part 27 (Batrachia plus 18 plates) was published in March 1831. Cowan (1969) did not indicate when Gray’s Supplement was published, nor with which Part it appeared. It was certainly not published in Part 25 in September 1830, when only pp. 1–192 of the main text were published, and prior to the October date recorded by Gray on his Synopsis, nor was it published with Part 27 in March 1831 with the Batrachia and plates. The page header for the first few pages of Gray’s supplement has “Order Ophidia” printed at the top, and was therefore printed at the same time as the Ophidia section published in Part 26.

In his later publication, Gray 1831d (Synopsis Reptilium; or Short Descriptions of the Species of Reptiles), dated on p. viii as having been written in January 1831, on p. 77 Gray referred to the exact pagination for the citation for Hydaspis lata in the earlier published Gray version (p. 17 in Gray 1830e). Therefore, Gray 1830e was available for page-citation in January 1831, and was therefore published with Part 26, probably in December 1830. Also, in Gray’s own listing of his publications (Gray 1873k) he recorded 1830 as the date for publication of his Synopsis in Gray’s Vol. 9. In addition, Cogger et al. (1983) recognized 1830 as the date of publication for this work, as do we.

The page number that references Parts 25 and 26 of this publication appears in the footnote on the same page, and is dated on its first page as having been written in January 1831. The back cover of the publication lists other books by Gray already available for sale at the same time. Listed as already published are Gray’s Illustrations of Indian Zoology, Parts 1 through 6, with a statement that a total of 20 parts were to be completed, one listed every three months. Sawyer (1953) recorded that Part 1 of Indian Zoology was published on 6 January 1830, Part 2 on 30 March 1830, Part 3 on 15 July 1830, Part 4 on 6 October 1830, Part 5 on 25 January 1831, Part 6 on 7 April 1831, and Part 7 on 27 July 1831. Gray 1831d was therefore published between Parts 6 and 7, i.e., between April and July 1831, and we have chosen May as the probable month of publication.

10.8. *Graptemys gibbonsi* and *G. pearlensis*: Ennen et al. (2010) analyzed morphological and genetic variation in *Graptemys gibbonsi* throughout its range and concluded that the western population inhabiting the Pearl River system of eastern Louisiana and western Mississippi is sufficiently distinct to warrant description as a full species, *Graptemys pearlensis*, with *Graptemys gibbonsi* restricted to the Pascagoula River system of eastern Mississippi only. *Pseudemys concinna*, *floridana*, and *peninsularis*: These three taxa remain difficult to resolve morphologically and genetically, and their taxonomic relationships have vacillated among various views held by Seidel (1994, 1995), Jackson (1995, 2006), and Thomas and Jansen (2006). Our checklist has historically listed *floridana* as a subspecies of *concinna*, and *peninsularis* as a separate species, based primarily on Seidel’s work, and we continue to do so. However, recent ongoing fieldwork (e.g., Jensen et al. 2008; M. Aresco and D. Jackson, in litt.) potentially supports recognition of *floridana* and *concinna* as separate species, based on marked differences in their habitat preferences across wide areas of sympathy, with *peninsularis* apparently a subspecies of *floridana*. In view of the long history of taxonomic uncertainty surrounding these taxa and the unresolved nature of the data, we now note these conflicting views by providing alternative listings of *floridana* as either a subspecies of *concinna* or a possible separate species, and *peninsularis* as either a species or possible subspecies of *floridana*. However, we make no actual change in the taxonomic status of these turtles at this time, but await further field data and genetic analyses of this difficult species complex, both of which are ongoing.

10.10. *Emys venusta*: McCord et al. (2010a) described three new subspecies of *Trachemys venusta* based on head and neck color patterns, carapace and plastron patterns and coloration, plastral scute formulae, maximum sizes, and distribution. We provisionally list these subspecies pending genetic analysis.

10.11. Duméril 1805: This reference has historically been given as 1806, as that date is printed on its frontispiece, but recent work by Gregory (2010), brought to our attention by R. Bour, has shown that it was actually published in November 1805.

10.12. *Emys, Actinemys, and Emydidea*: Wiens et al. (2010) analyzed multiple mitochondrial and nuclear loci for many emydid terminal taxa. They concluded that their results did not provide phylogenetic support for the placement of *Actinemys* and *Emydidea* in *Emys* (as recommended most recently by Spinks and Shaffer 2009); instead, Wiens et al. recommended recognizing *Actinemys* and *Emydidea* as monotypic genera, with *Emydidea* apparently more closely related to *Clemmys*. We note the discordance among various published data sets regarding the relationships and analyses of the *Emys + Emydidea + Actinemys* group, and hence, we retain our previous listings pending greater resolution.

10.13. *Emys orbicularis orbicularis*: Dubois and Bour (2010a) noted that Garsault (1764) depicted and named a freshwater turtle as *Testudo terrestris*, which they identified as an *Emyris orbicularis* (Linnaeus 1758), and which they considered a subjective junior synonym of *Emys orbicularis* based on geography. *Testudo terrestris* Garsault 1764 is also a senior homonym of *Testudo terrestris* Forskal 1775; however, the latter name has extensive usage over the past half century, and is a *nomen conservandum* (ICZN 1963), thus safeguarding its continuing usage.

10.14. *Emys orbicularis galloitalica*: Pedall et al. (2011) investigated genetic differentiation of populations of Italian, Corsican, Sardinian, and Sicilian *Emys orbicularis* populations, based on mtDNA and polymorphic microsatellite loci. They found no significant divergence of Corsican and Sardinian populations from populations of the southwestern Italian mainland, supporting the view that the subspecies *capolongoi* (Sardinia) and *lanciati* (Corsica) described from these islands are invalid. Their results also suggested that Sardinian and Corsican populations represented reintroduced populations following earlier extirpations of native taxa. While Pedall et al. (2011) did not explicitly synonymize *capolongoi* and *lanciati* into *galloitalica*, they indicated synonymization to be warranted and we consider their results adequate justification to do so. This leaves the status of the subspecies *ingauna*, restricted to a small isolated area in Liguria in the middle of the range of *galloitalica*, unresolved. Fritz and Havas (2007:184) noted that *ingauna* could be synonymous with *galloitalica*, but no data-supported analyses of the status of *ingauna* have apparently been published since its original description; in the absence of evidence to the contrary, we continue to recognize *ingauna* as a valid subspecies.

10.15. *Emys or Actinemys marmorata*: An extensive mitochondrial and nuclear gene study by Spinks et al. (2010) indicated that southern and northern lineages, with a zone of contact somewhere in the central Coast Range of California, exist and may well be diagnosable. However, given the lack of concordance between the traditionally defined ranges of *pallida* in the south and *marmorata* in the north (as previously recognized subspecies), and with two nuclear and four mitochondrial lineages identified, we follow Spinks et al. in waiting for any formal recognition of this variation pending publication of a much larger, ongoing genetic analysis, and we do not re-elevate *pallida* from synonymy at this time.

10.16. *Glyptemys muhlenbergii*: The name *Emys biguttata* Say was previously recorded as being published in 1824; however, though the paper was read in 1824, it was not published until 1825, in Volume 4, Part 2 of the *Journal of the Academy of Natural Sciences*.

10.17. *Terrapene*: The genus name *Cistudo* was previously attributed to Say 1825 as *Cistus novum, as also recorded by Fritz and Havas (2007); however, an Errata sheet published with Say’s article in Volume 4, Part 2 of the *Journal of the Academy of Natural Sciences* noted that the name should have been *Cistudo* (as originally published by Fleming 1822). However, many subsequent authors used *Cistudo* as a valid generic name, often citing Say as the original author. The first authors to do so appear to have been Duméril and Bibron (1835), but many others, including Gray (1856b), Agassiz (1857a), and Boulegger (1889) followed suit.

10.18. *Mauremys japonica*: Hoogmoed et al. (2010) indicated that this species name was actually published in 1834 rather than 1833 as previously recorded by most other authors.

10.19. *Chelonoidis carbonaria* and *C. denticulata*: Vargas-Ramirez et al. (2010a) investigated phylogeographic differentiation in *carbonaria* and *denticulata*, and found distinct mitochondrial clades in *carbonaria* but only weak differentiation in *denticulata*. They recommended further investigation, but proposed no taxonomic changes at this time.

the holotype of *Testudo hercules truncata* Gray 1830 is in the Bell collection of the Oxford University Museum and determined that it is a *C. carbonaria*, rather than *C. denticalata*, where it was previously synonymized as *nomendum dubium*.

10.21. *Chelodina chilensis* and *Chelodina petersi*: The validity of the taxonomy of *Chelodina chilensis* and *Chelodina petersi* remains subject to debate; the latest contribution to the case was made by Vinke et al. (2008), who considered *petersi* synonymous with *chilensis* based on syntopic occurrence and lack of consistent morphological differentiation of populations attributed to *petersi* vs. *chilensis*. We consider the situation unresolved and tentatively retain our recognition of distinct southern and northern taxa (*chilensis* and *petersi*) within the *chilensis* group, pending further analysis of range-wide patterns of morphological and molecular variation.

10.22. *Gopherus agassizii*: Cooper’s description appeared in print in a section of the *Proceedings of the California Academy of Sciences* that was printed and distributed in 1861, not 1863 when the completed volume (including wrappers dated 1863) was issued (R.B. Murphy, pers. comm.). The two bird species described by Cooper in the same paper (Whitney’s Owl, *Athene whitneyi*, now *Microtyale whitneyi*, and Lucy’s Warbler, *Helminthophaea luciae*, now *Vermivora luciae*) are consistently attributed to Cooper 1861 in the ornithological literature.

10.23. *Homopus*: The date of authorship of the genus *Homopus* has traditionally been given as 1835, referring to Tome 2 of Duméril and Bibron (1835:145). However, Roger Bour (pers. comm.) has drawn our attention to the fact that the name was actually created and diagnosed in Tome 1 of Duméril and Bibron (1834:357).

10.24. *Homopus signatus*: Daniels et al. (2010) investigated systematics and phylogeography of *Homopus signatus* using mitochondrial and nuclear DNA, neither of which supported the recognition of the two traditional subspecies, *signatus* and *cafer*. As a result they recommended abandoning subspecies designations for *H. signatus*, and we concur.

10.25. *Homopus signatus*: Our previous checklists and earlier checklists by other authors have consistently listed *Testudo javencella* Gray 1833:14 as a junior synonym of this taxon. However, Gray attributed the name to Daudin, and in fact, it was formally described by Daudin in 1802; hence we correct this oversight.

10.26. *Stigmochelys*: Le et al. (2006) proposed placing *pardalis* in the genus *Pseamobates*, while Fritz and Bininda-Emond (2007) argued for placement in the monotypic genus *Stigmochelys*. Since then, at least three peer-reviewed publications have consciously (i.e. citing Le et al. 2006, among their references) chosen to use *Stigmochelys*, as did two ecological papers (which did not refer to Le et al. 2006) and the CITES Nomenclature Specialist (CITES 2010); in contrast, only a single peer-reviewed paper (Spinks et al. 2009) was published after 2006 using the combination *Psamobates pardalis*, and this was to name the species as an outgroup. Noting the emerging consensus, we no longer accept *Pseamobates* as an alternative name for *Stigmochelys*.

10.27. *Stigmochelys paradoxus*: Fritz et al. (2010a) analyzed phylogeographic patterns in mitochondrial DNA and found that seven, largely parapatric, mtDNA lineages could be identified; these clades did not correspond to the traditional subspecies (*pardalis* vs. *babcocki*) nor to the pronounced geographic differentiation of populations attributed to *pardalis* vs. *chilensis*. We consider the situation unresolved and tentatively retain our recognition of distinct southern and northern taxa (*chilensis* and *petersi*) within the *chilensis* group, pending further analysis of range-wide patterns of morphological and molecular variation.

10.28. *Testudo graeca buxtoni*: The taxon *Testudo ecaudata* Pallas 1814 has historically been listed in the synonymy of *Testudo graeca*, and Fritz and Havas (2007) and our earlier checklists synonymized it under *T. g. buxtoni* as a *nomens dubium*. Wermuth and Mertens (1961) synonymized it under *T. g. ibera*, and in their later checklist (Wermuth and Mertens 1977) again under *T. g. ibera*, but with a question mark. However, in an overlooked reference, Darevsky and Mertens (1973) examined the unpublished plate from Pallas (1814) depicting the type specimen of *ecaudata*, and determined it to be a variety of the South African *Psamobates territiosus* (Smith 1839), despite the fact that the specimen was allegedly obtained in the forests of northern Persia along the Caspian Sea. Despite being a co-author, Mertens was evidently not completely convinced of the synonymization, and only added a question mark to the name in his 1977 checklist, while retaining it under the synonymy of *T. g. ibera*. Because of the uncertainty of the identification of *ecaudata* by Darevsky and Mertens, we solicited input from several specialists regarding the identity of the figured specimen by Roger Bour, Ernst Baard, Brian Henen, Oğuz Türkanoğlu, and Jim Buskirk confirmed that it was not a *Psamobates*, but a juvenile specimen of a *Testudo*, most likely referable to *T. graeca*.

10.29. *Forskål or Forskål*: The spelling of the family name of Pehr Forsskål has varied through the years, with widespread usage of both single and double ’s’ spelling (as in our previous checklists). Dubois and Bour (2010a) declared the “Forskål” spelling to be a mistake, but whether to spell his name with a single or double ’s’ depends on its usage. In the original paper describing *Testudo terrestris* and *T. triunguis* his name is given on the title page in Latin as Petrus Forskål with one ‘s’, but in his own Swedish vernacular he always spelled his name as either Pehr or Pehr Forsskål, with a double ‘s’. Current references to his name are reasonably evenly split between the two spellings (as determined by a search on Google), with the scientific literature preferring Forskål and the sociohistorical literature preferring Forsskål. We therefore now spell his name as rendered on the original publication, Forskål, just as we render the name Carolus Linnaeus in the original published Latin form rather than the name he was known by in his own Swedish vernacular, Carl von Linné.

10.30. *Testudo or Agrionemys horsfieldii*: Three new taxa from this species complex have recently been described by Chkhikvadze and colleagues: *Agrionemys bogdanovi*, *A. kazachstanica kaznetzovi*, and *A. kazachstanica terbishi*. In addition, they have elevated two other taxa, *A. horsfieldii rastomani* and *Testudo baluchiorum*, to species status. The taxonomy of Central Asian steppe tortoises remains in a state of flux; in contrast to the deeply-dissected arrangement of several species and subspecies in *Agrionemys* as proposed by Chkhikvadze and colleagues based on morphological characters, Fritz et al. (2009) found phylogeographic structure as evidenced by mtDNA to be in weak agreement with morphologically-defined taxa, suggested synonymy of *rastomani* with *horsfieldii*, and recognized only a single species, placed in *Testudo*, with implicit recognition of subspecies *kazachstanica* and an unnamed ESU in the Fergana valley. To minimize nomenclatural changes in a highly dynamic situation, and to attempt a middle road between the views of Chkhikvadze et al. and Fritz et al., we retain the recent arrangement of a single species with several subspecies, with the newly-described taxa *bogdanovi*, *kaznetzovi*, and *terbishi* provisionally listed as subspecies of *horsfieldii*, keeping *rastomani* as a subspecies, and not elevating *baluchiorum* from synonymy. We anticipate that further changes will occur in the near future. Additionally, we drop *Chersina* as an alternative generic name for the *horsfieldii* species complex, as all authors use either *Testudo* or *Agrionemys* for this group. This issue was previously discussed in TTWG 2009.

10.31. *Cycloderma Aubry*: Duméril (1856) described this species under the name *Cyclopterus Aubry*, sp. nov., in his text, but labeled the plate *Cyclopterus Aubry*. *Cyclopterus* is considered an *ex errore* name for *Cryptopus* Duméril and Bibron 1835.

10.32. *Pelodiscus*: Fritz et al. (2010b) carried out preliminary genetic analyses of softshells of the *Pelodiscus sinensis* group, and demonstrated the taxonomic validity and species status of *P. maackii*; further taxonomic research was called for to elucidate the status and proper name of the lineages currently recognized by some as *P. axenaria* and *P. parviformis*, as we continue to do in this checklist.

10.33. *Rafetus swinhoei*: Le et al. (2010) described a purported new species of giant softshell, *Rafetus vietnamensis*, with the type species a complete mounted skeleton located in the Hung Ky pagoda in Hanoi, but without locality data, while at the same time indicating that *R. lelooi* Ha 2000 was probably not a taxonomically valid description. The study analyzed mostly the same materials as Le and Pritchard (2009), who reached the opposite conclusion, that Vietnamese records of *Rafetus* all pertain to *R. swinhoei*. A critical re-assessment of the description of *R. vietnamensis* is in progress (M. Le, B. Forkas, pers. comm.). Based on the conclusions of Le and Pritchard (2009), we provisionally list *R. vietnamensis* in the synonymy of *R. swinhoei*.

10.34. *Chelodina subgenus*: Georges and Thomson (2010) summarized the history and rationale of grouping species of Australasian snake-necked turtles and naming these groups, and concluded that the preferred nomenclatural arrangement would be to place all species in the genus *Chelodina*, while recognizing three subgenera within *Chelodina*: subgenus *Chelodina* for the narrow-headed species traditionally assigned to ‘Group A’ related to *C. longirostris*, subgenus *Macrodiremys* for the single species *C. colliei* (= *C. oblonga* of many authors), and subgenus *Macrochelodina* for the broad-headed species of ‘Group B’ related to *C. expansa*. However, as explained in annotation 39, the name *Macrodiremys* may be invalid.

10.35. *Chelodina (Chelodina) gunaleni*: Georges and Thomson (2010) considered *gunaleni* McCord and Joseph-Ouni 2007a as synonymous with *novaeguineae* Boulenger 1888b, but provided no data supporting their conclusion; we retain *gunaleni* as distinct pending further analysis.

Macrodirymys becomes a junior synonym of the intent of McCord and Joseph-Ouni. Kuchling (2010), as first reviewer, applicable to the northern taxon (the name plenum to be published before such nomenclatural acts should be attempted, vindication that it was reasonable to await an opinion on case 3351 of the ICZN could potentially be fixed to the southwestern longneck, but stated his con -

Kuchling (2010) had already pointed out the possibility that a nomenclatural available as a genus-group name for the southwestern snakeneck. However, we provisionally retain wallaya rina as distinct until published molecular data resolves the issue.

Chelodina (Macrochelodina) rugosa: Georges and Thomson (2010) reiterated their earlier (Georges and Thomson 2006) synonymy of C. kuchlingi Cann 1997d into C. rugosa Ogilby 1890, and we now synonymize it as well.

Chelodina (Macrochelodina) wallaya rina: Georges and Thomson (2010) treated wallaya rina McCord and Joseph-Ouni 2007b as synonymous under bunnangandi: Thomson et al. 2000, referring to morphological and molecular information available in the literature, and their own research indicating hybridization and introgression of bunnangandi with rugosa. However, we provisionally retain wallaya rina as distinct until published molecular data resolves the issue.

Chelodina (subgenus name undetermined) oblonga or colliei: Thomson (2006), Georges and Thomson (2010) and Kuchling (2010) summarized the convoluted nomenclatural history of the name Chelodina oblonga Gray 1841, and attributed it to the northern populations (currently named C. rugosa Ogilby 1890, a name provisionally retained by them) as a senior synonym, pending the outcome of ICZN Case 3351 (Thomson 2006). With the name oblonga thus potentially unavailable for the snake-necked turtle of southwestern Australia, they referred to this turtle either by its next available name, Chelodina colliei Gray 1856a (Georges and Thomson), or C. oblonga (= C. colliei) [Kuchling] to maintain prevailing usage. In an attempt to retain traditional usage of the name oblonga for the southwestern snakeneck, McCord and Joseph-Ouni (2007a) had designated a neotype for oblonga Gray 1841, being the lectotype of C. colliei. However, as a type specimen already exists for oblonga, their neotype designation is invalid (Kuchling 2010).

There is general agreement that the southwestern snakeneck represents a distinct lineage within the Chelodina group (Burns 1967, Goode 1967, Kuchling 1988, Georges and Adams 1992, Georges et al. 1998, 2002), warranting recognition at subgenus level alongside Macrochelodina and Chelodina sensu stricto. The genus name Macrodirymys was created by McCord and Joseph-Ouni (2007a) to recognize this lineage. They designated oblonga as its type species, in the mistaken belief that their neotype designation had fixed the name oblonga to the southwestern taxon. However, with oblonga being applicable to the northern taxon (rugosa) by virtue of its original valid holotype, Macrodirymys becomes a junior synonym of Macrochelodina, in contrast to the intent of McCord and Joseph-Ouni. Kuchling (2010), as first reviewer, listed possibilities under which articles of the Code the name Macrodirymys could potentially be fixed to the southwestern longneck, but stated his conviction that it was reasonable to await an opinion on case 3351 of the ICZN plenum to be published before such nomenclatural acts should be attempted, and expressed his hope that in their ruling on case 3351, the ICZN plenum would take suitable action to solve these problems. Independently, Georges and Thomson (2010) made an explicit attempt to correct the error and follow the intent of McCord and Joseph-Ouni 2007a under Article A 67.13.1.1 of the Code by correcting the type species of Macrodirymys to Chelodina oblonga McCord and Joseph-Ouni 2007a = C. colliei Gray 1856a, making it potentially available as a genus-group name for the southwestern snakeneck. However, Kuchling (2010) had already pointed out the possibility that a nomenclatural act such as the attempted correction by Georges and Thomson (2010) could be invalid under the ICZN Code.

Further, nomenclatural acts in this group of animals must await the outcome of the anticipated ICZN plenary decision to avoid further complicating this issue. For that reason, we list Macrodirymys as a synonym of Chelodina sensu lato and we do not employ a subgenus designation for the southwestern species in this year’s checklist, recognizing well that the southwestern snakeneck warrants its own subgenus and that a name is potentially available for it.

Elsyea novaeguineae: Georges and Thomson (2010) returned E. schultzei Vogt 1911 to the synonymy of E. novaeguineae, Meyer 1874, and also tentatively placed E. novaeguineae in the genus Myuchelys. However, we retain the species in Elsyea pending further genetic analysis.

Emydura m. macquarii: Georges and Thomson (2010) reviewed the complicated history of the name Hydaspis australis Gray 1841, and supported the conclusion of Cogger et al. (1983) that the name is a junior synonym of E. m. macquarii. The name australis had previously been inconsistently used for a variety of Emydura populations in northern Australia (e.g., Cann 1998); Georges and Thomson (2010) instead used the name victoriae for some of these populations. We interpret the name australis as a nomen dubium and agree with its synonymization under macquarii.

Emydura m. macquarii: Georges and Thomson (2010) synonymized the previously recognized subspecies E. m. binjing, E. m. dhua, E. m. dhuvah, E. m. sanubara, and E. signata, into typical E. m. macquarii, based on lack of distinction based on allozyme electrophoresis, and they attributed variation in shell shape and body size to phenotypic plasticity. They consid -

Myuchelys and Wells taxa: Thomson and Georges (2009) described the new genus Myuchelys and noted that the name Wollumbina Wells 2007c, used for the same group of species, but proposed online in an unpublished web-based document without adequate hardcopy dissemination, is nomenclaturally unavailable. They also considered all web-based names proposed by Wells in his Australian Biodiversity Record (Wells 2002, 2007a,b,c, 2009), as unpublished and nomenclaturally unavailable. In previous editions of this checklist we included Wollumbina as an alternative genus name and listed some of the species described in the other documents; however, based on arguments against availability of all these names proposed by Wells (Fritz and Hasv 2007, Thomson and Georges 2009, Georges and Thomson 2010), we now concur in considering these names unavailable under the ICZN Code and treat each of them as an unavailable name (nomen illegitimum) placed in synonymy.

Phrynops geoffroanus and tuberosus: The taxonomic status and distribution of these two taxa remains problematic, without clear consensus of taxon limits or range delimitations. Pritchard and Trebbau (1984) documented that tuberosus is isolated from the broad range of geoffroanus and restricted to a small upland area in eastern Venezuela, extreme western Guyana, and northern Roraima in Brazil. Mètrellier and Le Graet (1996) documented that neither tuberosus nor geoffroanus occurs in French Guiana, and neither taxon has ever been recorded in Suriname or lowland Guyana. However, McCord et al. (2001), based on an examination of three specimens of what they identified as tuberosus from eastern Venezuela, the Brazil–Guyana border, and Piauí, northeastern Brazil, depicted large apparently well-defined allopatric ranges for both taxa, with tuberosus supposedly distributed throughout the Guyanan lowlands, the lower Brazilian Amazon, and northeastern Brazil, Rueda-Almonacid et al. (2007), while acknowledging that the systematics of the Phrynops geoffroanus complex (Rhodin and Mittermeier 1983) remained controversial and unresolved, nevertheless reproduced the vastly different ranges of tuberosus and geoffroanus depicted by McCord et al. We choose at this time to instead recognize the earlier documented restricted view of the distribution of tuberosus, since it is based on more extensive fieldwork, while also noting that the P. geoffroanus complex remains in need of a thorough range-wide phylogeographic study.

Pelomedusa subrufa: Phylogeographic patterns of mitochondrial and nuclear DNA variation in Pelomedusa subrufa were analyzed by Vargas-Ramírez et al. (2010b) and Wong et al. (2010). Both studies reached the same conclusion that the species is structured into three major clades: northwestern, eastern, and southern lineages, with evidence that Madagascar populations may have been introduced there in prehistoric times. Vargas-Ramírez et al. (2010b) suggested that valid taxonomic units may currently be included in the synonymy of Pelomedusa subrufa, and recommended further study to clarify the taxonomy.

Podocnemis euthromphela: We previously listed the name Podocnemis agassizi Coutinho 1868 as a synonym, as did other earlier checklists. However, although Coutinho described a new species of turtle in 1868 that he proposed to name in honor of “M. Agassiz,” no formal name was created at that time. Later, Göldi (1886) translated and reprinted Coutinho’s earlier writings and created the binomen Podocnemis agassizii, attributing it to Coutinho, but recommending that it be changed to Podocnemis coutinhii since the name agassizii had already been used for another turtle, Chelonia agassizii.

Podocnemis sextuberculata: Coutinho (1868) provided an excellent description of this species that he named Podocnemis pitius, a name overlooked in our previous checklists as well as other earlier checklists.

Podocnemis unifilis: We continue to use this name for the Yellow-spotted River Turtle, as it has a long and continuous usage, although the name Emys cayennensis Schwiegger 1812 has recently been shown to have priority based on the available type material (Bour 2006). However, the name cayennensis
was for a long time erroneously applied to Podocnemis erythrocephala and it would introduce unacceptable confusion to use that name for what has nearly always been referred to as unifilis. We therefore maintain prevailing usage of unifilis and retain the name cayennensis in synonymy as a provisional nomen

rejectum pending petition to the ICZN (R.C. Vogt et al., in prep.).

10:49. Podocnemis unifilis: Contino (1868) provided an excellent description of this species that he named Podocnemis tracyo, a name overlooked in our previous checklists as well as other earlier checklists.

2011 Checklist Annotations

TTWG 2011 (000.165-242.checklist.v.4) (11:5-20)

11:5. Malaclemmys terrapin: Parham et al. (2008) demonstrated, based on radiometric dating of a fossil found in a cave on Bermuda, that the small population of diamondback terrapins present there was the result of a natural dispersal event dating from before human presence on the island. As a result, we now consider the Bermuda population as native rather than introduced. Genetic comparison of Bermuda samples with U.S. populations also demonstrated closest similarity to samples from the Carolinas, so we provisionally list the Bermuda population under the subspecies M. t. centurata pending further studies.

11:6. Genus Trachemys: Fritz et al. (2011c) assessed the phylogeny and taxon boundaries of Trachemys from Central and South America based on mitochondrial and nuclear DNA. Their nuclear data were largely uninformative, but based on their mitochondrial and combined analyses, they concluded that the Pacific Coast taxa grayii, enolli, and panamensis form a distinct clade that warrants recognition at the species level, as Trachemys grayii, with three subspecies. Fritz and co-authors also recommended combining the taxa caespita, ornata, venusta, calostritis, and chichiriviche as subspecies under a single species, Trachemys ornata. They further proposed placing adiutrix at subspecies level in dorbigii, and considered the taxon utirii to be synonymous with typical venusta. Their analysis did not include samples of the taxon iversoni, whose range on the Yucatan Peninsula is embedded in the range of the redefined ornata group, nor did they sample most Trachemys taxa from the arid western region of Mexico.

While Fritz et al. (2011c) provide a useful set of hypotheses for future testing, we recognize that taxonomy of Trachemys will remain dynamic and expect further changes when additional nuclear data, and deeper geographic sampling of field-verified specimens, are brought to bear on the problem. We therefore provide the alternative taxonomies of Seidel (2002) and Fritz et al. (2011) in this year’s checklist.

11:7. Emys/Emydoidea/Actinemys: Fritz et al. (2011b) reviewed competing generic concepts for Blanding’s, Western Pond, and European Pond turtles and reiterated their support for recognition of Emydoidea and Actinemys as separate genera distinct from Emys.

The TTWG members continue to be deeply divided in their perspectives on whether to recognize three genera, or a single genus, for the four species concerned (blandingii, maromata, orbicularis, and trinacris). The challenge is that available primary research findings result in different relationship trees among the four, based on mitochondrial and nuclear DNA and on morphology (Spinks and Shaffer 2009; Wiens et al. 2010; Fritz et al. 2011b). Overall, the majority of data indicate that blandingii, maromata, orbicularis, and trinacris collectively are each others’ closest relatives. Whether to recognize this by combining the four species in an expanded genus Emys, or to emphasize the morphological distinctiveness of blandingii and maromata from (orbicularis + trinacris) by recognizing Actinemys and Emydoidea as monotypic genera, is largely a subjective matter. Correspondingly, the herpetological taxonomic community and recent scientific literature have not come to a clear consensus or prevailing usage. With further research in progress, we agree that the situation remains undecided, and continue to present alternative taxonomies in this year’s checklist, with no implication that this represents the preferred or supported arrangement of individual TTWG members.

11:8. Terrapene carolina: Butler et al. (2011) conducted morphological and molecular analyses to address the status of lineages within Terrapene carolina. They found that box turtles phenotypically corresponding to T. c. carolina, T. c. bauri, and T. c. trinacris all occur within the range of T. c. major, and that the latter does not demonstrate a diagnostically unique morphology. They also found that carolina, bauri, and trinacris possess divergent mtDNA haplotypes, which are present alongside a fourth, distinct, haplotype in the range of T. c. major. Butler et al. interpreted these findings as the introgressed genetic signal of the extinct Pleistocene T. c. putnamii perpetuating in a morphologically mixed population, and advocated equating the taxon major with putnamii; they argued that major, which has precedence over putnamii, should only be used to refer to the large extinct form.

Their genetic analysis also placed bauri as sister to ornata, and trinacris as sister taxon to the [ornata + bauri] clade. Butler et al. thus suggested that bauri should be elevated to species status, and that this would leave the remaining taxa in T. carolina paraphyletic by continued inclusion of trinacris. Butler et al. did not address the status of mexicana and yucatana, which have variously been considered subspecies of carolina or full species each. Furthermore, their analysis did not support the previously recognized species groups (e.g., Milstead 1969; Spinks et al. 2009).

We are reluctant to change the widely-recognized taxonomic arrangement for a species complex of notable conservation and legislative significance based on a single study that relied heavily on a short mtDNA segment. Until the alternative taxonomy presented by Butler et al. is independently corroborated by further research, and potentially finds widespread acceptance in the herpetological and taxonomic communities, we prefer to retain the traditional arrangement and defer possible adoption of their hypothesis until a later version of this checklist.

11:9. Cuora flavomarginata evelynae: In previous checklists we had overlooked that Ota et al. (2009) had transferred evelynae back to subspecies status under Cuora flavomarginata, but we now follow them here.

11:10. Aldabrechelys gigantea or Dipsochelys dussumieri: Gerlach (2011a) studied morphological development of juveniles of the three forms of Indian ocean giant tortoises reared under identical captive conditions, and concluded that animals consistently develop into the morphotypes characterized by their parents. Gerlach thus concluded that the morphotypes cannot be explained by environment alone, and may have a genetic basis, supporting the recognition of ornoldi and hololissa as taxonomically distinct from gigantealussunieri.

11:11. Gopherus agassizii and G. morafkai: Murphy et al. (2011) investigated taxonomic problems affecting the Desert Tortoise. They designated the sole remaining of three syntypes of Gopherus agassizii as lectotype and genetically confirmed that it originated from California. They also determined that the holotype of G. leptocephalus originated from the Mojave desert population, at least based on mitochondrial DNA, reconfirming leptocephalus as a junior synonym of agassizii. A suite of morphological, molecular and ecological differences between the Mojave and Sonoran Desert populations led Murphy and co-authors to describe the Sonoran form, long recognized as an Evolutionarily Significant Unit, as a new and distinct species, Gopherus morafkai. Further research will be necessary to determine if the southern populations of G. morafkai in the Sinaloa thornscrub ecosystem also deserve taxonomic recognition (Murphy et al. 1989; Murphy et al. 2011).

11:12. Testudo graeca and T. marginata: Chikhikovadze et al. (2011) described Testudo dagestaniaca from Lake Papus, Dagestan, and considered the taxa anamorinensis, pallasi, terrestris, weissingeri, and zarudnyi (variously considered subspecies or synonyms of T. graeca or T. marginata in earlier versions of this checklist) as valid subspecies of T. marginata. However, Parham et al. (2006) and Fritz et al. (2007) placed the Dagestan population of Testudo firmly in T. graeca based on a combination of morphological and genetic characters, although those studies differed in their assignment of this population to T. g. iberia and T. g. armeniaca, respectively. Until further data become available supporting the radical changes proposed by Chikhikovadze et al., we take a conservative approach and make no changes to the taxonomy of T. graeca or T. marginata.

11:13. Testudo marginata: Perez et al. (2012) studied the effects of landscape features and demographic history on the genetic structure of Testudo marginata using microsatellites. They found that their samples from Sardinia clustered with samples from northern Greece, suggesting that the Sardinian population may have originated from a small founder population approximately 200 generations ago, while the source population from which those founders originated was estimated to be very large. In contrast, the samples from the ‘dwarfed’ marginata population of the southwestern Peloponnesus demonstrated a low but significant differentiation from all other marginata populations. While Perez et al. did not recommend taxonomic recognition of the dwarf population, they did emphasize the conservation significance of what in effect is an Evolutionarily Significant Unit (ESU).

11:14. Genus Lisseneys: Praschag et al. (2011) analyzed variability across the range of the genus Lisseneys, based on 2286 bp of mitochondrial DNA sequences, with additional morphological and biogeographical considerations. They concluded that scutata is a distinct divergent lineage and reaffirmed Webb’s
(1982) conclusion to recognize *scutata* as a full species. They found that the Sri Lankan population shows similar divergence, and recognized this population as a full species, *Lissamenys ceylonensis* (Gray 1856a). The remaining populations of *Lissamenys* fell into three lineages, one broadly corresponding to the spotted northern taxon *andersonii* (though with some intergradation with unspeckled populations in Orissa) inhabiting the Indo-Ganges-Brahmaputra systems, and the other two lineages comprised of unspeckled populations in peninsular India. Praschag et al. recommended recognition of the two peninsular lineages by the names *punctata* for the southernmost Indian lineage, and *vittata* for the central Indian lineage. Because the three mainland Indian lineages are more closely related to each other than to either *scutata* or *ceyloneisen*, and intergradation between at least *andersonii* and *vittata* is known, Praschag et al. proposed recognition of *vittata* and *andersonii* as subspecies rank under *punctata*. They also concluded that *Enymda granosa intermedia* Annandale 1912, traditionally placed in synonymy of the southern, unspeckled form *punctata* (see Webb 1980a:554), is based on intergrades between *vittata* and *andersonii* and cannot be used as the valid name for any *Lissamenys* taxon. As *intermedia* is clearly not a valid synonym of *andersonii*, and its type locality (Purulia, western West Bengal) is far outside the redefined range of *L. p. punctata*, we take this opportunity to place *intermedia* into the synonymy of the central unspeckted taxon *L. p. vittata*.

11:15. *Genus Nilssonia*: In earlier versions of this checklist, we used the provisional designation 'Nilsonia or Aspideretes' as a transitional phase between the widespread usage of *Aspideretes* since Meylan's (1987) morphological analysis, and the more recent findings that *Aspideretes* is paraphyletic with regard to *Nilssonia* and consequent recommendation to synonymize *Aspideretes* into *Nilssonia* (Engstrom et al. 2004; Praschag et al. 2007; Fritz and Havas 2007). We note that the species *gangetica*, *hurum*, *leithii*, and *nigricans* are now widely accepted as belonging in the genus *Nilssonia*, making *Aspideretes* a synonym.

11:16. *Genus Pelodiscus*: Yang et al. (2011) evaluated the validity of *P. parvifrons* and inferred it to be a distinct species based on the results of their morphological and molecular analyses. Stuckas and Fritz (2011) sequenced DNA from the lectotype of *P. sinensis* and analyzed its placement in relation to other *Pelodiscus*. They found it distinct from the lineages identified as *P. axenaria* and *P. parvifrons*, and concluded that *P. sinensis* is not a senior synonym of either of these two names. Consequently, Stuckas and Fritz proposed recognition of *axenaria* and *maackii*, *parvifrons*, and *sinensis* as valid species; they recognized that older names may be available for some of these, but recommended use of these four names for the time being. The respective distribution ranges of the different forms, and possible areas of co-occurrence, remain unclear; the reported occurrence of both *axenaria* and *parvifrons* in Guangxi and Hunan warrants further research.

11:17. *Rafetus swinhoei*: Farkas et al. (2011) reviewed the description of *Rafetus vietnamensis* Le et al. 2010. They declared *vietnamensis* an objective synonym of *R. leloii*, and reasserted their view that *R. leloii* (and thus *R. vietnamensis*) is a subjective synonym of *R. swinhoei*.

11:18. *Trionyx triunguis*: Gidig et al. (2011) sequenced up to seven genes of 20 known-locality samples and reported shallow divergence among Mediterranean Coast, Nile, and Cameroon samples, in contrast to the results of Guéna et al. (2009), who found four different haplotypes for the four known-locality Sub-Saharan specimens that they compared to their Mediterranean samples.

11:19. *Pelomedusidae*: Fritz et al. (2011a) examined the phylogeny of *Pelusios* and *Pelomedusa* species based on three mitochondrial and three nuclear DNA fragments. They reported divergent lineages within *Pelusios rhodesianus* and *P. sinuatus*, found no clear differentiation of *P. chapini* from *P. castaneus*, and attributed the nesting of the sole *P. williamsi* sequence within *P. castaneus* to misidentification of the *williamsi* sample in GenBank. They also demonstrated very shallow divergences within *P. castanoides*, suggesting that populations in Madagascar and the Seychelles were only recently colonized; these findings agreed with those of Silva et al. (2010, who found limited mtDNA differentiation of Seychelles from Madagascar specimens of *P. castanoides*, but cautioned that their sampling of Madagascar material was limited. Fritz et al. (2011a) did not propose explicit changes to taxonomy, but indicated that *chapini* could be re-instated to subspecies rank under *P. castaneus*, and that the recognition of subspecies of *P. castanoides* could be unwarranted; they also suggested the existence of cryptic taxa within *P. rhodesianus* and *P. sinuatus*, and reaffirmed the view of Vargas-Ramirez et al. (2010) that *Pelomedusa subnana* represents a species complex.

11:20. *Podocnemididae*: Gaffney et al. (2011) analyzed the phylogeny of fossil and living species of Podocnemididae in the context of their earlier analysis of extinct related groups (Gaffney et al. 2006). They reconfirmed the monophyly of the family Podocnemididae, and largely agreed with França and Langer (2006) in not recognizing Erymnochelyidae as a subfamily.

2012 Checklist Annotations

TTWG 2012 (000243-328.checklist_v.5.1)(2-3-44)

12.6. *Testudines*: Crawford et al. (2012) and Lourenço et al. (2012) analyzed the placement of turtles in a wider context based on molecular phylogeny, and each team concluded that their data provided strong support for turtles being the sister group to Archosauria (i.e., Crocodylians + Birds, and extinct related groups), rejecting hypothesized relationships of turtles as sister group to Lepidosauria (lizards, snakes, and tuatars), or as the most basal branch of the reptilian (including birds) lineage. Lourenço et al. (2012) estimated the divergence of turtles and archosaurs as dating back to the late Permian around 235 million years ago (MYA), and dated the divergence between Cryptodira and Pleurodira at about 157 MYA in the late Jurassic. Guillen et al. (2012) analyzed mitochondrial and nuclear DNA sequences available in GenBank, including whole genomes for a few species, and constructed a phylogeny for the group involving 230 turtle species representing all families and nearly all genera. Their results reconfirmed the monophyly of Testudines and of Pleurodira and Cryptodira, added support for the placement of Platysternon among Testudinoids, placed Dermatemyx in the Kinosternoids, placed Trionychoids (Trionychidae + Carettochelyidae) as sister to all other Cryptodires (a finding shared with Lourenço et al. [2012] and Wang et al. [2012]), and indicated the need for additional research to better resolve various groups of chelids and testudins at the genus level.

12.7. *Chelonidae*: The recognition of higher taxa within the Family Chelonidae has been inconsistent, at least since Gray's (1825) recognition of an imprecisely defined Carettaeidae. The inconsistency has been due primarily to the uncertainty regarding the phylogenetic relationships of *Natator* and *Eretmochelys*, and the relationships of fossil to living chelonians. However, in the midst of the uncertainty of most of the relationships within this family, the close (sister) relationship of *Caretta* and *Lepidochelys* has not been disputed at least since Deraniyagala (1934), who initially argued for the recognition of the latter as the Carettaeidae, with the remaining taxa in the Chelonidae. By 1952, Deraniyagala had changed his position to subfamilial recognition of these two groups. Some authors have followed this latter arrangement of recognizing these groups at subfamily rank (e.g., Mlynski 1976; Prihodk and Trebbau 1984; Smith and Smith 1979), but most have followed Zangerl and Turnbull (1955) and Zangerl (1958) in recognizing these groups as two tribes within the Cheloniidae: Carettini (including Caretta and Lepidochelys) and Chelonini (including the remaining taxa: *Chelonia*, *Natator*, and *Eretmochelys*).

Impetus for continuing to recognize the Carettae as a tribe (rather than a subfamily) emerges from 1) the strong support for *Caretta* as sister to *Lepidochelys* (virtually every study since Deraniyagala); 2) the controversy about the phylogenetic positions of *Natator* and *Eretmochelys* (i.e., the possible paraphyly of the living Cheloniinae or Chelonini; review in Bowen et al., 1993); and 3) the uncertain phylogenetic relationships of numerous fossil chelonid taxa, rendering any hierarchy likely to introduce paraphyly (e.g., see Parham and Fastovsky 1997).

Fortunately, four recent publications, by Naro-Mariel et al. (2008; based on two mitochondrial and five nuclear genes), Parham and Pyenson (2010; based on osteology), Duchene et al. (2012; based on the entire mitogenome), and Guil- lon et al. (2012; based on all available GenBank sequences), seem to reveal the relationships among the living genera quite definitively. These studies clearly resolved *Natator* as sister to *Chelonia*, and *Eretmochelys* as sister to (*Caretta* + *Lepidochelys*), with each of these two clades being reciprocally monophyletic. However, Duchene et al. (2012) explicitly recognized these clades as subfamilies, whereas Naro-Mariel et al. (2008) explicitly referred to them as tribes; Parham and Pyenson (2010) defined the tribe Carettini for (*Caretta* + *Lepidochelys*) only, but did not use or define group names for other groups below family level, while Guillen et al. (2012) took no position. In an effort to recognize recent research consensus, to promote stability, and until the relationships among fossil chelonid taxa are better resolved, we here recognize the two living clades as subfamilies (Carettae of Cheloninae and Chelonini), and hope that this will stimulate further research and discussion of the phylogeny of living and extinct chelonid sea turtles.

12.8. *Cheloninae*: Vilaça et al. (2012) reviewed the occurrence of natural interspecific hybrids among marine turtle species, and using nuclear markers demonstrated that hybridization among marine turtle species is very
common along the Brazilian coast. Most of the hybridization involves male Eretmochelys and female Caretta, but problematic introgression is occurring among all four genera Caretta, Eretmochelys, Lepidochelys, and Chelonia. Vilaça et al. hypothesized that the incidence of this hybridization may have escalated only about 40 years ago, and may be the result of overhunting and local warming of the beaches due to coastal deforestation.

12.9. Cheloniiidae and Dermochelyidae: Duchene et al. (2012) studied variation across the entire mitochondrial genome of all seven living marine turtle species, and demonstrated divergent intraspecific haplotype clades in the Pacific versus Atlantic and Indian Ocean basins for Eretmochelys imbricata, Chelonia mydas, and Dermochelys coriacea. However, they made no recommendations regarding intraspecific taxonomy.

12.10. Chelonia mydas: Shamblin et al. (2012) demonstrated distinctive mitogenomic haplotype frequencies among the nesting populations of Green Turtles at Buck Island (US Virgin Islands), Aves Island (Venezuela), Suriname, and Tortuguero (Costa Rica), and recommended that these populations receive separate management unit status. However, although these populations are genetically distinct, the authors made no recommendations for taxonomic changes.

12.11. Kinosternon subrubrum steindachneri: Bourque (2012a, 2012b) analyzed the phylogenetic placement of two new fossil Kinosternon taxa, and in the course of his morphological analysis found that Kinosternon subrubrum steindachneri was placed as sister taxon to the (K. subrubrum + K. baurii) group; consequently he suggested (2012a) and then elevated (2012b) steindachneri to full species rank. Regrettably, he did not specify whether his data for Kinosternon subrubrum steindachneri was already noted by Iverson (1992), and we provisionally retain steindachneri at subspecies rank under subrubrum pending further analysis.

12.12. Chrysemys: Gemel and Grillitsch (2008) reported that Wagler (1821) had nomenclatorially occupied the genus name Hydrochelys for the species Testudo picta (now Chrysemys picta), and explicitly qualified Hydrochelys Wagler 1821 as a nomen oblitum and invalid, and qualified Chrysemys Gray 1844 as nomen protectum and valid.

12.13. Chrysemys picta: The description of Testudo picta has generally been attributed to Schneider (1783). However, careful reading of his work indicates that the description of picta was based on descriptive information contained in letters from Johann Hermann of Strasbourg, and shows no indication that Schneider had access to the actual specimen, instead adding information from Hermann’s letters for the sake of completeness of his (Schneider’s) monograph of turtles. Article 50.1.1 of the Code (ICZN 1999) states “However, if it is clear from the text that some person other than an author of the work is alone responsible both for the name or act and for satisfying the criteria of availability other than actual publication, then that other person is the author of the name or act.” In the case of picta, it is not evident how much Schneider was directly quoting from Hermann’s writings, so we continue to attribute authorship of the name to Schneider, rather than ‘Hermann in Schneider 1783’.

As an aside, we note that Hermann used different spellings for his surname over time, involving single or double ‘y’ and single or double ‘e’, as well as using French (Jean) and German (Johann or Johannes) versions of his given name. We elect to use the spelling ‘Hermann’ as that matches the spelling on his death certificate (indicating his preferred spelling later in life), and the spelling employed by Gmelin six years later for the tortoise named for him, Testudo hermanni. This authorship is common among the Brazilian coast. Most of the hybridization involves male Eretmochelys and female Caretta, but problematic introgression is occurring among all four genera Caretta, Eretmochelys, Lepidochelys, and Chelonia. Vilaça et al. hypothesized that the incidence of this hybridization may have escalated only about 40 years ago, and may be the result of overhunting and local warming of the beaches due to coastal deforestation.

12.9. Cheloniiidae and Dermochelyidae: Duchene et al. (2012) studied variation across the entire mitochondrial genome of all seven living marine turtle species, and demonstrated divergent intraspecific haplotype clades in the Pacific versus Atlantic and Indian Ocean basins for Eretmochelys imbricata, Chelonia mydas, and Dermochelys coriacea. However, they made no recommendations regarding intraspecific taxonomy.

12.10. Chelonia mydas: Shamblin et al. (2012) demonstrated distinctive mitogenomic haplotype frequencies among the nesting populations of Green Turtles at Buck Island (US Virgin Islands), Aves Island (Venezuela), Suriname, and Tortuguero (Costa Rica), and recommended that these populations receive separate management unit status. However, although these populations are genetically distinct, the authors made no recommendations for taxonomic changes.

12.11. Kinosternon subrubrum steindachneri: Bourque (2012a, 2012b) analyzed the phylogenetic placement of two new fossil Kinosternon taxa, and in the course of his morphological analysis found that Kinosternon subrubrum steindachneri was placed as sister taxon to the (K. subrubrum + K. baurii) group; consequently he suggested (2012a) and then elevated (2012b) steindachneri to full species rank. Regrettably, he did not specify whether his data for K. subrubrum were based on characters of K. s. subrubrum, K. s. hippocrepis, or a combination of these. The extreme morphological similarity of baurii to hippocrepis was already noted by Iverson (1992), and we provisionally retain steindachneri at subspecies rank under subrubrum pending further analysis.

12.12. Chrysemys: Gemel and Grillitsch (2008) reported that Wagler (1821) had nomenclatorially occupied the genus name Hydrochelys for the species Testudo picta (now Chrysemys picta), and explicitly qualified Hydrochelys Wagler 1821 as a nomen oblitum and invalid, and qualified Chrysemys Gray 1844 as nomen protectum and valid.

12.13. Chrysemys picta: The description of Testudo picta has generally been attributed to Schneider (1783). However, careful reading of his work indicates that the description of picta was based on descriptive information contained in letters from Johann Hermann of Strasbourg, and shows no indication that Schneider had access to the actual specimen, instead adding information from Hermann’s letters for the sake of completeness of his (Schneider’s) monograph of turtles. Article 50.1.1 of the Code (ICZN 1999) states “However, if it is clear from the text that some person other than an author of the work is alone responsible both for the name or act and for satisfying the criteria of availability other than actual publication, then that other person is the author of the name or act.” In the case of picta, it is not evident how much Schneider was directly quoting from Hermann’s writings, so we continue to attribute authorship of the name to Schneider, rather than ‘Hermann in Schneider 1783’.

As an aside, we note that Hermann used different spellings for his surname over time, involving single or double ‘y’ and single or double ‘e’, as well as using French (Jean) and German (Johann or Johannes) versions of his given name. We elect to use the spelling ‘Hermann’ as that matches the spelling on his death certificate (indicating his preferred spelling later in life), and the spelling employed by Gmelin six years later for the tortoise named for him, Testudo hermanni. This authorship is
based on nuclear markers. The position of animals attributed to 'cyclornata' was highly variable depending on what markers were analyzed, a result that was interpreted as being most consistent with introgression, and leading to the recommendation to consider animals with 'cyclornata' phenotype as part of C. trifasciata rather than as a distinct separate taxon. Cuora zhoui emerged as a strongly divergent species based on nuclear DNA, but its mtDNA and morphological data suggest a relationship with trifasciata may indicate microgeographic introgression. The monophyly of C. mcdowelli was well supported, though its phylogenetic position was different when nuclear and mtDNA datasets were analyzed. While some doubts were expressed about the species status of mcdowelli, the authors recommended continued treatment as a valid species for the time being. The members of the galbinifrons group (bourretri, galbinifrons, and picturata) were strongly supported as a clade of three genetically and morphologically diagnosable taxa, and while some potential gene flow was detected between these taxa, the authors recommended that they continue to be recognized as valid separate species.

12.23. Cuora amboinensis: Ernst et al. (2011) evaluated the potential to use shell morphology and postorbital stripe to separate the subspecies amboinensis and kamarona in the Philippines, as alternative approaches to the usual plastron pattern character used to differentiate these subspecies. They found that shell shape and postorbital stripe data do not necessarily correspond to plastron pattern, suggesting that animals previously identified as kamarona, and as such representing a potential co-occurrence of two different subspecies in some areas of the Philippines (i.e., Palawan and Sulu), may in effect be amboinensis animals with a plastral pattern resembling that of kamarona through introgression or phenotypic plasticity.

12.24. Cuora galbinifrons: Bourret described this species in a work dated 1939 on the title page, but it was not actually published until 1940 (R. Bour, pers. comm.). We have therefore changed the date of publication from 1939 to 1940.

12.25. Heosemys spinosa: Spinks et al. (2012b) examined variation in mitochondrial (cyt b) and nuclear (11 loci) DNA in a large sample of Heosemys spinosa that lacked locality data. Two clades were clearly identified by the mtDNA analysis, and were supported by preliminary morphological analysis, but not recovered in the nuDNA analysis. Future identification of the geographic provenance of these two clades is critical for conservation management as well as establishing the taxonomic implications of this work.

12.26. Mauremys caspica: Vanbener et al. (2013) investigated population structure and history of Mauremys caspica based on a analysis of 14 microsatellite loci and cytchrome b mtDNA sequences from nearly range-wide samples (but lacking Iraq). Their results found two clusters of mitochondrial haplotypes, and four microsatellite clusters, with each mtDNA haplotype cluster comprising two of the microsatellite clusters. Specimens from Bahrain and Saudi Arabia were found to constitute a distinct microsatellite cluster, and were thus viewed as representing native (and endangered) populations. The authors proposed that each of the four identified phylogenetic clusters (i.e., Central Anatolia; eastern Turkey and Syria; Dagestan, Azerbaijan, and Iran; and Bahrain and Saudi Arabia) be treated as distinct management units. Their results did not support the validity of any of the three previously morphologically-defined subspecies, and they therefore proposed that the subspecies no longer be recognized, a recommendation that we follow here.

12.27. Orliola borneensis: Palucckiova et al. (2012) analyzed mitochondrial (cyt b) and nuclear (R3S) sequences, and shell and scute morphometrics among Orliola borneensis specimens in European collections. Most specimens lacked precise locality data because they originated from a single confiscation in 2001, but three known-locality specimens from Borneo and Sumatra were added to the sample series (no reference specimens from West Malaysia were available). Haplotype diversity in cyt b was found to be relatively high, with three main haplotype groups identified; nucleotide diversity was low, and phylogenetic structure was poorly supported. The three known-origin animals clustered within one of the main haplotype groups, suggesting that the confiscated animals covered much of the species’ genetic diversity. Only minimal variation was found in R3S sequences. Geometric morphometrics demonstrated morphological similarity of all examined specimens. These results led the authors to conclude that all examined animals represented a single conservation unit.

12.28. Dipsochelys gigantea or Dipsochelys dussumieri: The latest contribution to the ongoing debate in the ICZN (case #3463) on the scientific name for the Aldabra Tortoise came from Certaço and Bour (2012), who traced the history of the specimen claimed to be the type of Testudo gigantea Schweiger from the MNHN Paris via the defunct Royal Cabinet of Natural History of Ajuda in Lisbon to the collections made in Brazil and other parts of South America by Alexandre Rodrigues Ferreira during his travels there during 1783–1792. The authors thus provided further evidence that Schweiger’s type specimen of Testudo gigantea originated in Brazil and represents a Chelonoidis denticulata, providing support for possibly precluding the use of the name gigantea for the Aldabra Tortoise. At the time of writing of this annotation, the ICZN is voting regarding the use of either gigantea or dussumieri [or Dipsochelys gigantea], with which copulation had been observed. From each of three clutches of 20 eggs each, normal dussumieri hatched from 15 eggs after 75–90 days, one hatching emerged after 140–170 days and was a suspected dussumieri hybrid, and 4 eggs failed to develop. The authors also reported the repeated production of hybrid hatchlings between C. dussumieri and Astrochelys radiata at the A Capallata facility in Corsica; these either died just before emergence from the egg, or within days after hatching. These records add to the growing catalog of documented intergeneric turtle hybrids (see also annotation number 8 above).

12.30. Chelonioidis chilensis: The number of species in the Chelonioidis chilensis complex recognized by various authors has ranged from one to two (see TTWG 2010, annotation 24). However, based on an examination of a mitochondrial gene (cyt b) and 10 microsatellite loci, Fritz et al. (2012a) found negligible genetic variation among populations and concluded that this complex represents only a single species, C. chilensis. Previously described morphological variation among populations is apparently explained by Bergmann’s Rule, with body size increasing with latitude. Hence, C. petersi and C. donosobarrosi were placed in the synonymy of C. chilensis.

12.31. Chelonioidis nigra species complex: Only two papers published in the past year bear on the taxonomy of the Galapagos tortoises, and both continue to recognize the various taxa at the species level (see TTWG 2009, annotation 21). Garrick et al. (2012) reported the discovery of hybrid tortoises on Volcan Wolf that were F1 hybrids between a purebred Floreana tortoise (C. nigra; erroneously referred to in their paper as C. elephantopus) and the local Volcan Wolf tortoise (C. becki). This led the authors to speculate that translocated Floreana tortoises might still exist on northern Isabela. Actual rediscovery of genetically pure individuals of Floreana tortoises would reverse their current IUCN status as Extinct, and be cause for great celebration.

Based on DNA sequences from three mitochondrial genes from extant and museum specimens of Galapagos tortoises, Poullakakis et al. (2012) attempted to resolve the phylogenetic relationships and construct the biogeographic history of the living and extinct taxa. Prior to their study, they recognized eleven extant and four extinct species of Galapagos tortoises, though one of the latter has not yet been described. It should be noted that the taxon they recognized a priori did not completely agree with those recognized by the TTWG. In any case, the results of Poullakakis et al. (2012) suggested that the following populations represent “independent evolutionary units” and they applied the term “species” to them: abingdoni (extinct in 2012, Pinta, becki (Volcan Wolf, northern Isabela), chathamensis (San Cristobal), dawini (Santiago), elephantopus (extinct, Floreana; recognized as nigry by the TTWG), epiphium (Pinzón; recognized as duncanensis by the TTWG), hoodensis (Española), porteri (La Reserva, Santa Cruz), and vicina (central and southern Isabela, and including the names microphysys, guentheri, and vandenburghii; matching previous TTWG checklists), an unnamed extant species (Cerro Fatal, Santa Cruz), and an unnamed extinct species (Santa Fe). They explicitly noted that two taxa were not likely to be independent evolutionary units: wallacei (Rabida) being subsumed under vicina (as already reflected in previous TTWG checklists), and phantastica (extinct, Fernandina; possibly introduced by humans) under porteri. However, in the face of pronounced morphological differences between the extreme saddleback phantastica and the greatly domed porteri, the TTWG believes that additional support must be presented before synonymization of phantastica is warranted. Finally, while Poullakakis et al. (2012) laudably extracted DNA from bones of museum specimens from distinct lineages, it is critical that the genotyping of actual type specimens of all possible named Galapagos tortoise taxa (including those of synonyms) be completed before final allocations of names to existing populations can be done with full confidence.

Tortoise and not only found no geographic structure in that variation, but also noted that the existing variation was the lowest ever reported for a tortoise. They attributed this low variability to the post-Pliocene collapse of this once more widely distributed (New Mexico to central Mexico) species.

12.33. Gopherus polyphemus: Based on a single mitochondrial gene fragment (ND1), Ennew et al. (2012) examined geographic variation in Gopherus tortoises and found two major haplotype assemblages that overlapped in distribution in the Appalachicola-Chattahoochee River basin. They also found some (albeit weak) support for the distinction of the Federally Threatened portion of the western assemblage to the west of the Mobile River Basin (USFWS 1987).

In a more comprehensive study of both mitochondrial (cyt b) and nuclear microsatellite markers, Clöstio et al. (2012) confirmed the Appalachicola basin as the transition region between the distinctive western and eastern lineages. In addition, based on both mtDNA and nuDNA, they noted the distinction of the populations west of the Mobile River and those in western Georgia. They concluded that the tortoises in each of these four regions should be managed independently, but they made no specific taxonomic recommendations.

12.34. Gopherus species indeterminate: Testudo australis: Girard 1858 was described based on a specimen reputedly originating from New Zealand. Clearly this specimen must have been transported by humans, as no testudinids or other non-marine turtles are known from New Zealand, living or fossil. The name has generally been overlooked or ignored, except by Boulenger (1889) who attributed it with doubt to Gopherus polyphemus. Based on communication with Robert Murphy and Steve Gotte, the specimen cannot be found in the USNM collection, if indeed it ever was there. Girard’s description of a uniform near-black tortoise agrees nearly perfectly with Gopherus, except for the small nuchal (cervical) scute, which is usually wide in Gopherus. The scutellation on the top of the head and on the forearms, the absence of thigh spurs, as well as the shape of the caudal (supracaudal) scute are all characters that eliminate Manouria. Chelonioid species are eliminated from consideration by the presence of a nuchal in aurifilis. Therefore, we tentatively attribute Testudo australis Girard 1858 to the genus Gopherus. Attribution to any particular species is challenging: based on size and coloration, G. berlandieri and G. flavomarginatus are easily excluded, and while the Pacific location of New Zealand suggests possible seafaring or trade links with California and therefore G. agassizii and/or G. moraikai, morphological details such as the large head with rounded snout, and upward curving of the gulars, are more reminiscent of G. polyphemus. We therefore include Testudo australis Girard 1858 as a nomen dubium and nomen obtinum under Gopherus species indeterminate.

12.35. Kinixys: Kindler et al. (2012) examined the phylogeography, phylogeny, and taxonomy of all currently recognized Kinixys taxa, based on examination of sequence data for three mtDNA fragments (12S, ND4, cyt b) and three nuclear loci (C-mos, ODC, R35). Their findings indicated that the savannah taxa, traditionally recognized as subspecies or affiliated species of K. belliana, represent three deeply divergent clades, which are paraplethic with respect to the rainforest species K. erosa and K. himeana.

To reflect this phylogeny, the authors recognized their East African cluster as a valid species, for which they followed the first reviser (Bour 1979) to apply the name zombensis in preference over zululensis. They also elevated nogueyi to full species status, and reconfirmed lobatensis, natdensis, and apsiki as evolutionarily distinct and ranked as full species.

They did not, however, present a clear arrangement of recognized taxa; their new delineation of species is presented in their Fig. 2, implying that no subspecies are recognized. They noted that their samples of domerguei from Madagascar clustered with zombensis, and it appears that they intended to transfer domerguei from the synonymy of K. b. belliana (following Broadley, 1992, 1993; Fritz and Havas 2007; Brand 2008) to that of K. zombensis. In their text (Kindler et al. 2012:198), the five-clawed tortoises of the Central African Republic are specifically combined with the four-clawed West African animals to form the distinct species K. nogueyi; however, these Central African Republic records are mapped (Fig. S1) and listed (Table S1) as ‘belliana belliana’ in the online supporting material.

While the TTWG generally believes that the results presented by Kindler et al. (2012) represent major advances in our understanding of Kinixys phylogeny, we prefer to retain a slightly more traditional arrangement for domerguei, pending further study. While domerguei may be morphologically recognizable based on the examined genes, it is morphologically well established (e.g., Bour 2006), and we continue to recognize it as a valid taxon at subspecies rank under zombensis (to which it appears most closely related). Hence, we recognize the new combinations Kinixys zombensis zombensis and K. z. domerguei.

12.36. Testudo graeca: Parham et al. (2012) extracted mtDNA sequence data from Iranian tortoises of the T. graeca complex, specifically the holotype of T. g. zarudnyi and topotypes of T. g. busstoni and T. g. persae. Their results confirmed the previous work of Fritz et al. (2007, 2009) regarding the existence of two distinctive mitochondrial haplotypes in Iran, one in the northwest, and one in the eastern Arm.

Using AFLPs (amplified fragment length polymorphisms) from samples across the range of the T. graeca species complex, Miklich et al. (2013) identified four geographically defined genetic groups: 1) western Mediterranean (Morocco and Spain to Libya); 2) Balkans-Middle East (Bulgaria and Romania to southwestern Russia, Azerbaijan, eastern Turkey, and southern Israel); 3) Caucasian (extreme eastern Turkey, Russia, and southeastern Azerbaijan to northwestern Iran); and 4) central and eastern Iran. These groups generally correspond to the mtDNA haplotype lineages identified by Fritz et al. (2007, 2009), but with one to four mitochondrial lineages per AFLP group.

Considered together, these two data sets suggest that the western Mediterranean and central-eastern Iran groups are both divergent and allopatric, and thus could be considered as distinct species. The oldest available names for these groups are T. graeca (including cyrenaica, lamberti, mahnikens, nubulensis, sousensis, and whitei) and T. zarudnyi, respectively. The remaining two groups come into contact in the eastern Caucasus, with some mtDNA evidence of gene flow between them. Hence, there remains uncertainty as to whether they represent distinct evolutionary units worthy of species status. The oldest available names for these two groups are T. terrestris (Balkans-Middle East) and T. busstoni (Caucasus; including armeniaca, persis, and pallasi). Unfortunately, variation in neither set of markers corresponds well with described morphological variation in this complex, on which the traditional taxonomy has been based.

Pending future studies of variation in nuclear markers and a re-examination of morphological variation to determine minimally plastic characters that correspond to the currently defined genetic groups (i.e., dismissing color and general body size and shape), we prefer to retain T. graeca as a single species, with no changes in the subspecies recognized from our previous checklist.

12.37. Apalone spinifera: McGaugh (2012) examined variation at ten microsatellite loci for populations of Apalone spinifera within and outside of the Cuatro Ciénagas basin in Mexico. She found considerable divergence among all sampled populations (particularly eastern versus western basin localities), but found no genetic variation associated with carapacial color variation within the basin (the basis for the original description of A. s. atrae). She reported negligible differentiation between softshells sampled inside the basin compared to those outside, but provided no indication whether additional A. s. emoryi were sampled or not. A. spinifera was synonymized by McGaugh et al. (2008) and did not provide a detailed comparison between Apalone within the Cuatro Ciénagas basin versus outside the basin. As McGaugh did not make an explicit taxonomic recommendation to synonymize atrae with emoryi, we conservatively continue to recognize atrae as before, at subspecies level.

12.38. Nilsonia gangetica: An analysis of mitochondrial and nuclear DNA sequence data by Liebeng et al. (2012) confirmed the monophyly of the genus, resolved the placement of N. formosa as sister to other Nilsonia, and identified significant intraspecific genetic variation within N. gangetica corresponding to river basin of origin. Populations from the Brahmaputra, Mahanadi, and combined Indus and Ganges basins were each genetically distinct, and worthy of separate management. The authors did not support species recognition of the three identified units, but noted that if these units were given subspecies status, the name mahanaldic (Annandale 1912b) is available for the Mahanadi basin population, and the nominate trinomial would apply to the Indus-Ganges population. No name has been applied to the Brahmaputra population. Until the three intra-specific populations are adequately characterized and named, we continue to recognize N. gangetica as monotypic.

12.39. Chelidae: It was assumed by Gaffney (1977) that the three long-necked taxa in the Chelidae (Chelodina, Hydromedusa and Chelus) formed a monophyletic lineage. However, Pritchard (1984) proposed that these three taxa were not necessarily closely related, based on the major structural differences in how they arrived at their long-necked condition, a position generally consistent with the phylogenetic arrangement previously proposed by Baur (1893a). Sequencing of 12S mtDNA was used to demonstrate that the Australian radiation of the Chelidae formed a monophyletic group (Seddon et al. 1997; Georges et al. 1998) and that the short-necked South American taxa (including Chelus) were also a monophyletic group, with Hydromedusa a third lineage (Georges et al. 1998). At that time Georges et al. (1998) proposed names for the three

14.2. Caretta caretta: Considerable confusion has surrounded the names and authors and dates of publication of the turtle descriptions published in various outputs of the Expeditions Scientifique de Morée, currently cited in our checklist as Valenciennes (1833), Bibron and Bory de Saint-Vincent (1833), and Bory de Saint-Vincent (1835). See the detailed clarification below in annotation 25 for Emys orbicularis helenica. The name Chelonia pelagorum was first published on plate 6 by Valenciennes (1833), but rendered as C. pelagica in the subsequent text by Bibron and Bory de Saint-Vincent (1833), where they synonymized it with Chelonia casuana (=Caretta caretta).

14.3. Eretmochelys: In last year’s checklist, in annotation 7, we outlined our reasoning for recognizing the subfamilies Cheloniinae and Caretteinae. Unfortunately, we made an editorial error in listing Eretmochelys under the Cheloniinae when, in fact, studies have shown that it is more closely related to Caretta and Lepidochelys, and belongs in the Carettaeinae, as we pointed out in our annotation. We correct the error in this year’s checklist.

14.4. Eretmochelys imbricata: The junior synonym Chelonia grisea Eschscholtz 1829 has for many years been incorrectly cited as Chelonia grisea in our previous checklists and in Fritz and Havaš (2007) and extensively on the web. Having finally successfully accessed the obscure original publication, we now note this long-standing error and correct it.

14.5. Chelonia mydas: We note also that in the same obscure publication cited above, Eschscholtz (1829b) also described Chelonia castanea from Surinam as a new species. The name has been overlooked since its description and is a nomen oblitum and junior synonym of C. mydas.

14.6. Dermochelys coriacea: The original citation for the junior synonym Dermatoclethes porcata is actually Wagner (1830b), not Wagner (1833) as listed in our previous checklists, but which contained no new turtle descriptions.

14.7. Dermochelys coriacea: In our previous checklists we had included the name Testudo marina Wilhlem 1794 in the synonymy of D. coriacea, based on its inclusion in older checklists (e.g., Fritz and Havaš 2007). However, examination of Wilhelm’s (1794) work indicates that his use of the name Testudo marina was as an incorrect collective group name for “marine” species (sea turtles and softshells), as he also grouped most “terrestrial” turtles (testudinids and kinosternids) under the incorrect group name Testudo terrestris, and all other freshwater turtles under the group name Testudo fluviatilis. In discussing separate species under these group names, he used names previously described by other authors (including a description of the Leatherback, using the name Testudo coriacea), but not in a consistently binomial manner. His work therefore is badly flawed, and we have removed the name Testudo marina Wilhlem 1794 from the synonymy of D. coriacea.

On the other hand, Ranzani (1832) published a description in Latin of the Leatherback Turtle in which he described it as Testudine coriacea marina. This description is valid (as the trinomen Testudo coriacea marina), as per ICZN Code Article 11(h)(ii) allowing for the use of adjectival Latin descriptions, as previously noted by Smith and Rhodin (1986) in regard to the validity of the original authorship of Testudo coriacea Vandelli 1761.

14.8. Dermatemys mawii: González-Porter et al. (2013) presented microsatellite data that supported their previous mitochondrial DNA studies (González-Porter et al. 2011) in recognizing populations of Dermatemys mawii in the Papaloapan River drainage as genetically distinctive. However, they made no taxonomic recommendations based on their results. In addition, they also identified a small sample of genetically divergent individuals in the Sarstun and Salinas River basins along the southeastern distribution of the species that they speculated might represent a cryptic taxon.

14.9. Kinosternidae: Ivenson et al. (2013) sequenced three mtDNA and three nuclear markers for every recognized species and most subspecies of kinosternids. Their analyses revealed three well-resolved clades within the Kinosterninae, corresponding to Sternotherus, a previously unnamed clade that they described as the new genus Cryptochelys, and Kinosternon sensu stricto. Their molecular data support for Cryptochelys was strong, but data support for non-monophyly of Kinosternon with respect to Sternotherus was weak. The identified groups are broadly consistent with morphological and biogeographical features. Their new genus Cryptochelys was diagnosed based on an extensive set of morphological and molecular characters, and contains the designated type species leucostoma, as well as acuta, angustipons, creaseri, duumi, and herrerai.

As we are aware of a parallel study of kinosternid phylogenetics, currently
in review, that reaches different taxonomic conclusions, we present the rec-
ommended taxonomy of Iverson et al. (2013) as an additional alternative to the
traditional arrangement, in the knowledge that we will revisit kinosternid
taxonomy again in our next edition, and hopefully come to a consensus position
then.

14:10. Kinosternon abaxillare: A multivariate analysis of morphometric
data by Berry (1978) demonstrated the distinctiveness of the endemic, allo-
patric taxon K. scorioides abaxillare from the parapatric K. s. cruentatum. In
addition, preliminary molecular sampling of the K. scorioides complex by
Iverson et al. (2013) suggested that K. s. abaxillare was more closely related to
K. oaxacae than to K. s. cruentatum (or any other K. scorioides). Given both
the morphometric and molecular evidence, the latter authors followed
Alvarez del Toro (1972, among many others) and suggested that K. abaxillare
be recognized as a full species. Until more thorough geographic and molecular
sampling is completed, we acknowledge both options in this checklist, but treat
the taxon as more likely a species.

14:11. Kinosternon chimalhuaca: In 1996, while the original, full de-
scription by Berry et al. (1997) of K. chimalhuaca was in press, it was shared
with Manfred Rogner for inclusion in his forthcoming book. However, though
unintended, Rogner’s abbreviated version, clearly attributed to Berry et al.,
was published first (in 1996). Hence, although many authors have cited Berry
et al. (1997) as the original description for this taxon, the proper attribution
should be Berry, Seidel, and Iverson in Rogner (1996). The ICZN has now
been petitioned (Rogner et al. 2013) to officially confirm this proper authorship
and date, which has already been used in all previous TTTG checklists.

14:12. Kinosternon subrubrum steindachneri: Based on osteology,
Bourque (2012) recommended that K. s. steindachneri be elevated to full
species status, as it was originally described. Preliminary molecular data
provided by Iverson et al. (2013) supported this conclusion. However, until a
more complete, range-wide study of molecular and morphological variation of
the K. subrubrum-baurii complex is available, we here retain steindachneri
as a subspecies of K. subrubrum.

14:13. Staurotypinae or Staurotypidae: Highlighting the extensive
divergence of the staurotypines from the kinosternines based on morphology
(Hutchison 1991), genetics (Iverson et al. 2013), karyotype (Bickham and Carr
1983), and sex determination mechanisms (Ewert et al. 2004), Iverson et al.
(2013) followed Bickham and Carr (1983) in recognizing the Staurotypidae
as a separate family. Within the TTTG we have differing opinions on the
appropriate ranking of this taxonomic node, and recognize that the views and
actions of the wider turtle taxonomic community will determine its eventual
accepted ranking; until consensus emerges, we provide alternative rankings
in the checklist.

14:14. Graptemys: In a historical review of the taxonomic history of the
genus Graptemys, Lindeman (2013:20) mentioned two genus names from an
unpublished manuscript by Georg Baur: Neolemmys (intended to include
Pseudemys pogonias and osculifera) and Megaloclemys (for pulchra), while
Graptemys would have been retained for geographica and kohnii. However,
Lindeman only used these names in a conditional manner, without formal
status as valid taxa, and hence the names Neolemmys and Megaloclemys
were not made available according to Article 15.1 of the International Code of
Zoological Nomenclature (see also annotation 19 for Graptemys intermedia).

14:15. Graptemys flavimaculata: Using microsatellite loci, Selman et
al. (2013) demonstrated a significant degree of genetic structure across the
range of the species in the Pascagoula River basin, with the greatest divergence
between the main Pascagoula basin and the lowland Escatawpa River tributary,
historically separate drainages. Although they urged that at least these two units
be managed separately, they made no taxonomic recommendations.

14:16. Graptemys oaukchitensis: Annotation number 19 below regarding the
taxon sabiniensis, previously listed as a subspecies of oaukchitensis, now
canonically elevated to full species status, therefore also necessitating listing the Oauchita Map Turtle as a full species, rather than the nominate subspecies.

14:17. Graptemys pulchra: In his historical review of the taxonomic history
of Graptemys, Lindeman (2013:20) also made reference to Baur’s manuscript
names for the species he eventually described as Graptemys pulchra; we hereby
designate these names, G. oaukchitensis and G. grandis, as nomen nuda, and
associate them with the synonymy of G. pulchra, as they were considered for
application to that taxon.

14:18. Graptemys sabiniensis or G. o. sabiniensis: Originally described as
a subspecies of Graptemys pseudogeographica by Cagle (1953a), the Sabine
Map Turtle (G. sabiniensis) was later classified by Vogt (1980) as a subspecies of
G. oaukchitensis, and most subsequent authors have followed that arrangement.
However, based on a small sample of skulls, Ward (1980) believed that
sabiniensis was so distinctive that it warranted species status. Recent analyses
of morphology, mitochondrial DNA, and nuclear DNA have generally failed
to resolve the relationships of sabiniensis with confidence, and the interrelation-
ships of the “narrow-headed Graptemys” remain largely unresolved (Stephens
1998; Stephens and Wiens 2003; Myers 2008; Wiens et al. 2010; Brown et al.
2012). Based on these previous studies and his own extensive examinations of
Gulf Coast Graptemys specimens, Lindeman (2013) noted that sabiniensis is
allopatric, non-intergrading, and diagnosable morphologically, and concluded
that it should be recognized as a full species. While subspecific as well as spe-
cific recognition can each be supported, we conclude that enough uncertainty
remains regarding this lineage to list it as either a species or subspecies. Further
sampling of the nuclear genome and more strongly supported phylogenetic
trees will be necessary to settle this issue as well as the relationships across
the entire genus Graptemys.

14:19. Graptemys pseudogeographica or G. o. sabiniensis: In a checklist of turtles of
Louisiana, Beyer (1900) listed “Malacoclemmys intermedia Baur” from the
“southern and southwestern parts”, referring to a manuscript name by Georg
Baur for the taxon subsequently described as Graptemys pseudogeographica
sabiniensis by Cagle (1953a). The name was based on specimens from the
Mermentau River basin, now in the Tulane University Museum collection, sent
to Baur by Joseph Gustave Kohn (Lindeman 2013). The original publication
of the name Malacoclemmys intermedia is therefore attributable to Beyer and
pre-dates the name sabiniensis Cagle by 53 years, but is clearly a nomen nudum.
Furthermore, it has not been used in over 113 years and would have the status
of nomen oblitum. In his discussion of the history of the name Graptemys
intermedia used by Baur in his unpublished manuscript, Lindeman (2013)
published Baur’s original manuscript drawings (Fig. 2.4) and a photograph of
the Kohn specimen on which Baur had intended his diagnosis to rest (Fig.
8.18). Lindeman also clearly identified intermedia as a synonym of the taxon
he recognized by the name of G. sabiniensis. However, Lindeman only, and
consistently, used the name G. intermedia in a conditional manner, without
formal status of valid taxon, and the name intermedia as used by Lindeman,
published after 1960, has not been made available according to Article 15.1 of
the International Code of Zoological Nomenclature.

14:20. Pseudemys: Based on three mitocondrial and ten nuclear gene
loci, Spinks et al. (2013) examined variation across all recognized taxa of
the genus Pseudemys. Their analyses revealed essentially no support for cur-
currently recognized species groups, species, or subspecies. Only P. gorzugi was
consistently recovered as monophyletic across all their analyses, while their
molecular evidence identified three geographically cohesive groups that do
not correspond to current species boundaries. They concluded that the genus
Pseudemys has probably been oversplit taxonomically. However, they made no
explicit recommendations for change until a much larger and more definitive,
multi-character data set is brought to bear on this complex. Thus we retain
Pseudemys essentially unchanged from the previous checklist.

(2013) continued to follow the taxonomy for Trachemys as used by Legler (1990)
(i.e., all Mexican taxa as subspecies of T. scripta), and did not provide data
or rationale to refute the phylogenetic data and taxonomic opinions published
since 1990. Because implementing that taxonomy here would reverse 23 years
of increased understanding and progress toward a stable classification of this
complex genus, we have not incorporated the Trachemys taxonomy presented

14:22. Trachemys (Caribbean): Parham et al. (2013) examined variation
in mitochondrial and nuclear DNA markers for Trachemys populations across
the Greater Antilles. They identified the morphologically distinct population
reported by Tuberville et al. (2005) in northwestern Jamaica as T. d. decussata,
representing a significant range extension from eastern Cuba. Parham et al.
(2013) demonstrated the monophyly of West Indian taxa, as well as evidence
of hybridization between T. decoratus and T. stejnegeri in the southern Dominican
Republic, and between T. terrapen and T. d. decussata in northwestern Jamaica.
The authors were unable to determine whether the presence of decussata on
Jamaica and localized hybridization with terrapen was the result of natural or
human-mediated dispersal.

Their data also supported the continued recognition of the subspecies T.
stejnegeri (Puerto Rico) and T. s. vicina (Hispaniola), with occasional gene
flow (natural or human-mediated) between them. They also acknowledged

This text provides an overview of various taxa, focusing on Graptemys and Pseudemys. It discusses the taxonomic status of species, including the recognition of subspecies and the implications of molecular data on their classification. The text also notes the challenges in resolving the relationships within the Graptemys genus and the implications of these findings for conservation and management strategies.
that morphological and genetic data suggest the recognition of *T. d. decussata* (eastern Cuba) and *T. d. angusta* (western Cuba) as full species, but declined to make that recommendation pending further sampling in Cuba.

Finally, they speculated that the occurrence of *T. d. angusta* on the Cayman Islands was “non-native.” Given that Grand Cayman was periodically inundated even in the latest Pleistocene (20–25 thousand years ago; Iturralde-Vincent 2006), and that the prevailing winds and currents would make a natural colonization from the northwest difficult, we concur that the Grand Cayman populations of *T. d. angusta* are likely the result of human introduction. This is further supported by Eichert et al. (2011) who, in their review of the herpetofauna of the Cayman Islands, explicitly stated that since no *Trachemys* fossils have been found in peat deposits on the island (which contained many other vertebrates), they presumed *T. decussata* to be introduced.

In addition, Parham et al. (2013) analyzed a small sample of *Trachemys* from Central America that yielded results indicating genetic similarity of *T. venusta* and *T. emollii*, demonstrating the need for further sampling and analysis to evaluate the sweeping taxonomic changes proposed by Fritz et al. (2012) and the subspecies described by McCord et al. (2010). Until such additional information becomes available, Parham et al. (2013) recommended taxonomic conservatism and cautious interpretation of preliminary results, and proposed no taxonomic changes.

14:23. *Trachemys* (Central America): Using mitochondrial DNA sequence data for *Trachemys* downloaded from the European Nucleotide Archive and new data from two Honduran specimens, McNerney et al. (2013) confirmed that the range of the taxon *emollii* extends from northwestern Costa Rica to southeastern El Salvador (see Ibarra Portillo et al. 2009). Because of the extensive overlap in their analysis with the data used by Fritz et al. (2012), McNerney et al. (2013) supported their earlier taxonomic recommendations. McNerney et al. (2013) also commented on the status of the taxon *T. v. uhriji*, originally described from Honduras, but subsequently reported from Colombia, Costa Rica, Nicaragua, and Panama, and argued that the diagnostic coloration of *uhriji* is not exhibited consistently by Caribbean Honduran specimens (and presumably occurs in individuals of *T. venusta* as far away as Colombia), and suggested that *T. v. uhriji* has no taxonomic validity. In contrast, Páez et al. (2012) listed *T. v. uhriji* as being the subspecies occurring in the Colombian Departments of Antioquia and Chocó. However, until additional molecular data are forthcoming from the Caribbean versant of Central America, particularly from the Yucatan peninsula, Honduras, Nicaragua, Costa Rica, Panama, and Colombia, we adhere mainly to the alternative taxonomies of Seidel (2002) and Fritz et al. (2012).

14:24. *Emys* (sensu lato): In a molecular analysis of enymule turtles, Angliczyk and Seidel (2013) found strong support for a monophyletic *Emys* (including *oribularis, blandingii, and marmorata*) using mtDNA sequence data, but strong support for a paraphyletic *Emys* using 14 nuclear genes. The combined data set resolved a monophyletic *Emys*, but the results were apparently driven by the much more variable mitochondrial genome. Despite some uncertainty about the monophyly of *Emys sensu lato* (see also Wiens et al. 2010), we retain both options of a narrow and a broad definition of the genus *Emys*, pending even more genetic data.

14:25. *Emys oribularis helenica* and *Mauremys rivulata*: Considerable confusion has surrounded the names and authors and dates of publication of the turtle descriptions published in various outputs of the *Expédition Scientifique de Morée*, currently cited in our checklist as Valenciennes (1833), Bibron and Bory de Saint-Vincent (1833), and Bory de Saint-Vincent (1835). Sherborn and Woodward (1901) documented that the zoology sections dealing with vertebrates, in which turtle descriptions (*Chelonia pelasgorum, Emys helenica, Emys iberaica*, and *Emys rivulata*) appear, were all first published sequentially in 1833 in looseleaf “livraisons” with sets of plates (“planches”) and text, and later all the plates were re-published as a bound volume in 1835. Confusion about the sequence of publication of the turtle plates and the text has arisen due to the imprint of “1832” on the frontispiece of the text, but it actually appeared in 1833, after the plates. That the unbound turtle plates by Valenciennes (1833:pls.6–9) were published first was clearly documented in the subsequent text by Bibron and Bory de Saint-Vincent (1833:61, lines 5–9, 21–23, footnote 2), who referred to the specifically numbered plates as coming from the “troisième série.”

The name *Emys helenica* was first published in the third series of *planches* (plate 8, figures 2–2a), where it was attributed to Valenciennes in the legend, and then subsequently described (as *Cistuda helenica*) on pages 61–62 of the text, where it was attributed to Bibron and Bory de Saint-Vincent. Proper original attribution of the name is therefore *Emys helenica* Valenciennes in *Bory de Saint-Vincent 1833:pl.8*. That name was subsequently synonymized, as “Cistuda helenique,” with *Cistudo europaea*, another synonym of *Emys oribularis*, by Duméril and Bibron (1835:227), but is today recognized as a valid subspecies of that taxon (Fritz et al. 2005; Fritz and Havas 2007). According to Bibron and Bory de Saint-Vincent (1833), in their text on page 61, lines 5–9, under the synonymity of *Cistudo europaea (= Emys oribularis)*, they noted that Valenciennes (1833) had “for unknown reasons” (“*on ne sait pourquoi*”) named the juvenile specimen of *Emys* on plate 9 as *iberica* [not *Emys iberaica* Eichwald 1831]. The original typeface in the legend of plate 9 reads “Emyde ibéryenne. Emys iberica. Val.”; however, in at least some contemporary copies of the subsequently bound atlas (Bory de Saint-Vincent 1835), a small printed label in similar text reading “des ancients” has been pasted over “ibéryenne”, and a second label reading “antiquorum” pasted over “iberica” and the first part of “Val.” We do not know if these labels were originally added as an “erratum” to all looseleaf copies at the time of their original publication in 1833, or more likely only to some of them when bound into the atlas in 1835, because some copies today lack the labels (e.g., that in the Paris Museum, but apparently not those in the British Museum [Gray 1844:31] or the Museum of Comparative Zoology at Harvard [Loveridge and Williams 1957:213]). It must also be noted that Bibron and Bory de Saint-Vincent (1833) commented on the name *iberica* printed on the original plate, but made no mention of the name *antiquorum*. This uncertainty greatly complicates these names and their authorship. If the “*antiquorum*” labels were added to all copies of this work by the publisher, then *Emys iberaica* Valenciennes was technically never described, and *Emys antiquorum* would presumably be attributable to Bory de Saint-Vincent, the editor of the 1835 atlas, although the remaining partial exposure of the name “Val.” led Gray (1844:31) to attribute the name *antiquorum* to Valenciennes when he (Gray) synonymized that name with *Cistudo europaea* [*Emys oribularis*]. If the labels were inconsistently added to only some copies of the original work, then the name *antiquorum* would have no nomenclatural status. Pending the availability of additional historic information about the consistency of this labeling and the reasons behind it, we here attribute the name *Emys iberaica* to *Valenciennes* in *Bory de Saint-Vincent 1833*, and declare *Emys antiquorum* Bory de Saint-Vincent (1835) a *nomen novum* and *nomen nudum*; and interpret both names as junior synonyms of *Emys oribularis* helenica (Valenciennes in *Bory de Saint-Vincent 1833*).

14:26. *Emys oribularis*, spp. indet.: Roelk et al. (2013) synonymized the two Upper Pliocene fossil taxa, *E. major* and *E. latens*, described by Portis (1890), with *Emys oribularis*, citing an unpublished thesis by Chesi (2009). The fossils were from Valdarno (d’Arno valley) along the northwest Italian Lower Pliocene coast, with the range of the present-day subspecies *E. gallotrichia*. However, given the subsequent Pleistocene and Holocene climate-associated range shifts of *E. oribularis*, we do not associate these fossil names with any current subspecies at this time.

14:27. *Terrapene*: Martin et al. (2103) examined variation in two mitochon- drial genes and one nuclear gene across all previously recognized taxa of *Terrapene* (except *T. nelsoni* klauberi). Both mtDNA and a single nuclear gene supported the monophyly of *T. ornata, T. carolina* (including *T. coahuila*), and *T. nelsoni*. All analyses confirmed the distinctiveness of *T. nelsoni* and *T. ornata*, but found no support for distinction between *T. o. ornata* and *T. o. luteola*, and hence, they recommended the synonymy of the latter. For mtDNA only, they found significant divergence within the previously recognized *T. carolina* group taxa (including *T. coahuila*), and identified a western clade (including *T. triunguis, mexicana, and yucatana*) and an eastern clade (all others, including *coahuila*); the western clade was strongly supported based on mtDNA, but the eastern clade had only very weak support. The authors recommended the recognition of the western clade as a full species, *T. mexicana*, with three subspecies (mexicana, triunguis, and yucatana). They were not able to resolve the relationships among *bauri, major,* and *carolina*, and retained them as subspecies of *T. carolina*. Similarly, the relationship of *T. coahuila* to Gulf Coast *T. carolina* was suggested but not resolved, and they recommended continued recognition of *T. coahuila* at the species level. Meanwhile, Legler and Vogt (2013) treated *T. mexicana* and *T. yucatana* as full, monotypic species, and continued to recognize *T. o. luteola* as the subspecies of *T. ornata* inhabiting Mexico.

As the suggested taxonomic rearrangements of Martin et al. (2013) and Legler and Vogt (2013) are not based on a comprehensive analysis of morphology, mitochondrial DNA, and nuclear genes, and show disagreement with both the traditional taxonomy of *Terrapene* and the molecular phyloge-
presented by Butler et al. (2011), we consider that the phylogenetic relationships within this genus remain insufficiently resolved for us to adopt such significant taxonomic changes, especially in light of the desire for minimal fluctuations in taxonomy of this genus, given its extensive inclusion in State, Federal, and CITES legislation.

14:28. Terrapene putnamii: This species was described by Hay (1906) based on a single fossil hypoplastron from the Alafia River basin in Florida with imprecise stratigraphic data, but presumably Late Pleistocene. The taxon has been widely assumed to represent virtually all eastern North American fossil Terrapene material from the Miocene to the late Pleistocene, which is clearly an exaggerated concept of the taxon (Ehret et al. 2011). This has become increasingly problematic because of recent molecular analyses of extant taxa that suggested that T. putnamii should be synonymized with T. carolina major (Butler et al. 2011; followed in TTWG 2012) or that argued that putnamii be retained as an extinct subspecies of T. carolina (Martin et al. 2013). To facilitate future attempts to resolve the relationships among living and fossil turtles of the T. carolina complex, Ehret et al. (2013) proposed to the ICZN the designation of a neotype for T. putnamii with precise locality and stratigraphic data, and consisting of a nearly complete carapace and plastron with numerous associated postcranial elements.

We here maintain T. putnamii as a synonym of T. carolina major as recommended by Butler et al. (2011), until the ICZN makes a ruling and additional research clarifies the relationships of extant and fossil members of the T. carolina group.

14:29. Mauremys annanensis: Clemmys guangxiensis was described by Qin (1992) based on two market specimens supposedly originating from Guangxi, China. Iverson and McCord (1994) speculated that the type series might be a composite of Mauremys matica and M. ivesoni (the latter now known to be of hybrid origin between Cuora trifasciata and M. matica; Parham et al. 2001). As a result, we have previously included C. guangxiensis in the synonyms of both C. trifasciata and M. matica. However, Hu et al. (2013) provided sequence data from a single mitochondrial gene for four specimens of Mauremys from Guangxi purported to be M. guangxiensis, along with two M. matica from the same province. When included in a phylogenetic analysis with sequences of Mauremys downloaded from GenBank, they determined that their four specimens of M. guangxiensis were nearly identical to M. annanensis (which is endemic to Vietnam) and not M. matica. Assuming their four specimens represented the same taxon as described by Qin (1992), Hu et al. (2013) interpreted their results as indicating that M. guangxiensis was either synonymous with M. annanensis or a subspecies of the latter. However, their analysis did not address the possibility of a hybrid origin for guangxiensis. Pending further study of specimens being referred to these tortoises, we add guangxiensis to the synonymy of annanensis (as partim, hybrid), while retaining its inclusion in the synonymy of M. matica and C. trifasciata.

14:30. Mauremys japonica and Pelodiscus sinensis: Temminck and Schlegel’s publications in Fauna Japonica are usually recorded as having been published in 1835. However, their chapter on “Les Cheloniens” (pp. 1–80, plates 1–9) was actually published in 1834 (see Hoogmoed et al. 2010) and only contained invalid vernacular names. Their valid names Triomsy japonica = Pelodiscus sinensis and Enys vulgaris japonica = Mauremys japonica were not published until 1838 when Schlegel wrote and published (on p. 139) his dated explanation of the previously published plates and for the first time provided Latin names for the two new species described earlier in French (Triomsy stellatus Var. Japon [pls. 5 and 7] = Triorns japonica and Enys palpatais Var. Japon [pls. 8 and 9] = Enys vulgaris japonica). Although the name “pulatius” was used on the plate, in the text it was corrected to “vulgrais”, but never with a specific “var. Japon” modifier attached to it.

14:31. Rhinoclemmys: Based on both mitochondrial and nuclear DNA data, Vargas-Ramírez et al. (2013d) identified significant phylogenetic structuring within R. melanosterna, but found conflicting phylogenetic relationships among the allopatric/parapatric members of the R. punctatula group (including R. funerea, R. diademata, and R. melanosterna). They recommended no taxonomic changes without further geographic and genome sampling.

14:32. Aldabrachelys gigantea: After several years of vigorous debate, the ICZN (2013b) published their decision (Opinion 2316) regarding the appropriate scientific name for the Aldabra Tortoise (Case 4642; Frazier 2008, 2009). The Commission ruled to conserve the long-term use of the specific name Testudo gigantea Schweigger (1812) for this tortoise, to affirm the neotype designation of Frazier (2006), and to suppress the more recently used name Testudo dussanieri Gray (1831d). One effect of this action was also to validate the genus name Aldabrachelys Loveridge and Williams (1957) over Dipsochelys Bour (1982a). Comments were published in BZN 66:80–87, 169–186, 274–290, 352–357; 67: 71–90, 170–178, 246–254, 319–331; 68: 72–77, 140–143, 294–300. With 83 published comments, this represented the most extensive correspondence received by the Commission on a Case to date.

14:33. Chelonoids carbonarius: The original citation for the junior synonym Testudo boiei is actually Wagler (1830a), not Wagler (1833) as listed in our previous checklists; the latter contained no new turtle descriptions.

14:34. Gopherus berlandieri: In 1850, Berlandier described two terrestrial turtles from the “llanos” of Tamaulipas, Mexico: Testudo bicolor (not to be confused with Testudo bicolor Schweigger 1812 or Terrapene bicolor Bell 1826, both synonyms for Testudo [= Cuora] amboinensis Daudin 1801) and Testudo tuberculata [sic] (not to be confused with Testudo tuberculata Schoepff 1801 [= Dermochelys coriacea]). His ample description leaves little doubt that the names referred to a juvenile and adult male, respectively, of Xerobates [= Gopherus] berlandieri Agassiz 1857a, and hence should be considered senior subjective synonyms of the latter. However, since 1850, T. tuberculata has only been mentioned by True (1882), as T. tuberculata. In 1980 Berlandier’s manuscript was translated and republished, with both species recorded again, as T. bicolour and T. tuberculata, with distinct diagnostic characters, “and they are common on both banks of the Rio Bravo.” No other publications seem to include these names, both considered here as being nomina oblitae.

14:35. Testudo graeca: Based strictly on morphology Chikhivdaze et al. (2013) continued to argue for the recognition of six taxa of tortoises in the Caucasus (Testudo graeca ibera, T. g. nikolskii, T. g. armenica, T. marginata pallasi, T. m. baxtoni, and T. digestastica). However, genetic sampling by Fritz et al. (2007), Marshkaryan et al. (2013), and Mikulčíčková et al. (2013), including specimens from within the ranges of each of those six purported taxa, supports only the recognition of three taxa in the area (T. g. ibera, T. g. baxtoni, and T. g. armenica). Because the unreliability of morphology in establishing species boundaries within the genus Testudo has been well documented (Parham et al. 2006; Fritz et al. 2007, 2009; Mikulčíčková et al. 2013; Danilov et al. 2013; among others), we have not followed Chikhivdaze et al. (2013), pending further genetic sampling.

14:36. Testudo or Chersine hermanni: Perez et al. (2014) examined variation in mitochondrial DNA and nuclear microsatellites across the range of T. hermanni, and found substantial geographic differentiation based on distance between sites. They documented the greatest divergence between the recognized subspecies, with the eastern subspecies (T. h. boettgeri) ranging westward and including the Po River valley in northeastern Italy. Their data also demonstrated the effects of thousands of years of human-mediated dispersal of T. hermanni. Although they noted that the isolated population in France could have been established via natural or human dispersal, their data supported the hypothesis that the Spanish, Corsican, and Sardinian populations were likely the result of prehistoric human introductions of animals with Sicilian genotypes.

14:37. Testudo or Chersine h. hermanni: Lapparent de Broin et al. (2006b) analyzed all known fossil specimens of T. globosa, T. orienis, and T. seminota, and concluded that orienis and seminota were synonymous with globosa and that globosa was apparently synonymous with western T. h. hermanni.

14:38. Testudo or Agrionemys h. kazachstanica: Agrionemys kazachstanica terbishi was described by Chikhivdaze (2009) based on a mummified specimen, supposedly from Mongolia, in the Kohofud University collection (Kohofud City, Mongolia). Ansorge et al. (2012) reported that the type specimen has been lost, that the herpetologist who collected the specimen believed that it was a pet brought from Kazakhstan, and that there is no confirmed record of an extant tortoise indigenous to Mongolia. They recommended that Testudo horsfieldii terbishi (Chikhivdaze 2009) should be regarded as a nomen dubium and allocated to the synonymy of Testudo horsfieldii; they also recommended that Mongolia should be excluded from its distribution range. We adopt these recommendations and associate the taxon with T. or A. h. kazachstanica by virtue of it having originally been described as a subspecies of that taxon.

14:39. Acanthochelys and Platemys: Sequence data from two mitochondrial genes analyzed by Huebinger et al. (2013) supported the sister group relationship between Platemys and Acanthochelys, the monophyly of the latter, and the possibility that A. radioluta as currently defined morphologically may be polyphyletic. We continue to affirm the recognition of both genera, even though Platemys is monotypic.
14:40. *Phrynops Geoffroanus*: The name *Emys tritennacula* was listed by Cuvier (1829) as attributed to Auguste de Saint-Hilaire, a botanist who traveled in Brazil and subsequently deposited several chelid turtles in the Paris Museum (Bour, unpubl. data). Based on the name, suggestive of several barbels, we assign it tentatively to the synonymy of *P. geoffroanus* pending further study of Saint-Hilaire's specimens. The name *E. tritennacula* does not refer to the American Box Turtle, *Terrapene carolina*, as originally synonymized by Wermuth and Mertens (1961) and followed by several others since then.

14:41. *Platyns platycephala*: The name *Emys carunculata* Cuvier 1829 was listed by Wermuth and Mertens (1961, 1977) and Fritz and Havaï (2007) as an *ex errore* name for *E. canaliculata* Spix 1824, itself a synonym of *P. platycephala*. However, the name *E. carunculata* was attributed by Cuvier (1829) to Auguste de Saint-Hilaire, while in the same paragraph also listing *E. canaliculata* as attributed to Spix. The two names clearly represent different *nomina nuda*. Pending further studies of the chelid turtles that Saint-Hilaire collected in Brazil (Bour, unpubl. data), we leave *E. carunculata* in the synonymy of *P. platycephala* for the present.

14:42. *Chelodina (Macrochelodina) kuchlingi*: This species, originally described by Cann (1997d), was synonymized under “*Chelodina rugosa*” (now *Chelodina oblonga*) by Georges and Thomson (2010). Their original basis for the synonymization was “that names that are available under the Code, but that apply to supposed taxa, unsupported by scientific evidence either in the original account or subsequently, are placed in synonymy.” They also indicated that *C. kuchlingi* was described from a single specimen of uncertain origin with a long history of captivity and so was treated as a junior synonym of “*C. rugosa*” (now *C. oblonga*), citing Georges and Thomson (2006) who had questioned the distinction between *C. kuchlingi* and *C. rugosa*, but did not synonymize them. The synonymization by Georges and Thomson (2010) was subsequently followed by us (TTWG 2010) and Kennett et al. (2014) in their recent CBFTT species account for *C. kuchlingi* and *C. rugosa*. A comment by Thomson (2010) was subsequently followed by us (TTWG 2010) and Kennett et al. (2014) in their recent CBFTT species account for *C. oblonga* (see link under that species). However, the synonymization has recently been challenged by Kuchling (CCB, in review, and in litt.), who has provided data that *C. kuchlingi* is an apparently demonstrably valid and distinct range-restricted species, with a more extensive distribution in northeastern Western Australia (including the Ord River basin) than noted in the original description. Kuchling also raised serious concerns about the conservation status and potential regional development threats to *C. kuchlingi*. Georges (in litt.) has acknowledged the difference in opinion, but stands by his opinion that the original description was deficient, and that there has been insufficient evidence presented to date that *C. kuchlingi* is a valid taxon.

We take note of this on-going controversy here and, based on our own principles of making only data-driven taxonomic changes in the checklist, acknowledge that our original decision to follow the hypotheses of Georges and Thomson (2006, 2010) to synonymize *C. kuchlingi* was likely premature, and also inconsistent with our continued recognition at that time of other species also synonymized by Georges and Thomson at the same time (e.g., *C. gunaleni* and *C. walloavaarina*). Given the potential conservation threats to this range-restricted species and the lack of data supporting the prior synonymization, we therefore now reverse our earlier decision and resurrect *C. kuchlingi* from its synonymy with “*C. rugosa*” (now *C. oblonga*) and await further data-driven analyses from Kuchling, Georges, and others.

14:43. *Chelodina oblonga* (formerly *C. rugosa*): Thomson (2000) demonstrated that the holotype of *Chelodina oblonga* Gray 1841 is actually a specimen of what had over the last ca. 40 years been referred to as *Chelodina rugosa* Ogilby 1890 from northern Australia. The ICZN was petitioned (Thomson 2006, 2007) to conserve current usage of the name *C. rugosa* for the Northern Snake-necked Turtle, and to apply the next available name, *Chelodina collei* Gray 1856a, to the Southwestern Snake-necked Turtle, instead of the commonly and erroneously used name *C. oblonga*. We previously discussed this ICZN case in our second checklist (Rhodin et al. 2008). Recently, in their Opinion 2315, the ICZN (2013a) declined to support the petition to give precedence to the younger, recently used name *C. rugosa* over the older name *C. oblonga* for the Northern Snake-necked Turtle. Although the latter species has been known as *C. rugosa* since 1974 and was listed as such in previous editions of this checklist, we now follow the ruling of the ICZN and use the name *Chelodina (Macrochelodina) oblonga* Gray 1841 for the Northern Snake-necked Turtle, although the name *Chelodina (Macrochelodina) rugosa* Ogilby 1890 remains an available name in the synonymy of *C. oblonga*. The decision by the ICZN has also been followed by Kennett et al. (2014) in their recently published account on the Northern Snake-necked Turtle in this CBFTT monograph series.

14:44. *Macroderemys*: In an attempt to conserve usage of the name *Chelodina oblonga* for the Southwestern Snake-necked Turtle, McCord and Joseph-Ouni (2007b) designated the lectotype of *Chelodina collei* (set by Thomson 2006) as the neotype of *C. oblonga*. At the time this was done, there was already an open case before the ICZN (Thomson 2006) concerning whether to use the name *C. oblonga* or *C. rugosa* for the Northern Snake-necked Turtle (see annotation 43). It should also be noted that the setting of a neotype where an extant holotype (or lectotype) already exists can only be done by the ICZN. In their subsequent Opinion (ICZN 2013a), it was ruled that, considering the confusion over these names and the potential for further confusion, that the Principle of Priority should be followed, and that *C. oblonga* should maintain priority over *C. rugosa* for the northern taxon. By associating the new name *Macroderemys oblonga* to the lectotype of *C. collei*, McCord and Joseph-Ouni (2007b) had effectively erected a new nominal species as a junior objective synonym of *C. collei*. Thus, since *M. oblonga* was the type species for the new genus *Macroderemys*, then in effect so was also its senior objective synonym, *C. collei*. Fortunately, the latter was not already a type species for another genus. Georges and Thomson (2010) reduced the various genera of snake-necked turtles to subgeneric status, all under the oldest genus name *Chelodina*; this has been recognized in previous editions of the checklist (TTWG 2012), however, the subgenus name for *C. collei* was left undefined because of the uncertainty surrounding the case. In this checklist edition, now that the ICZN Opinion has been published, this matter can be rectified by restoring the subgeneric name *Macroderemys*, which follows the intent of McCord and Joseph-Ouni (2007b).

14:45. *Elseya and E. schultzei*: Based primarily on mtDNA data, Georges et al. (2014) identified three reciprocally monophyletic, deeply divergent clades within the taxa formerly recognized as *Elseya novaeguineae*: 1) the Birds Head (Kepala Burung, Vogelkop, or Dobeari Peninsula) population of western Indonesian New Guinea, 2) the population on the New Guinea mainland north of the Central Range, and 3) the mainland population south of the Central Range. They also demonstrated some phylogeographic structure within each of those three clades, and confirmed the genetic distinction of *E. branderhorstii* of the southern lowlands / Fly River floodplain as separate from the *E. novaeguineae* clades. They suggested that these three clades each deserved species rank, and they followed Rhodin and Genorupa (2000) in noting that the southern form is distinct and undescribed and that the name *E. schultzei* (Vogt 1911) is available for the northern population. They also implied that the name *E. novaeguineae* should be applied to the Birds Head clade (the source of the type). We follow these recommendations and now recognize *E. schultzei* as a full species (again), and await additional work in progress to determine the appropriate name for the southern form, whose populations we retain under *E. novaeguineae* pending further work.

14:46. *Flaviemys and F. purvisi*: Using molecular data only, Le et al. (2013) concluded that the species known as *Myuchelys purvisi* is the sister taxon to all other taxa that were included in *Emydura, Elseya* and/or *Myuchelys*. To correct this paraplyhy, they erected a new monotypic genus, *Flaviemys*, with type species *Elseya purvisi* Wells and Wellington 1985, by original designation and monotypy. There is also support for this in previous studies, where *Flaviemys purvisi* and *Myuchelys georgesi* were perceived as a cryptic species pair, very similar by appearance, but on analysis were found not to be sister taxa (Georges and Adams 1992; Georges et al. 1998; Thomson and Georges 2009; Georges and Thomson 2010; Fielder et al. 2012; Fielder 2013). We follow this new taxonomy here.

14:47. *Pelusios castaneus seychellensis*: Based on mitochondrial gene sequence data from all known lineages of *Pelusios*, Stuckas et al. (2013) found that the lectotype of *P. seychellensis* was nested among specimens of the West African *P. castaneus*. They concluded that *P. seychellensis* was most likely based on specimens of *P. castaneus* not native to the Seychelles Islands, and recommended the synonymy of *P. seychellensis* with *P. castaneus*. However, Bour (1983) identified significant morphological differences between these two taxa, and recently (Bour 2013) argued that *seychellensis* might represent an ancient prehistoric introduction of *castaneus* to the islands by humans (see also divergent morphological analyses of the ancestral population). He recommended the use of the subspecific designation *P. castaneus seychellensis* until additional comparisons (especially morphological) can be made between *castaneus* and *seychellensis*, a recommendation we have adopted. See also the pertinent discussion of the geographic occurrence
of this species [P. castaneus] in the distributional data appendix below.

14:48. Podocnemis erythrecephala: The forgotten names Emys biten-taculata and Hydraspis bitenatculata were not listed or synonymized by Wet-muth and Mertens (1961, 1977) or Fritz and Havás (2007). Gray (1830e) first placed the Cuvier manuscript name Emys bitenatculata under his concept of Chelys (Hydaspis) and subsequently (Gray 1831d) described itself as Hydaspis bitenatculata: “Testa rufa, subas pallide lutea nigro maculata, scutello nuchal nullo.” Fitzinger (1835) synonymized both names under his concept of Hydaspis (Podocnemis) tracasa (which also included Podoce-nemis expansa) in part and some chelid turtles. Gray’s description did not iden-tify the species very well, but the combination of a red shell (testa rufa), two barbels (bitenatculata), and lack of a nuchal scute (scutello nuchal nullo) sug-gests that it is indeed a Podocnemis, and we tentatively place it as most likely synonomous with P. erythrecephala, which shares those features, including a red shell margin in juveniles.

14:49. Humboldt Podocnemis names: Alexandre de Humboldt first published the names Testudo arau (≡ P. expansa) and Testudo terekay (≡ P. unifilis) in the French version of his original work (Humboldt 1819a:243). This work was subsequently translated into English (Humboldt 1819b:482), and later (Humboldt 1820:415) into German. These various translations have caused some confusion in the literature, and some authors (including our previous TTWG checklists) have even attributed the names to Humboldt in Gray (1831d:77). However, the French version remains the original source for these names. Both names are considered nomen oblitum (see also annota-tion for P. unifilis).

14:50. Podocnemis unifilis: Emys caeyennensis was described from French Guiana by Schweigger (1812), but was incorrectly applied to Podocnemis erythrecephala for most of its history (reviewed in Pritchard and Trebbau 1984; but see David 1994 and Bour 2006). In 1819 Humboldt (see annotation 14:49) described Testudo terekay from Venezuela; however, this obscure work was ignored by most subsequent authors (but see Schinz 1833). In 1830 Bell (in Gray 1830e) described Chelys (Hydaspis) lata from Guyana and this name was also ignored by most subsequent authors until Rhodin et al. (2008) declared it a nomen oblitum (see also Schneider et al. 2012). All three of these names apply to the taxon Podocnemis unifilis that was finally described from Guyana by Troschel (1848), and the latter name has been ap-plied to the Yellow-spotted Amazon Turtle by most (but not all) authors over the last 165 years. In light of this complicated nomenclatural history, and in an effort to ensure the stability of Troschel’s name, Vogt et al. (2013) petitioned the ICZN to conserve the name Podocnemis unifilis Troschel 1848 for the Yellow-spotted Amazon Turtle, giving it precedence over Emys caeyennensis whenever the two are considered synonomous. Furthermore, they declared the names Testudo terekay Humboldt 1819a and Chelys (Hydaspis) lata Bell in Gray 1830e as nomen oblitum. Our checklist reflects this arrangement, pending an ICZN ruling.

Appendix – Distributional Data

Specific distributional updates were only recorded in 2011, 2012, and 2014, and have not been continued in the current checklist except as reflected in the distributional information under each taxonomic entry.

Distribution Updates 2011

Dermatemys mawii: Honduras (?) deleted from the range as per CBFTT account (Vogt et al. 2011).
Kinosternon scorpioides albovagula: Population in San Andrés, Colombia, indicated as possible prehistoric or modern introduction, as per CBFTT accounts (Berry and Iverson 2011, Forero-Medina and Castro-Mora 2011).
Chelysmydidae: Apparently established in Florida (Krysko et al. 2011).
Graptemys pseudogeographica: Apparently established in Florida (Krysko et al. 2011).
Malaconcha terrapin and M. t. centra: Bermuda added to native range (Parham et al. 2008).
Pseudemys nelsoni: Introduced to Tortola, British Virgin Islands (Owen et al. 2005).
Trachemys scripta scripta: Apparently established in Florida (Krysko et al. 2011).
Emys orbicularis orbicularis: Spain deleted from range; Spanish popula-tions are attributable to subspecies E. o. fritzjungeriobst and E. o. gallowalca, but not to the nominate subspecies.

Terrapene nelsoni: Chihuahua, Mexico (T. n. klauberi) and Jalisco, Mexico (T. n. nelsoni) added to the range, as per CBFTT account (Buskirk and Ponce-Campos 2011).
Bagetagi khaguja: Occurrence in Nepal confirmed.
Cuora bourretii: Occurrence in Laos indicated as uncertain.
Cuoreparktura: Occurrence in central Vietnam confirmed (Ly et al. 2011).
Cuoro zhou: Vietnam added as uncertain occurrence.
Geemytha spengleri: Laos added to the range (Stuart et al. 2011).

Mauremys caspica caspica: Israel, Jordan and Lebanon deleted from the range; populations there attributable to M. rivalata. Turkmenistan added to the range.
Mauremys caspica siebenrocki: Turkmenistan deleted from the range; population there attributable to M. c. caspica.
Sacalia beali: Occurrence in Guangxi, China, indicated as uncertain.
Aldabraelyst/Dipsochelys gigantea/disamurie holokissa: Cosine Island added to extirpated range; Round and Cousine islands added to introduced range, as per CBFTT account (Gerlach 2011b).
Stigmochelys paralis: Sudan deleted from the range, and the new nation of South Sudan added to the range.
Peleodiscus parviform: Vietnam added to the range.
Acantochelys pallidior: Mendoza, Argentina, corrected from native range to introduced, as per CBFTT account (Vinke et al. 2011).

South Sudan: This newly independent nation has seven taxa of fresh-water turtles and tortoises: Kinixys belliana belliana, Stigmochelys paralis, Cyclanorbis elegans, Cyclanorbis senegalensis, Trionyx triunguis, Pelomedusa subrufa, and Pelusios adansonii.

Distribution Updates 2012

Cuora bourretii: Occurrence in Laos was confirmed (Stuart et al. 2011), and possible occurrence in Cambodia was deleted from the checklist following consultation with range-state biologists.

Mauremys reevesii: Based on analysis of mitochondrial DNA, Suzuki et al. (2011) indicated that Japanese populations of M. reevesii were possibly derived from multiple historical introductions from nearby countries, and thus questioned its traditional status as a presumed native species. They noted the ability of M. reevesii to hybridize with native M. japonica as a threat, but also recognized these populations to be valuable in the context of depleted popula-tions elsewhere in its range.

Kinixys: Ranges adjusted according to species ranges outlined by Kissler et al. (2012).
Nilstosia formosa: Liebing et al. (2012) referred to a record of N. formosa from Shuangbai (Yunnan, China), and photographs of a specimen from the Lancang River (=Mekong) in the Xishuangbanna region of Yunnan, as suggesting that the species has crossed the watershed divide into the Mekong River basin of Yunnan, China. However, given the substantial documented trade volumes of live turtles from Myanmar into Yunnan and onwards, and the propensity of turtles to escape or be intentionally released by humans, combined with the giant biogeographical barriers (despite their very close proximity) between the Salween, Mekong, and Yangtze, we consider it doubtful that these records represent natural occurrences.

Mesolemys helimestone: Additional occurrences across the Amazon basin of Brazil were reported by Molina et al. (2012).

Italy (Sardinia): Vamberg et al. (2011) compared mitochondrial and nuclear DNA of Testudo graeca from Sardinia with that of T. graeca from North Africa, and concluded that the near-absence of differentiation from other graeca populations, and reduced variation within the Sardinian population, indicated prehistoric introduction into Sardinia by humans. They also reviewed recent studies of the other non-marine turtle species occurring in Sardinia and concluded that Sardinia’s populations of Testudo hermanni hermanni, T. mar-ginata, and Emys orbicularis galloitalica likely each represented prehistoric or early historic human introductions.

Latvia: Pupins and Pupina (2011) recorded introduced populations or individuals of Trachemys scripta elegans, T. s. troosti, Mauremys caspica, M. rivalata, Testudo horsfieldii, and Pseudemys sinensis in Latvia. However, they did not document successful reproduction in the wild, and it remains uncertain whether these records represent established populations or isolated individuals.

South Korea: Chang et al. (2012) noted that the native softshells in South Korea are attributable to Pelodiscus maackii, and reported P. sinensis, Trachemys
Chelydra acutirostris: Páez et al. (2012) listed the occurrence of this species in the Colombian Departments of Caldas and Quindío, but did not list records from Atlántico, Bolívar, Magdalena, or Sucre.

Trachemys c. or. callirostris: Páez et al. (2012) reported the occurrence of this taxon in the Colombian Department of Cundinamarca.

Trachemys d. decussata: Parham et al. (2013) documented the occurrence of this taxon in northwestern Jamaica, including hybridization with T. terrapen; whether the occurrence is native or introduced remains unknown.

Trachemys emoli or greyi emoli: McCranie et al. (2013) documented the occurrence of this taxon in Honduras, while Ibarra Portillo et al. (2009) documented its occurrence in eastern El Salvador.

Cuora amboinensis: Wangyal et al. (2012) reported this and four other species from southern Bhutan, the first turtles reported from that country.

Cuora mahoi: Rahman (2012) reported the occurrence of this species in the southern Chittagong Hill Tracts of Bangladesh, Wangyal et al. (2012) reported it from southern Bhutan, and Ly et al. (2013) extended its range in southern Vietnam.

Cyclemys gemelli: Wangyal et al. (2012) reported this species from southern Bhutan.

Melanochelys tricarinata: Wangyal et al. (2012) reported this species from southern Bhutan.

Aldabrachelys gigantea: The historic and present distribution of native and introduced populations of the various morphotypes or subspecies (gigantea, arnoldi, and hololissa) of giant tortoises in the Seychelles (including all granitic and coralline islands) has been analyzed in detail and updated by Gerlach et al. (2013).

Centrochelys sulcata: Participants at the IUCN/TFTSG Sub-Saharan African Red List workshop in 2013 noted that C. sulcata occurs in Benin, Cameroon, and Togo, and may possibly occur in Djibouti, Somalia, Saudi Arabia, and Yemen. Its presence in Yemen and Saudi Arabia was also previously noted by Gasperetti et al. (1993).

Indotestudo elongata: Wangyal et al. (2012) reported this species from southern Bhutan.

Kinixysensa: Participants at the Sub-Saharan African Red List workshop considered that Kinixys erosa certainly occurs in Benin and Togo, but is absent from Burkina Faso.

Kinixys homeana: In their CBFTT species account, Luiselli and Diagne (2013) noted that K. homeana occurs in the Central African Republic. They questioned its occurrence in Gabon and noted that it does not occur in Congo (ROC) and that old historical records from the eastern Congo (DRC) were likely based on misidentified K. erosa. These historical records need further evaluation.

Kinixys nogueyi: Participants at the Sub-Saharan African Red List workshop considered the distribution of Kinixys nogueyi to include the Central African Republic, but that the species does not range as far south as Equatorial Guinea or Gabon, and that records from Mauritania are likely historic, but that the species no longer occurs there.

Cyclanorbis senegalensis: Participants at the Sub-Saharan African Red List workshop considered that the occurrence of C. senegalensis is uncertain in Cameroon, Central African Republic, and Liberia, and that the species is likely extirpated from Mauritania.

Rafetus swinhoei: Wang et al. (2013) extended and defined the known recent historic range of this Critically Endangered species in the upper Red River of southern Yunnan, China.

Mesoclemmys dahlí: Páez et al. (2012) and Forero-Medina et al. (2013, CBFTT account) documented the occurrence of M. dahlí in the Colombian Department of Magdalena.

Mesoclemmys gibba: Páez et al. (2012) recorded the occurrence of M. gibba in the Colombian Departments of Arauca and Guaviare.

Mesoclemmys perplexa: Campos et al. (2011) recorded the occurrence of M. perplexa in the Brazilian State of Goiás.

Mesoclemmysvanderhaegi: Vink et al. (2013) reviewed the distribution of M. vanderhaegi and concluded that there are no confirmed records for Bolivia.

Platemyd platycephala: Páez et al. (2012) recorded the occurrence of P. platycephala in the Colombian Departments of Guainía, Guaviare, Meta, and Vichada.

PLECOCEPHALUS DUMERLIANUS: Páez et al. (2012) reported P. dumerilianus to inhabit the Colombian Department of Guaviare.

Pelasios bechuanicus: In earlier versions of this checklist, we included Congo (DRC) as part of the range of P. bechuanicus. However, we have been unable to verify this occurrence, and consider that this was based on old literature records of P. upembae, which was originally described as a subspecies of P. bechuanicus.

Pelasios castaneus: Stuckas et al. (2013) questioned earlier records of occurrence of P. castaneus on Cape Verde and suggested that our recording of that presence on our previous checklists was outdated. We have investigated this further and agree with them. Although Boulenger (1906b) documented the collection of a specimen of “Sternocephalus derbianus” (= P. castaneus) from a “small island in Praja Bay, S. Jago” (= Santiago), Chevalier (1935) noted that the specimen was most likely introduced from West Africa and that no Caboverdians were aware of any freshwater turtles in the islands. However, Boulenger’s record (mapped among others by Iverson 1992) led to the assumption for a long time that the species occurred in the islands; but surveys of the local herpetofauna have failed to record its presence (Schleich 1982, 1987, 1996b; Vasconcelos et al. 2013), even as an introduced population. The small island where it was originally collected housed a prison where turtles had evidently been released into a small pond at some point in the past. We therefore remove Cape Verde from the distribution of P. castaneus.

For this same species, we also question whether it occurs natively on São Tomé. Although it has been recorded from there, and specimens have been collected and genetically analyzed (Stuckas et al. 2013), the species does not occur on either nearby Príncipe or the other volcanic oceanic islands in the same archipelago (Manuças 1956; Jones 1994), nor is there any record of the species occurring on the nearby continental island of Bioko (Equatorial Guinea) off the coast of Cameroon. São Tomé was first settled by the Portuguese, who brought African slaves to the island, so it appears most likely that West African P. castaneus were introduced to São Tomé in conjunction with the slave trade. In fact, the genetic analysis by Stuckas et al. (2013) demonstrated that their São Tomé specimen was essentially indistinguishable from an Ivy Coast specimen, lending further strength to this theory.

Podocnemis erythrocephala: Páez et al. (2012) reported that P. erythrocephala occurs in the Colombian Department of Guaviare, and perhaps in Vichada.

Podocnemis levyaena: Páez et al. (2012) noted that the range of P. lewyaena extends into the Colombian Department of Tolima.

Podocnemis sextuberculata: Páez et al. (2012) reported that P. sextuberculata occurs in the Colombian Departments of Caquetá and Putumayo.

Podocnemis vogli: Páez et al. (2012) reported that P. vogli occurs in the Colombian Department of Guaviare, but did not indicate occurrence in Boyacá.

LITERATURE CITED

This bibliography is divided into two sections: 1) all primary taxonomic citations noted in this checklist, plus all secondary literature cited in the introduction and annotations of any of the checklists, and 2) all CBFTT species accounts published in this monograph project and referred to in the checklist. Many of the citations listed here are available online as downloadable pdfs at www.iucn-tftsg.org/taxonomic-literature-database/.

BARTRAM, W. 1791. Travels through North and South Carolina, Georgia, east and west Florida, the Cherokee county, the executive territories of the Muscogulges, or Creek Confederacy, and the county of the Chactaws; containing an account of the soil and natural productions of those regions, together with observations on the manners of the Indians. Philadelphia: James and Johnson, 522 pp.

Fernon, P. 1765. Histoire Naturelle de la Hollande Equinoxeiale, ou Description des Animaux, Plantes, Fruits, et Autres Curiosités Naturelles, qui se Trouvent
null

Hydraspis lutzi

mydas (Linnaeus, 1758) from the coastal water of Japan, with special reference to the turtles allied to Chelonia mydas agassizi Bocourt, 1868. Current Herpetology 33:46–56.

Pérez, J.L. 2006b. The complete mitochondrial genome of the enigmatic bigheaded turtle (Platysternon) and its evolutionary relationships with the cheloniid and eumeriden clades. Molecular Phylogenetics and Evolution 113:59–66.

Chelonia pelasgorum, Emys hellenica, Emys iberica, var

<table>
<thead>
<tr>
<th>Species</th>
<th>Scientific Name</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arnold’s Giant Tortoise</td>
<td>Aldabrachelys Arnoldi</td>
<td>Chelydra serpentina</td>
</tr>
</tbody>
</table>

Citation Format for this Publication:
