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Abstract

Although vast technological advances have been made and genetic software

packages are growing in number, it is not a trivial task to analyse SNP data. We

announce a new R package, DARTR, enabling the analysis of single nucleotide

polymorphism data for population genomic and phylogenomic applications. DARTR

provides user-friendly functions for data quality control and marker selection, and

permits rigorous evaluations of conformation to Hardy–Weinberg equilibrium,

gametic-phase disequilibrium and neutrality. The package reports standard

descriptive statistics, permits exploration of patterns in the data through principal

components analysis and conducts standard F-statistics, as well as basic phyloge-

netic analyses, population assignment, isolation by distance and exports data to a

variety of commonly used downstream applications (e.g., NEWHYBRIDS, FASTSTRUCTURE

and phylogeny applications) outside of the R environment. The package serves

two main purposes: first, a user-friendly approach to lower the hurdle to analyse

such data—therefore, the package comes with a detailed tutorial targeted to the

R beginner to allow data analysis without requiring deep knowledge of R. Second,

we use a single, well-established format—genlight from the ADEGENET package—as

input for all our functions to avoid data reformatting. By strictly using the gen-

light format, we hope to facilitate this format as the de facto standard of future

software developments and hence reduce the format jungle of genetic data sets.

The DARTR package is available via the R CRAN network and GitHub.
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1 | INTRODUCTION

The genomic revolution in ecology and evolution has seen a shift in

the components of workflow that govern productivity. The limiting

factor to progress in research has moved from access to the tech-

nologies to generate DNA sequence data, to access to the comput-

ing facilities and availability of software to analyse the voluminous

data emerging from next-generation sequencing technologies (Ste-

phens et al., 2015). This shift has been accelerated by commercial

providers of sequencing capacity and plummeting costs. Whereas in

the recent past, genomic analysis would have required a

sophisticated laboratory and trained staff, increasingly researchers

require minimal laboratory preparation prior to submitting samples

for analysis. Indeed, the major challenges have shifted from the labo-

ratory to the bioinformatic treatment and analysis of sequence data.

One of the most prominent genomic data sought by ecologists

are single nucleotide polymorphisms (SNPs) obtained through

restriction site-associated DNA sequencing (RADSeq), double digest

RADSeq (ddRADSeq) and DarTSeq (Andrews, Good, Miller, Luikart,

& Hohenlohe, 2016; Baird et al., 2008; Jaccoud, Peng, Feinstein, &

Kilian, 2001; Kilian et al., 2012; Peterson, Weber, Kay, Fisher, &

Hoekstra, 2012; Sansaloni et al., 2011; van Tassell et al., 2008).
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These techniques enable genomewide studies of so-called non-

model organisms, those for which there is limited genomic informa-

tion. Common questions that are addressed with these kind of

genomic data include those arising from studies on population

structure (Beheregaray et al., 2017; Morin, Martien, & Taylor,

2009), isolation by distance, landscape genomic analyses (Brauer,

Hammer, & Beheregaray, 2016; Swaegers et al., 2015), phyloge-

nomics (Unmack et al., 2017; Zegura, Karafet, Zhivotovsky, & Ham-

mer, 1999), loci under selection and genomewide association

studies (Johnston et al., 2011; Santure et al., 2013). Typical SNP

data sets consist of thousands to tens or even hundreds of thou-

sands of loci, often more than two to three orders of magnitude

more markers than were typically employed for equivalent

microsatellite DNA analyses (Glover et al., 2010; Ytournel et al.,

2011). This presents challenges for data management and analysis

as popular stand-alone executable programs designed for smaller

data sets (e.g., FSTAT, Goudet, 1995 and GENPOP, Raymond & Rous-

set, 1995) are often poorly suited. Increasingly, researchers are

accessing the R programming language and the associated CRAN

repository of R packages (for a current review refer to Paradis,

Gosselin, Goudet, Jombart, and Schliep (2017)).

An increasing number of R packages are available for the

analysis of SNP data sets (e.g., APE, PEGAS, ADEGENET, STAMPP, SNPAS-

SOC, GAP and SNPRELATE), which are often developed for a specific

type of analysis. A major difficulty is the array of data formats

employed by the different packages, which complicates the con-

struction of workflows combining multiple packages. This is espe-

cially true for researchers new to R, as it often requires a deep

understanding of R structures and commands to be able to con-

vert large genetic data sets from one format in the other. Another

difficulty is a lack of packages that conduct the complete set of

data evaluation analyses including quality control, Hardy–Weinberg

equilibrium, gametic-phase disequilibrium and tests for markers

under selection, as well as fundamental analyses such as isolation-

by-distance analysis or assignment tests. In their recent review,

Paradis et al. (2017) summarized the main packages and data

formats that are available to analyse SNP data. Recently, many

more packages often targeted to a specific analysis have been

developed (e.g., PARALLELNYWHYBRID, SNPASSOC, RSNPSET, SNPRELATE, MIX-

MAP and SURFING), most of them using a proprietary format, which

often challenges the use by researchers not fluent in R.

Here, we announce DARTR, a user-friendly R package designed as

a workhorse for the preparation of SNP data sets for population

genomics and phylogenomics, for the exploration of the data, and

the production of framework analyses common in these types of

analyses. A key part of the development of DARTR is to provide sim-

ple functions and a detailed manual to allow data analysis without

requiring detailed knowledge of R to conduct analyses, thus broaden-

ing access to researchers. DARTR employs the compact genlight data

format, making it readily combined in workflows with other popular

R packages. A detailed description of the data format is provided in

the tutorial for the package (see supporting material). Initially, DARTR

was developed to provide custom functions to access and explore

SNP data obtained from a leading commercial provider, Diversity

Arrays Technologies Pty Ltd (DArT), but during its development, the

focus became much broader and now it is suited to the analysis of

large SNP data sets obtained from any provider or method. The

package comes with a detailed vignette (tutorial) explaining the use

of each function accompanied by sample analyses and guidelines for

those wishing to contribute their scripts to the package. We outline

typical steps of an analysis below. Finally, we invite researchers to

follow the proposed data format and implement functions that allow

nonexperts to run their analysis, without the need to take care to

reformat their data.

2 | DATA AND FORMAT

2.1 | Genlight format

The genlight format of the ADEGENET package uses a bit-level coding

scheme for SNP data, that is highly compact and brings access to

exceptionally large SNP data sets to the desktop computer (Jombart

& Ahmed, 2011). The format is accessible to the user, because ADE-

GENET comes with a range of methods that allow access to the SNP

data analogous to those used to access a standard data matrix in R.

DARTR extends the genlight format by adding two additional tables

(data frames) to the genlight object; one that we refer to as loc.met-

rics contains metadata associated with each locus (e.g., clone id, call

rate, trimmed sequence tag and SNP location), the other that we

refer to as ind.metrics which contains metadata associated with each

individual or sample (e.g., sample id, sex, population, latitude and

longitude). For further information on accessing and manipulating

genlight objects in R, including the associated metadata, refer to the

user guides and manuals that accompany the ADEGENET package

(Jombart & Ahmed, 2011).

2.2 | Importing data

Data can be imported to a genlight object in several ways. For

those drawing on the services of Diversity Arrays Technologies

Pty Ltd, a function in DARTR (gl.read.dart) intelligently combines the

SNP csv file provided by DArT, which includes a range of locus

metadata, and a user-generated metadata file that contains the

individual or sample metadata. The metadata are attached to the

genlight object via the @other slot and can be accessed using

gl@other$loc.metrics and gl@other$ind.metrics. Here, possible

extensions are data that store the coordinates of the sample

(latlong), additional metadata for loci (loc.metrics) and individuals

(ind.metrics) in data.frames.

If users have a data set that is not provided by DArT, import

is possible via one of the many approaches outlined in Table 1. In

many cases, this involves import to a genind object (Jombart,

2008), then conversion to a genlight object. Dataframes containing

metadata can be added to the genlight object using conventional

R code. Examples how to import such data are provided in the

DARTR vignette.
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3 | VISUALIZATION

Visual exploration of data is an essential prerequisite to more

detailed formal analysis. A very helpful and quick technique to

check the underlying population structure is to use a dimension

reduction method such as PCoA (principal coordinate analysis).

The idea of such an approach is to reduce the population struc-

ture to two or three dimensions while retaining the maximal infor-

mation of the data set. The amount of explained variance is the

eigenvalue of the visualized axis expressed as a percentage of the

sum of the eigenvalues. There are a large number of R scripts

available for plotting data following dimension reduction, including

glPCA in package ADEGENET, and DARTR does not attempt to repro-

duce these. The DARTR function gl.pcoa acts as a wrapper for

glPca function of package ADEGENET with default settings, convert-

ing the eigenvalues to percentages, and adding some additional

diagnostics. The command

pc <- gl.pcoa(gl, nfactors=5)

where gl is the genlight file and yields an object that contains the

eigenvalues, factor scores and factor loadings that can be accessed

for subsequent analyses. A scree plot can be used to decide on the

number of dimensions. The function gl.pcoa.scree(pc)op-

tionally plots the relative contribution of each dimension to total

variance, for those dimensions that show an improvement over the

original variables. The ordination can be plotted in two dimensions

(gl.pcoa.plot) or three dimensions (gl.pcoa.plot.3d)

and interacts intelligently with package PLOTLY to allow points to be

identified by mouse-over (Sievert et al., 2017). Figure 1 provides an

example output using the test data supplied with the package.

4 | ANALYSIS

More than 40 functions are included in DARTR to perform various

analyses of SNP data (refer to Table S1). Depending on the aim of

the study, these functions can serve as an additional filtering tool or

for a final analysis of the data set. Functions that represent either

simple filtering tools or are simply user-friendly implementations of

already available functions are presented here only briefly (extended

examples are provided in the tutorial). We focus below mainly on

functions that are either new or allow for a very efficient analysis

that is not possible using existing R packages.

4.1 | Filtering

Filtering the data on a range of criteria is often one of the first steps

in an analysis, with the stringency of filtering depending on the

requirements of subsequent analyses. The package DARTR provides a

number of options and two examples follow.

SNP data sets often contain data where the SNP locus has

not been called, referred to loosely as missing data. Failure to call

a SNP state at a locus for a particular individual can arise because

read depth is insufficient or variable such that the SNP state is

ambiguous by consensus, or the sequence tag is missed in the

sequencing phase. This is usually overcome by ensuring sufficient

average read depth, say >20, made possible by the reduced repre-

sentation which is determined by the choice of restriction

enzymes in the digest, and the sequencing depth (e.g., samples

per lane on an Illumina platform). The second reason for missing

data, and the more common reason in robust data sets, is muta-

tion at one or the other restriction enzyme recognition sites. In a

sense, these missing data contain information, akin to the informa-

tion derived from AFLPs.

Filtering on call rate is carried out using the function gl.fil-

ter.callrate, which can be applied on a locus by locus basis

or an individual by individual basis. For example,

gl <- gl.filter.callrate(gl, method=0 0loc0 0, t=0.95)

retains only loci that have less than 5% missing data and their asso-

ciated metadata. Using method=0 0ind0 0 will filter individuals with call

rates lower than the specified threshold.

Reproducibility: DArT Pty Ltd. provides locus metadata that

includes a measure of reproducibility. Thirty per cent of samples are

run a second time, and average the proportion of technical replicate

assay pairs for which the marker score is consistent over the two

TABLE 1 Possible import pathways to convert SNP data to genlight format

Import path Package Pathwaya Description

gl.read.dart DARTR – Based on DaRT data [with optional meta data for individuals]

read.loci PEGAS loci2genind, gi2gl Data set are provided as a csv text file (?read.loci)

read.vcfR PEGAS vcfR2genlight vcf text file (vcfR package)

read.fstat ADEGENET gi2gl Fstat format (version 2.9.3) by Jerome Goudet

read.genetix ADEGENET gi2gl Format Belkhir K., Borsa P., Chikhi L., Raufaste N. & Bonhomme F. (1996–2004) GENETIX

read.structure ADEGENET gi2gl Structure format of Pritchard, J.; Stephens, M. & Donnelly, P. (2000)

read.PLINK ADEGENET – Data provided in PLINK format

fasta2genlight ADEGENET – Extracts SNPs data from fasta format (?ADEGENET)

read.genetable POPGENREPORT gi2gl csv text file based on df2genind Adamack and Gruber (2014) (?read.genetable)

aPathway provides the order of functions needed to convert data to genlight, — indicates that the function directly converts to a genlight object.
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alleles at each locus (loc.metric: RepAvg). To filter stringently on this

quality statistic, insisting on perfect reproducibility, you would use

the command

gl <- gl.filter.repavg(gl, t=1.00)

With non-DArT data, the user simply can provide the quality

metric, add it to the genlight object in the right slot and use the

function as usual.

gl@other$loc.metrics$repAvg <-

quality.metric.for.each.locus

gl2 <- filter.repavg(gl, t=0.95)

An overview on additional functions for filtering is given in

Table S1. Note that for each filter function, there is a companion

report function (e.g., gl.report.repavg) which summarizes the quality

statistic, but makes no change to the target genlight object. This may

be useful for informing judgements on the threshold to use in filtering.

4.2 | Subsetting and regrouping

The input data and associated individual metadata file provide for

initial assignment of individual labels and populations, and connec-

tion back to the original extractions and tissue samples. Subse-

quently, there is often a need to reassign labels to individuals, to

populations or to aggregate populations. Subsetting the data set may

be necessary, by deleting individuals or populations. These actions

can be achieved using DARTR recoding functions which draw upon

csv recode tables (old label, new label). If the keyword “Delete” is

used as the new label, the population or individual is removed from

the genlight object.

For the more experienced user, the conventional R-syntax to sub-

set data sets using the indexing function “[]” can be used. Functions

in DARTR for recoding populations and individuals are shown in

Table S1, and we provide examples on subsetting and recoding in

our accompanying vignette.

4.3 | Isolation by distance

A common initial way to analyse genetic data is to check for iso-

lation by distance. The approach aims to measure and test the

relationship between genetic differentiation and geographic dis-

tance at neutral loci (Slatkin, 1993; Wright, 1943). Measurements

of genetic differentiation and distances can be based on individu-

als or subpopulations. We implemented an isolation-by-distance

analysis on the genlight object following the approach of Rousset

(1997). If coordinates are provided as part of the individual meta-

data, the function gl.ibd() with default parameters set reprojects

those coordinates from geographic coordinates (lat/long) to dis-

tances in metres (using the Mercator projection) and plots Fst/
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1 � Fst against log(geographic distance). Parameters can be set al-

lowing any genetic or environmental distance (e.g., least-cost dis-

tances calculated via the package POPGENREPORT; Gruber &

Adamack, 2015) to be used. A Mantel test based on bootstrapping

is performed to test for significance of the association of both

matrices. The function

gl.ibd(gl)

returns the pairwise genetic and Euclidean distance matrices and

statistics of a Mantel test.

4.4 | Fixed difference analysis

If the interest of the study is in spatial population differentiation,

there is some advantage in considering only fixed differences

between populations, that is, allelic differences where the alleles

have come to fixation to alternative states in populations taken

pairwise (Davis & Nixon, 1992; Georges & Adams, 1996). A fixed

difference between two populations at a specific locus occurs

when the populations share no alleles at that locus. Gene frequen-

cies may ebb and flow, but once a locus becomes fixed for an

allele or suite of alleles, there is no returning. The accumulation of

fixed differences between two populations is considered a robust

indication of lack of gene flow. In a nutshell, fixed differences are

summed over populations taken pairwise, and when two popula-

tions have no fixed differences (or insubstantial fixed differences),

the populations are amalgamated and the process repeated until

there is no further reduction (Georges & Adams, 1996). The final

set of taxa are diagnosable by the presence or absence of a set of

alleles at multiple loci. The script gl.collapse.recur

sive(gl,t=0) will ultimately yield a grouping of aggregated

populations that are diagnosable from each other by one or more

fixed allelic differences.

With the large number of loci typically generated in SNP data

sets, there is a risk of generating false positives, that is, fixed dif-

ferences arising by chance in the samples when they do not occur

in the populations from which the samples are drawn. It is diffi-

cult to calculate the expected frequency of false positives for two

samples of a given size without detailed knowledge of the allele

frequency distribution of the populations from which they were

drawn, and there is the issue of compounding error. However, the

probability of a false positive becomes vanishingly small regardless

of these two influences provided samples sizes for each popula-

tion are ten or more (2n = 20). This should be a target for sam-

pling intensity, and manual amalgamation of populations before

fixed difference analysis should be considered where sample sizes

are below 5. Two parameters in gl.collapse.recur

sive provide control over sample size. Parameter tpop sets

the number of fixed differences that are tolerated when amalga-

mating two populations. The default is tpop=0, but tpop=1

is recommended for corroborated fixed differences. The second

parameter is nlimit (default=2), which is the combined sample

size of the two populations being compared that is required for

an assessment of fixed differences. One might choose for

example, to set nlimit=10 to ensure an adequate sample

size, taking into account missing values, in each of the paired

comparisons.

Definition of an absolute fixed difference can be relaxed to allow

fixed differences to be defined at some specified level of allele fre-

quency, say 0.05 to score two populations with SNP allele frequen-

cies of 95:5% vs. 5:95% to be regarded as fixed. This enables

examination of structure among populations using allele frequencies

that have come nearly, but not yet, to fixation.

4.5 | Population assignment

Assigning individuals of unknown provenance to populations of

known provenance is a challenging exercise, and several approaches

have been suggested (Blanchong, Scribner, & Winterstein, 2002;

G€otz & Thaller, 1998; Manel, Gaggiotti, & Waples, 2005; Paetkau,

Slade, Burden, & Estoup, 2004). A first approach is to eliminate from

consideration those target populations where a SNP allele is present

in the unknown individual but not in the target. When the unknown

individual possesses such a private allele, the target population is

unlikely to be the source population. This analysis can be performed

with function gl.report.pa. In many cases, examining private

alleles will narrow down the possible source populations

considerably, and depending on the spatial resolution required for

the assignment, may provide a satisfactory answer.

A second approach is to examine the position of the unknown

individual relative to the target populations in a reduced ordinated

locus space using PCoA. This graphic representation is provided

by gl.assign. Addition of confidence ellipses then allows a

decision to eliminate some populations from consideration as the

source of the unknown individual. The converse is not true. This

approach does not allow assignment of the unknown to popula-

tions that contain the unknown within their confidence ellipse.

The overall confidence envelope is multidimensional, and separa-

tion of the unknown from a target population may occur in dee-

per dimensions. Hence, as with the private alleles approach, this

graphical approach serves to narrow down the candidates for the

source of the unknown and may, in that sense, provide a satisfac-

tory answer.

A third approach is to eliminate from consideration those popula-

tions for which the unknown has private alleles, and then calculate

the probability or likelihood of yielding the genotype of the

unknown individual given the observed allele frequencies in each

remaining target population. Using this approach, the individual is

assigned notionally to those populations for which this probability is

highest; populations for which the probability is lower than some

level of significance are eliminated from further consideration. This

approach was first applied in a study of microsatellite markers in

bear populations (Paetkau et al., 2004) and subsequently applied

using classical and Bayesian approaches to estimating probabilities

(Blanchong et al., 2002; G€otz & Thaller, 1998).

Unfortunately, the sheer number of SNPs generated by next-

generation sequencing technologies, often in the 10s or 100s of
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thousands, makes the assumption of independence of the loci unten-

able. The nonindependence (linkage) of loci is problematic, and with-

out additional genomic information, it is not possible to overcome

this directly. In addition, the sample sizes used in studies of popula-

tion assignment are typically small, and inappropriate for tests of suf-

ficient power to identify loci that can be regarded as independent.

This lack of independence leads also to a statistical problem, because

independence is a prerequisite for combining the probabilities (or

likelihoods) of the observed genotype at each locus as a simple pro-

duct to yield an overall probability of assignment for the unknown

genotype. Nevertheless, this approach can be used as an index by

which to make a judgement on assignment, so long as the index is

not regarded as an accurate estimate of probability of assignment.

A final option is a fourth approach that addresses the issue of

nonindependence (linkage) among the SNP loci by ordinating the

space defined by those loci. The resultant axes, linear combinations

of the information contained in each locus, are orthogonal and so

can be regarded as independent. Subsequent standardization can

achieve independent and identically distributed variates, which sim-

plifies analysis of probabilities and likelihoods. This new approach,

outlined below, is now implemented in R—it is likely to have wide

applicability.

The script gl.assign first eliminates populations on the

basis of private alleles. It then ordinates the space defined in locus

space for the remaining populations. A limited number of dimensions

are retained in the final solution, and the decision is based on con-

sideration of (i) the number of substantive eigenvalues (greater in

explanatory power than the original variables before ordination), (ii)

the number of populations including the unknown, (iii) an operational

maximum number of dimensions as specified in the script (dim=7) or

(iv) a user specified value. The script selects the minimum of these

values to set the dimension of the reduced ordination space used

subsequently.

A 95% confidence envelope (or any other level of confidence as

specified by the user) is defined in the reduced ordinated space, and

the likelihood of the unknown genotype occurring is estimated for

each dimension under normal distribution assumptions. These likeli-

hoods are logged for computational reasons, weighted by the eigen-

value for their respective dimension and summed to yield an

Assignment Index for the unknown against each population. Sum-

ming the weighted logged likelihoods is supported by the indepen-

dence of each of the ordinated axes, but the result should be

nevertheless regarded as an assignment index rather than an accu-

rate likelihood.

An Assignment Index is calculated in the same way for a notional

individual residing on the boundary of the confidence envelope.

Comparing the Assignment Index for each population with that of

the notional boundary individual provides a basis for a decision on

assignment. If the Assignment Index for the unknown is less than

the critical value for the Assignment Index (that of the boundary

individual), then the unknown is assigned to that population. Where

more than one population is selected, the population with the great-

est Assignment Index is the most likely.

4.6 | Hardy–Weinberg equilibrium and gametic-
phase disequilibrium

Testing data for conformation to Hardy–Weinberg and gametic-phase

disequilibrium expectations prior to analyses has been a cornerstone

of population genetic analyses because many downstream analyses

depend on those assumptions (Allendorf & Luikart, 2007; Hedrick,

2011). Yet, our observation is that these analyses are infrequently

reported for SNP data sets. One explanation for this may be the high

computational power required to undertake these analyses for typical

SNP data sets, and the lack of user-friendly software packages geared

to population genomic analyses where analyses must be conducted at

the population level. The function gl.report.hwe and gl.filter.hwe can

be used to test and then filter loci on the basis of meeting HWE

expectations for each locus within each population or overall. Users

can then evaluate the consistency of these departures across popula-

tions before deciding whether to exclude loci.

Tests for gametic-phase disequilibrium are a computational chal-

lenge because of the requirement to run an analysis on the pairwise

linkage disequilibrium of all pairs of loci for every sampled population.

We implemented a very fast and efficient version that takes advan-

tage of the multicore architecture of modern processors. Although

this kind of analysis was available before, it was almost impossible to

implement for a normal user as it first required to subset the data set

for all subpopulation and then run often several hundreds of thou-

sands pairwise comparisons between loci. The function

gl.report.ld(gl)

returns a matrix that identifies loci under linkage disequilibrium for

each subpopulation. Users can evaluate consistency of departures

before deciding whether to exclude loci. Analyses of 2,000–5,000

SNP loci for populations of 20-30 individuals typically take 20-

60 min per population on a 25-core cluster.

4.7 | Detecting loci under selection

High marker coverage of genomes also provides opportunities to

detect signals of selection through the detection of outlier loci [“gen-

ome scans”; for a review see Excoffier, Hofer, and Foll (2009)]. A

potential downstream analysis is to study the association of those

loci with environmental and trait data (Hecht, Matala, Hess, &

Narum, 2015). Alternatively, many analyses assume markers are neu-

tral, and selected markers must be removed prior to data analysis. A

variety of approaches to detecting signals of selection have been

developed. Lotterhos and Whitlock (2015) showed that their statisti-

cal motivated approach fitting a curve to the distribution of a

trimmed subset of neutral loci provides the most reliable identifica-

tion of loci experiencing directional selection, and implemented the

method in the R package Outflank [(Lotterhos & Whitlock, 2015),

available on GitHub]. We re-implemented the existing function in

our package (with permission of the authors) to link it to genlight

objects. The code for such an analysis now simplifies to:
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gl.outflank(gl)

This function returns the same output as the original function

implemented by Lotterhos and Whitlock (2015).

5 | EXPORTING

Although there are a number of analysis available within R, it is often

desirable to run specialized software that require often a quite par-

ticular, proprietary format. For those cases, we provide several

export functions that create data files for use as input for those pro-

grams. The package provides an export function to convert genlight

objects to be used for the following software programs: STRUCTURE

(Pritchard, Stephens, & Donnelly, 2000), FASTSTRUCTURE (Raj, Stephens,

& Pritchard, 2014), NEWHYBRIDS (Anderson & Thompson, 2002).

In addition, we provide a function that exports the data set in the

commonly required FASTA format if sequence information is available.

Here, we implemented four different versions that output the actual

data set as the concatenated full sequences with ambiguity codes,

majority codes in the case of missing data and only the SNP positions.

This function needs to have information on the sequence and on the

type and position of the SNP within the sequence. If DArT data are

used, the genlight object already contains this information in the right

slots. If data sets from other sources are used, the user needs to put

the information into the genlight object. The vignette provided with

the package gives a detailed example how to achieve this.

Finally, there are three important R packages commonly used to

analyse population genomic data sets that use their own format: APE,

DEMERELATE, and SNPRELATE. The DARTR package provides functions to

convert a genlight object into data structures suitable for those

packages. In addition, we provide an internal conversion from gen-

light to genind and vice versa to allow the interchange between

those formats. For example, the package POPGENREPORT (Adamack &

Gruber, 2014) calculates landscape resistance matrices and conducts

isolation–by-distance analysis based on genind objects, and the pack-

age MMOD (Winter, 2012) calculates a variety of genetic distance

metrics also based on the genind format. These conversion functions

facilitate the construction of a single R workflow concatenating func-

tions from several popular R packages.

6 | DISCUSSION

In developing the DARTR package, our primary aim was to make it sim-

ple for geneticists unfamiliar with R to capitalize on the power and

flexibility of this rapidly growing platform to analyse large SNP data

sets for the study of population genomic and phylogenomic prob-

lems. Although several packages addressing these types of analyses

exist, none provide a single framework where a comprehensive analy-

sis can be completed starting from data quality assessment to funda-

mental analyses common to many research problems. DARTR achieves

this by a combination of newly developed functions, and by

packaging functions available in other packages but often based on

unique data formats, which are more difficult to integrate into a sin-

gle workflow and may lead to conversion errors. An often overlooked

but very important step for the beginner is being able to filter their

data set in terms of quality and on the basis of individual metrics

such as population identifier, location and other grouping variables.

DARTR provides more than 20 new filtering functions to conveniently

subset SNP data. Moreover, DARTR also provides functions and types

of analysis that have not been implemented before in R (fixed differ-

ence analysis, population assignments, fast linkage disequilibrium per

population). An overview of all available functions is given in

Table S1. In addition, DARTR permits an efficient data processing work-

flow by utilizing a single standard format—the genlight data format.

The genlight format has several very useful attributes—namely, it is

very compact allowing efficient data storage, and core functions are

programmed using C, which is one of the fastest computer languages.

Finally, the genlight structure is expandable via the @other slot which

permits additional metadata to be linked to genotypes, and loci, and

therefore a straight forward procedure to subset data sets and there

are already a number of pathways to convert existing formats into a

genlight object. This makes genlight the prime candidate to become

the de facto standard to analyse SNP data, and we advocate its use

for the development of new population genomic methods.
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