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Abstract: Dragon lizards (Squamata: Agamidae) comprise about 520 species in six subfamilies
distributed across Asia, Australasia and Africa. Only five species are known to have sex chromosomes.
All of them possess ZZ/ZW sex chromosomes, which are microchromosomes in four species from the
subfamily Amphibolurinae, but much larger in Phrynocephalus vlangalii from the subfamily Agaminae.
In most previous studies of these sex chromosomes, the focus has been on Australian species from
the subfamily Amphibolurinae, but only the sex chromosomes of the Australian central bearded
dragon (Pogona vitticeps) are well-characterized cytogenetically. To determine the level of synteny of
the sex chromosomes of P. vitticeps across agamid subfamilies, we performed cross-species two-colour
FISH using two bacterial artificial chromosome (BAC) clones from the pseudo-autosomal regions of
P. vitticeps. We mapped these two BACs across representative species from all six subfamilies as well
as two species of chameleons, the sister group to agamids. We found that one of these BAC sequences
is conserved in macrochromosomes and the other in microchromosomes across the agamid lineages.
However, within the Amphibolurinae, there is evidence of multiple chromosomal rearrangements
with one of the BACs mapping to the second-largest chromosome pair and to the microchromosomes
in multiple species including the sex chromosomes of P. vitticeps. Intriguingly, no hybridization signal
was observed in chameleons for either of these BACs, suggesting a likely agamid origin of these
sequences. Our study shows lineage-specific evolution of sequences/syntenic blocks and successive
rearrangements and reveals a complex history of sequences leading to their association with important
biological processes such as the evolution of sex chromosomes and sex determination.
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1. Introduction

Reptiles are well known for their diverse modes of sex determination and sex chromosomes [1,2].
They exhibit large variability in the degree of differentiation of sex chromosomes ranging from homomorphic
to heteromorphic in structure [2–5]. Squamate reptiles (lizards, snakes and amphisbaenians) are the most
diverse reptile group in terms of species diversity and mode of sex determination [1,6]. The variability seen
among squamate sex chromosomes suggests that sex chromosome and sex determination systems have
evolved independently many times. Non-homologous sex chromosomes have been reported even among
relatively closely related species [2,5,7]. The same parts of the genome (i.e., homologous regions) have been
found to play the role of sex chromosomes in different vertebrate taxa [5,8–11]. A high degree of synteny
has been observed between birds and squamate reptiles owing to a relative low degree of chromosomal
rearrangements in this group [5,12–18]. Temperature-dependent sex determination (TSD), genotypic sex
determination (GSD), and GSD with temperature influences between relatively closely related species
make squamate lizards an interesting group to study and understand the evolution of sex chromosomes.

Agamid lizards (Squamata: Agamidae), commonly known as dragons in Australasia, are notorious
for their variability in forms of sex determination [19–23]. Together with chameleons (Chamaeleonidae),
they form the iguanian clade Acrodonta, sister to iguanas (Pleurodonta) [24,25]. Acrodonts are an
interesting group in terms of the evolution and diversity of sex determination [7,26,27], while the
iguanas have, with one exception (basilisks), conserved XX/XY sex chromosomes [28,29]. There are
about 520 currently described agamid species [6] comprising six subfamilies that diverged around
70–120 million years ago [25,30]. Most agamid species are oviparous [6], and the groups includes
species with obligate and facultative parthenogenesis [31–33]. Sex determination mode is relatively
well studied in a few species from the subfamily Amphibolurinae [7,19], but not in the other five
subfamilies (Figure 1), highlighting a significant gap in our understanding of how sex chromosomes
evolved in this widespread and chromosomally variable family.
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Figure 1. Estimated distribution of the agamid subfamilies together with known sex determination
mechanisms [6,17,20,21,24,31,34–49]. The species of the subfamily Draconinae are distributed over
South and Southeast Asia, Agaminae across Africa and Asia, Amphibolurinae across Australia,
Papua New Guinea and Southeast Asia, Hydrosaurinae across Papua New Guinea, the Philippines
and Indonesia, Leiolepidinae across Southeast Asia and Uromastycinae across Africa and South
Asia. TSD—temperature dependent sex determination, ZZ/ZW—female heterogamety. Obligatory
parthenogenesis has been reported in several species of the subfamily Leiolepidinae, although the sex
determination system is not known in this lineage.
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Only about one fifth (91 species) of Agamid species have been karyotyped, with diploid
chromosome numbers ranging from 2n = 32 to 2n = 54 [4,6,50]. Agamids exhibit a diverse array
of sex-determination mechanisms that include TSD, GSD and GSD with sex reversal [1,2,22,39,51].
Sex chromosomes have only been identified in five species, all with a female heterogametic system
(ZZ male/ZW female). Sex chromosomes in an Asian species Phrynocephalus vlangalii from the
subfamily Agaminae are macrochromosomes [39], whereas the four Australian species from the
subfamily Amphibolurinae, namely, Pogona vitticeps, P. barbata, Diporiphora nobbi and Ctenophorus fordi,
have micro sex chromosomes [7,20]. The karyotypes of the Australian species are highly conserved,
comprising six pairs of macrochromosomes and ten pairs of microchromosomes [35]. Nevertheless,
they show considerable evolutionary lability in sex determination mechanisms [19,52] with a number
of likely transitions reported within GSD forms and between GSD and TSD [2,7,30,53].

Molecular cytogenetics is a powerful tool for discovering homology and evolutionary trends in
reptile sex chromosomes [54,55] and has provided evidence that the sex chromosomes of lizards are
extremely varied in terms of morphology and homology [2,5]. The Australian central bearded dragon,
Pogona vitticeps, has a well-annotated genome with well-characterized ZZ/ZW sex microchromosomes,
homologous to chicken chromosomes 17 and 23 [20,56–60]. Comparative studies based on this and other
species have revealed chromosomal rearrangements involving sex chromosomes and transitions in sex
chromosomes within the Amphibolurinae [7,61,62], including the rapid evolution of non-homologous
ZW sex chromosomes. Here, we evaluate the synteny of sex chromosomes across the dragons of
the family Agamidae using fluorescence in situ hybridization (FISH) [7]. We used two BAC clones
(Pv03_L07 and Pv150_H19) derived from P. vitticeps ZW sex chromosomes as probes and hybridized
them to the metaphase chromosomes of 14 acrodont taxa (12 agamids from all six subfamilies, and two
chameleons), comprising species that span the spectrum of sex determination, including TSD, GSD and
obligatory parthenogenesis.

2. Materials and Methods

2.1. Animal and Sample Collection

In total, 22 individuals of 14 species of acrodont lizards—12 agamids (from six subfamilies) and
2 chamaeleonid species—were chosen for the study (Table 1). Animal collection, handling, sampling
and all other relevant procedures for the Australian species (P. vitticeps, Tympanocryptis lineata and
Rankinia diemensis) were performed following the Animal Ethics Guidelines of the University of
Canberra (approval number CEAE 16-21), with permits issued by the ACT Government (license
number LT2017960). Fieldwork conducted for Agama picticauda was under Miami-Dade County Parks
and Recreation Scientific Research Permit number 263-2016 and Marquette University IACUC AR-288.
Calotes versicolor and Leiolepis reevesii rubritaeniata specimen collection, animal care and procedures were
approved by the Animal Experiment Committee, Kasetsart University, Thailand (approval number
ACKU61-SCI-021). Phrynocephalus cf. guttatus, Bronchocela cristatella, Leiolepis cf. ngovantrii, Saara loricata
and Chamaeleo calyptratus were sampled in collaboration with breeders in Czech Republic. Samples
of Hydrosaurus weberi and Trioceros johnstoni were provided by Czech zoological gardens (Zoo Plzeň
and Zoopark Zájezd, respectively). All experimental procedures in Czech Republic were approved by
the Committee for Animal Welfare of the Ministry of Agriculture of the Czech Republic, permissions
No. 29555/2006-30 and 8604/2019-7.

2.2. Cell Culture and Chromosome Preparation

Fibroblast cells were cultured from the tail tissues of P. vitticeps, T. lineata, R. diemensis and
A. picticauda for the cytogenetic analyses. Cells were cultured, and metaphase chromosomes were
harvested following the procedures as described by Ezaz et al. [63]. C. versicolor and L. reevesii
rubritaeniata cells were also cultured from tail tissues. Cell culture and chromosome harvesting
followed the procedures as described by Chaiprasertsri et al. [64]. Mitotic chromosomes of P. cf.
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guttatus, B. cristatella, L. cf. ngovantrii, S. loricata, C. calyptratus, H. weberi and T. johnstoni were obtained
by cultivation of leukocytes and the preparation of the cell cultures and chromosome harvesting
followed a detailed protocol described in Mazzoleni et al. [65].

Table 1. Results of the bacterial artificial chromosome (BAC) clone fluorescence in situ hybridization
(FISH) experiments. SDM = sex determination mechanism, 2n = diploid chromosome number,
M + m = number of macrochromosomes and microchromosomes, GSD = genotypic sex determination,
TSD = temperature-dependent sex determination, UNK = unknown, OP = unisexuality with obligatory
parthenogenesis, qtel—telomeric region of the large arm of a macrochromosome.

Taxon SDM 2n M +m Sex
Mapping

Pv03_L07 Pv150_H19

Family: Agamidae
Subfamily Amphibolurinae

Pogona vitticeps GSD—ZW 32 12 + 20 1 F 2qtel + ZW micro sex chromosome ZW micro sex
chromosome

Tympanocryptis lineata UNK 32 12 + 20 1 M, 1 F 2qtel + 1 pair of micros 1 pair of micros
Rankinia diemensis UNK 32 12 + 20 1 M, 1 F 2qtel + 2 pairs of micros 1 pair of micros

Subfamily Agaminae
Agama picticauda TSD 44 20 + 24 1 M, 1 F 1qtel 1 pair of micros

Phrynocephalus cf. guttatus UNK 46 22 + 24 1 M, 1 F 1qtel No hybridization
Subfamily Draconinae

Calotes versicolor TSD 34 12 + 22 1 M, 1 F 2qtel 1 pair of micros
Bronchocela cristatella UNK 34 14 + 20 1 F 5qtel No hybridization

Subfamily Hydrosaurinae
Hydrosaurus sp. UNK 36 12 + 24 1 UNK No hybridization 1 pair of micros

Hydrosaurus weberi UNK 36 12 + 24 1 M 2qtel No hybridization
Subfamily Leiolepidinae

Leiolepis reevesii rubritaeniata UNK 36 12 + 24 1 F 2qtel 1 pair of micros
Leiolepis cf. ngovantrii OP 36 12 + 24 1 F 2qtel 1 pair of micros

Subfamily Uromastycinae
Saara loricata UNK 36 12 + 24 1 M, 1 F 2qtel No hybridization

Family: Chamaeleonidae
Chamaeleo calyptratus XY 24 12 + 12 1 M, 1 F No hybridization No hybridization

Trioceros johnstoni UNK 36 14 + 22 1 M, 1 F No hybridization No hybridization

2.3. Fluorescence In Situ Hybridization (FISH) and Image Analysis

Two P. vitticeps ZW sex chromosome BAC clones (Pv03_L07 and Pv150_H19) from the P. vitticeps
Bacterial Artificial Chromosome (BAC) library (6.2x, Amplicon Express, Pullman, WA, USA) [56]
were mapped onto the metaphase chromosomes of all 14 species (Table 1). The sex chromosomes of
P. vitticeps have been found to be highly repetitive in nature [56]. The BAC Pv03_L07 (about 98 kb)
contains 41% of repetitive sequences of which 43% are non-LTR (long terminal repeat) retrotransposons
and includes at least two genes, ZNF135-like and a fragment of ORPRD1 [56]. BAC Pv150_H19 (size not
estimated and repeat content not known) contains the NR5A1 gene [59], which is known to play an
important role in sex differentiation [59]. These two BAC clones share homologous sequences with
chicken chromosome 17 and were chosen because they were previously mapped in few agamid species,
and their sequence content is known [59]. The two BACs, Pv03_L07 and Pv150_H19, represent the two
ends of Z and W chromosomes of P. vitticeps. In addition, BAC Pv03_L07 hybridizes onto the telomeric
region of the second-largest chromosome (chromosome 2) of P. vitticeps [56,57,59]. The two BAC clones
were mapped using FISH, following the protocols described in Ezaz et al. [7] and Young et al. [58].

All slides were observed, and images of metaphases were captured using a Zeiss Axio Scope A1
epifluorescence microscope fitted with a high-resolution microscopy camera AxioCam MRm Rev. 3
(Carl Zeiss Ltd. Oberkochen, Germany). Images were analyzed using Metasystems Isis FISH Imaging
System V 5.5.10 software (Metasystems, Altlussheim, Germany).

3. Results

In line with the previous observations [56,59,61], the BAC clone Pv03_L07 hybridized onto the Z
and W chromosomes as well as onto the telomeric region of the long arms of the chromosome pair
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2 in P. vitticeps (Figure 2a). This BAC probe hybridized onto the telomeric region of the long arms
of the chromosome pair 2 in all species under the subfamilies Amphibolurinae (P. vitticeps, T. lineata
and R. diemensis; Figure 2a–c), Uromastycinae (S. loricata; Figure 2d) and Leiolepidinae (L. reevesii
rubritaeniata and L. cf. ngovantrii; Figure 2e,f). A similar hybridization pattern was also observed
in H. weberi (Hydrosaurinae, Figure 2h), but no hybridization signal was detected in Hydrosaurus
sp. (Figure 2g). The probe also hybridized onto chromosome 2 in C. versicolor from the subfamily
Draconinae, (Figure 2i) but onto the fifth-largest chromosome pair in another member of that family,
B. cristatella (Figure 2j). Hybridization signals from BAC clone Pv03_L07 were observed in the largest
chromosome pair in members of the subfamily Agaminae (A. picticauda and P. cf. guttatus; Figure 2k,l).
Additional to chromosome 2, BAC Pv03_L07 only hybridized onto microchromosomes in the subfamily
Amphibolurinae (Figure 2a–c), onto one pair in P. vitticeps and T. lineata and two pairs in R. diemensis.
In P. vitticeps, the BAC Pv03_L07 hybridization signal varied between Z and W with a brighter signal in
the W [56,59]. The only other species in which we observed a similar pattern was R. diemensis. In this
species, BAC Pv03_L07 hybridized to an additional pair of microchromosomes and the hybridization
signals in one pair are brighter than the other. However, no inter-sex pattern variation was observed
either in this species.Genes 2020, 11, x FOR PEER REVIEW 6 of 13 
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Figure 2. FISH (fluorescence in situ hybridization) using P. vitticeps BAC clones (Pv03_L07 in
green and Pv150_H19 in red) on different agamid species. Pvi—P. vitticeps (a); Tli—T. lineata (b);
Rdi—R. diemensis (c); Slo—S. loricate (d); Api—A. picticauda (k); Pgu—P. cf. guttatus (l); Cve—C. versicolor
(i); Bcr—B. cristatella (j); Lrr—L. reevesii rubritaeniata (e); Lng—L. cf. ngovantrii (f); Hydrosaurus sp. (g);
Hwe—H. weberi (h); UNK—unknown sex. Arrows and insets showing very low hybridization signals.
Scale bars equal 5 µm.

The hybridization patterns formed by the BAC probe Pv150_H19 across agamid lizards are
presented in Figure 2. This BAC probe hybridized onto the Z and W chromosomes of P. vitticeps
(Figure 2a), as previously observed [57,59]. The hybridization signals from Pv150_H19 co-localized with
the signals from Pv03_L07 in this species (Figure 2a) and hybridized onto a pair of microchromosomes
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in all species of the subfamilies Amphibolurinae (P. vitticeps, T. lineata and R. diemensis; Figure 2a–c)
and Leiolepidinae (L. reevesii rubritaeniata and L. cf. ngovantrii; Figure 2e,f). However, the hybridization
signals were observed in only one species from each of the subfamilies Hydrosaurinae (Hydrosaurus
sp.; Figure 2g), Draconinae (C. versicolor; Figure 2i) and Agaminae (A. picticauda; Figure 2k) while
no hybridization signal was observed in S. loricata (subfamily Uromastycinae; Figure 2d). Both BAC
clones hybridized onto microchromosomes in all species of the subfamily Amphibolurinae (P. vitticeps,
T. lineata and R. diemensis; Figure 2a–c). Nevertheless, in T. lineata, the BACs did not colocalize on the
same pair of microchromosomes. No inter- or intra-sex variation of the BAC Pv150_H19 hybridization
signal was recorded from P. vitticeps [59], nor was variation detected in any of our studied species.
No hybridization signal was observed from any of the BAC clones in any of the chameleon species
(C. calyptratus and T. johnstoni; Table 1). A summary of the overall BAC mapping is presented in Table 1.

4. Discussion

Our data revealed the conservation of macro- and microchromosome specific sequences across
Agamidae. The P. vitticeps sex chromosome derived BAC probe Pv03_L07, which hybridizes onto
the sex microchromosomes and telomeric region of chromosome 2 in P. vitticeps, hybridized to a pair
of macrochromosomes across agamid lineages in all but one species (Hydrosaurus sp.; Figure 2g).
This suggests that chromosomal synteny is retained across agamid lineages. In contrast, none of the
BACs hybridized to chameleon chromosomes. Together, our findings indicate that the sequence is
conserved in macrochromosomes across the Agamidae but has most likely been secondarily lost in the
ancestor of Hydrosaurus sp. (Figure 3).

The BAC Pv03_L07 exhibits a conserved hybridization pattern on the telomeric region of
macrochromosome 2 in members of the subfamilies Amphibolurinae, Hydrosaurinae, Leiolepidinae
and Uromastycinae. However, it is localized in the largest chromosome pair in both members of the
subfamily Agaminae, which might represent a synapomorphy. The localization of the hybridization
signal of Pv03_L07 on chromosome 5 in B. cristatella suggests a chromosomal rearrangement in its
ancestor. Additionally, it hybridizes onto two pairs of microchromosomes in R. diemensis and one
pair in T. lineata. Both of those species are representatives of the subfamily Amphibolurinae, and so,
these data lend support to the chromosomal rearrangements such as duplication near the telomeric
region of ancestral chromosome 2 and successive translocation to microchromosomes as previously
reported by Matsubara et al. [61].

The second BAC clone, Pv150_H19, was derived from P. vitticeps Z and W sex chromosomes
only, and its sequences are located onto the opposite ends of the Z and W micro sex chromosomes
in relation to Pv03_L07 (Figure 2a). This probe also showed somewhat conserved distribution in
a pair of microchromosomes across the agamid phylogeny. The probe hybridized to all species of
Amhibolurinae and Leiolepidinae, to one of two species in Hydrosaurinae, Draconinae and Agaminae
and did not hybridize to the only species from Uromastycinae (Figure 3). This suggests a haphazard
distribution across the lineages. The absence of signal in S. loricata and presence in all other agamid
subfamilies indicate that BAC Pv150_H19 sequence might have evolved after the split of the other
lineages from Uromastycinae (Figure 3). The lack of hybridization signal in B. cristatella, P. cf. guttatus
and H. weberi suggests an independent loss in these three species. Alternatively, there could be a
mutation in the target sequence so that the probe was washed away from the less complementary
target, and/or shrinkage of the target sequence, so it was no longer detectable. Since BACs are usually
predominately composed of repeats which evolve quickly, it is possible that the sequences are still
present in all the species but no longer detectable with the approach used. The sequence content of both
BACs is enriched on repetitive elements [52,55], which—due to their fast-evolution nature—may have
diverged significantly since agamid and chameleon lineages split approximately 90–125 million years
ago (MYA) [25,26,62]. Therefore, the homologous sequences might exist in the genome of chameleons
but the BACs could not hybridize because of significant divergence from P. vitticeps. (These results
must be viewed with some caution, however, as they are based on a limited number of chameleon
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species, which have also been shown to harbour transitions between sex determining systems [27].)
Pv150_H19 hybridized to a microchromosome pair in both TSD and GSD species, but we were unable
to determine whether these microchromosomes (with Pv150_H19 signals) were sex chromosomes.
Nevertheless, since this BAC contains a gene associated with sex differentiation function (NR5A1),
it is possible that the microchromosome pair with Pv150_H19 could be a sex chromosome in the GSD
species. If so, those same homologous chromosomes could be autosomes in the TSD species while
still contributing to the sex-differentiation cascade or pathways. Further investigation is required on
this aspect.Genes 2020, 11, x FOR PEER REVIEW 8 of 13 
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to scale) is adopted from Pyron, et al. [24]. Known divergence times are provided in million years ago
(MYA) [25,30,66].

The ancestral vertebrate karyotype has remained relatively stable over the last ~370 million years
as large segments of ancestral chromosomes are still retained among all lineages [67]. These segments
have been rearranged, but their synteny has been maintained together with increases and decreases of
genomic content and genome sizes. Chromosome painting has been used to determine such homologies,
as well as rearrangements among and between different reptilian species [8]. For example, karyotype
and genome organization have been found to be conserved in monitor lizards (Varanidae) [18,68].
Conservation of several homologous syntenic regions has been found to be retained within different
groups of fishes [69,70] and birds [71,72] as well. Comparative painting has also revealed chromosome
homologies between bird groups [73] and also between vertebrate groups as observed between turtle
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sex chromosomes and amphibian autosomes [74]. The data presented in agamids show that this group
has quite conserved karyotypes as well, and many rearrangements can be putatively dated a long
time ago (Figure 3). The broad distribution of our Pogona vitticeps derived BAC sequences among
agamids indicate that there has been conservation of chromosome segments across agamid lineages.
The BAC sequence contained in the BAC Pv150_H19 is largely conserved in microchromosomes
across the agamid phylogeny, while the other (BAC Pv03_L07) in macrochromosomes appears to
have been only translocated to microchromosomes in the ancestor of the studied members of the
subfamily Amphibolurinae. It was then likely later duplicated to a microchromosome containing
the BAC sequence Pv150_H19, while the original microchromosome copy of the BAC Pv03_L07 has
been lost in the ancestor of P. vitticeps (Figure 3). Since nearly half of the BAC Pv03_L07 consists of
mobile elements, another explanation of the co-occurrence of this BAC signal in the microchromosomes
could be as a result of the propagation of these mobile elements. The co-occurrence of both sequences
in the ZW sex microchromosomes in P. vitticeps is thus likely a result of a rather complex history
of rearrangements [59]. Future investigations that include more agamid lizards will better test the
proposition that the reconstruction of events suggested here was important for the establishment of
cytogenetically distinguishable sex chromosomes in P. vitticeps and its relatives.
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