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induce a mixed pattern of cell death 
pathways (ferroptosis, apoptosis, 
necroptosis…), raising questions 
about the specifi city of the molecular 
mechanism of ferroptosis. Should 
these different types of cell death truly 
be viewed in isolation? Although the 
initiators, mediators, and regulators of 
ferroptosis are being discovered, its 
fi nal executors remain elusive (Table 1). 
One hypothesis is that PLOOH may be 
the executor of ferroptosis, but there is 
no direct quantifi cation of the threshold 
of PLOOH required to trigger cell death 
in vitro or in vivo. Several alternative 
hypotheses are being proposed. First, 
some unknown pore-forming proteins 
may interact with the lipid bilayer, 
thereby compromising the integrity 
of the membrane. Such proteins 
would act similarly to gasdermin D 
and mixed lineage kinase domain 
like pseudokinase, which cause 
plasma membrane permeabilization 
in pyroptosis and necroptosis, 
respectively. Second, ferroptosis 
is accompanied by overactivation 
of autophagy and lysosomes. The 
release of lysosomal hydrolases might 
directly cause the plasma membrane to 
rupture, in which case ferroptosis would 
be a type of lysosomal cell death. Third, 
an imbalanced phospholipid asymmetry 
might perturb membrane structure 
and function, leading to ferroptosis. 
This process then would possibly be 
regulated by phospholipid fl ippases, 
such as P4-ATPases. 

As a lytic form of cell death, 
ferroptosis-mediated infl ammation 
is implicated in the pathogenesis of 
various diseases. However, it still 
lacks unique markers to evaluate and 
distinguish the immune response to 
ferroptotic and non-ferroptotic cell 
death. It is likely that human diseases 
are coupled to the simultaneous 
deregulation of several cell-death 
modalities, calling for combined 
interventions on several pathways. 
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 Genetic rescue 
restores long-
term viability of an 
isolated population 
of adders (Vipera 
berus)

 Thomas Madsen1,2,*, Jon Loman3,6, 
Lewis Anderberg4, Håkan Anderberg4, 
Arthur Georges5, and Beata Ujvari2

Climate change is regarded as a 
major threat to global biodiversity 
[1]. However, another key driver 
of declines in biodiversity during 
the last century has been, and 
still is, the devastating impact of 
anthropogenic habitat destruction 
[2]. Human degradation of natural 
habitats has resulted in large, 
formerly homogeneous areas 
becoming exceedingly isolated and 
fragmented, resulting in reduced 
genetic diversity and a concomitant 
increased vulnerability to pathogens 
[3] and increased risk of inbreeding 
[4]. In order to restore genetic diversity 
in small isolated or fragmented 
populations, genetic rescue — that 
is, an intervention in which unrelated 
individuals are brought into a 
population, leading to introduction 
of novel alleles — has been shown 
to reduce the deleterious effects of 
inbreeding [4,5].

Here we report on a study of an 
isolated, and initially severely inbred, 
adder (Vipera berus) population in 
southernmost Sweden [4] spanning 
37 years (1981 to 2017). In the 26 
years after the introduction of 20 
novel males in 1992, we observed 
a rapid increase in genetic diversity 
and a dramatic increase in offspring 
viability [4], resulting in enhanced 
recruitment and concomitant increase 
in adder numbers (Figure 1A,C,D; 
supporting our previous fi ndings [6]). 
This long-term study also revealed 
that in spite of a population bottleneck 
(80% reduction of adder numbers in 
2009 and 2010), population genetic 
heterozygosity, a measure of genetic 
diversity, was higher in 2017 than 
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Figure 1. Population demographic and genetic effects of genetic rescue.
(A) Annual number of male adders recorded from 1981 to 2017. (B) Temporal increase in total 
male adder numbers from 1996 to 2005 (fi lled circles) and from 2010 to 2017 (open circles). 
Zero depicts the total number of males recorded 1996 and 2010, respectively. (C) Observed and 
expected heterozygosity recorded in 1991–1992 (prior to the introduction of the 20 novel males), 
2005 (prior to the reduction in adder numbers observed in 2009 and 2010) and in 2017 (after the 
reduction in observed in 2009 and 2010. (D) Pairwise comparison of heterozygosity.
in 2005 (Figure 1D). Moreover, the 
annual increase in adder numbers after 
the bottleneck (2010 to 2017) was 
higher than that observed prior to the 
bottleneck (1992 to 2005; F1 = 41.7, 
p < 0.0001; Figure 1B). For logistic 
reasons common to many fi eld-based 
studies, we lack treatment replication 
and a control population (BACI 
design). Nevertheless, these fi ndings 
suggest that the benefi ts of genetic 
rescue can extend through subsequent 
periods of population reductions. 

Positive long-term effects of genetic 
rescue on population viability have 
recently been questioned based on 
a study of the Isle Royale wolf (Canis 
lupus) population [7]. The genetic 
rescue of the wolf population was, 
however, restricted to one male 
migrating into the population in 1997. 
Although this male sired numerous 
R1298 Current Biology 30, R1283–R1300, No
litters, the genetic contribution to the
population was restricted to alleles 
from one individual, which most likely
underpins the observation that the 
effect of genetic rescue in the Isle 
Royale wolf case was short-lived.

In the present study, 20 novel male
from two distant populations were 
introduced in 1992 to the population,
which at that time had only 9 males. 
The introduced males were recorded 
mating with all reproductive females, 
who also mated with the resident 
males. Prior to the introduction of the
novel males, the mean proportion of 
malformed and/or inviable offspring 
was 31.6% [4]. Female adders mate 
with multiple males and a higher 
number of male partners increases 
offspring viability [8]. The total lack 
of inviable offspring and the increase
in annual recruitment after the 
vember 2, 2020
introduction of novel males strongly 
suggest that the enhanced offspring 
viability was underpinned by intra-
uterine sperm selection of optimal 
male haplotypes, that is, ‘cryptic 
female choice’ [9].

Both short-term and long-term 
reduction in population size can 
cause signifi cant reductions in 
genetic diversity [10]. Although we 
do not know exactly what year the 
population bottleneck observed in 
2009 and 2010 was initiated, we fi nd it 
reasonable to assume that it coincided 
with the construction of a house and 
brick wall in 2006 (see Supplemental 
Information). By 2015 the population 
number had, however, recovered to 
that recorded in 2005. This suggests 
that the bottleneck may have lasted 
for fi ve to six years, corresponding to 
a maximum of two adder generations. 
In spite of this, our fi ndings show that 
genetic diversity of the population was 
higher in 2017, after the bottleneck, 
compared to that recorded in 2005, 
prior to the bottleneck. Moreover, the 
population number increased at a 
faster rate after the bottleneck than 
it did prior to the bottleneck. In our 
view, this strongly suggests that the 
positive effects of the genetic rescue 
resulted in such a signifi cant increase 
in population genetic diversity that it 
enabled the population to overcome 
the genetic impact of the subsequent 
bottleneck. This study emphasizes the 
value of empirical long-term studies 
of genetic rescue to complement 
and test the predictions of the rich 
theoretical frameworks that have been 
developed in this fi eld.

Our study shows that long-term 
studies are crucial to allow for a 
robust documentation of the effects 
of genetic rescue and, moreover, in 
order to be successful, large numbers 
of novel alleles have to be introduced 
into the focal population.

SUPPLEMENTAL INFORMATION

Supplemental Information includes two 
fi gures, experimental procedures, and 
supplemental references, and can be 
found with this article online at https://doi.
org/10.1016/j.cub.2020.08.059.
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Events are perceived 
earlier in peripheral 
vision

Ljubica Jovanovic1,2,* 
and Pascal Mamassian1

Visual perception is not instantaneous. 
It takes a few milliseconds for light to be 
transduced in photoreceptors and tens 
of milliseconds more for neuronal spikes 
to occur at successive levels of the 
visual hierarchy. Moreover, the latency of 
responses varies across the visual fi eld 
and the cortical hierarchy. In peripheral 
compared to central vision, the impulse 
response of primates’ ganglion cells 
has a higher peak occurring at shorter 
latency [1], and yet humans’ primary 
visual cortex is activated later [2]. The 
diversity of these physiological results 
makes it diffi cult to predict when is the 
perceived present [3], especially when 
events are presented across the visual 
fi eld. This question cannot be directly 
addressed with paradigms traditionally 
used to investigate perceptual latencies. 
In particular, response times are not 
suitable because they are infl uenced 
by decisional mechanisms, motor-
related processing or compensatory 
mechanisms [4,5]. Likewise, temporal 
order judgements between foveal 
and peripheral stimuli are not suitable 
because humans overweigh foveal 
information when making perceptual 
decisions [6]. Here we explicitly asked 
participants to estimate when a stimulus 
is perceived within a fi xed duration 
temporal interval, rather than relative to 
another stimulus presented in its near 
temporal proximity. We show that the 
perceived time of a visual event depends 
on its position in the visual fi eld. We fi nd 
a large bias to report events earlier when 
they were presented in the periphery.

Participants fi rst learned the duration 
of a fi xed interval that was used as a 
temporal frame in the main part of the 
experiment. A bar representing the 
hand of a clock (Figure 1A) made a full 
revolution in 2 seconds. In the main part 
of the experiment (Figure 1B), the hand 
of the clock was no longer presented, 
and participants were asked to attend 
to the whole duration of the temporal 
frame. The start and end of the frame 

Correspondence were signalled by a change of the 
fi xation point and a brief tone. On each 
trial, at random times after the frame 
onset, a pair of clearly visible stimuli 
were presented briefl y (33 ms) on either 
side of the fi xation. At the frame offset, 
the hand of the clock was presented, 
and participants adjusted its position to 
indicate when the event was perceived. 

We tested the perceived time for 
events presented at fi xation and ten 
different eccentricities (from 2 to 
18 degrees of visual angle). Events 
presented at fi xation were perceived 
veridically, but there was a large bias to 
report events earlier (negative temporal 
bias) when they were presented in the 
periphery (Figure 1D). From a trial-by-trial 
linear mixed-effect analysis, we found 
that temporal bias — the difference 
between reported and presented time — 
was affected by the position of the event 
in the visual fi eld (X2(1) = 23.65, p < 
0.001). We also found that temporal bias 
was affected by presented time (X2(1) = 
679.5, p < 0.001), showing the presence 
of a range effect. Importantly, there 
was no interaction between presented 
time and eccentricity, indicating a 
constant range effect irrespective of the 
eccentricity (X2(1) = 0.45, p = 0.5; Figure 
1C,D). 

Our fi ndings are at odds with previous 
investigations of the perceived synchrony 
between centrally and peripherally 
presented stimuli. In one classical study 
in particular [7], a peripheral stimulus 
needed to be presented earlier for it to 
be perceived simultaneous with a foveal 
stimulus. However, given the temporal 
uncertainty of the fi rst stimulus in these 
experiments, and known biases favouring 
centrally presented stimuli [6], it is 
plausible that these previous results were 
confounded by the time needed to shift 
attention to a peripheral location.

When attention is diffused across a 
large area of space, temporal resolution 
is impaired [8]. Since in our experiment 
there was no spatial uncertainty about 
the events’ location, the absence of 
interaction between presented time and 
eccentricity suggests that the temporal 
bias in favour of peripheral events is not 
due to attention.

 When the present is perceived is 
an important and not well understood 
problem. The most straightforward 
hypothesis is that the perceived time of 
a stimulus is related to its processing, 
and that events are perceived when 
the manuscript being completed. The study
was fi nanced by private funds.
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