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7.1. Introduction 26 NOV 1992 @

Biologists often find themselves in the position of having to use patterns
of distribution and abundance of organisms to detect environmental change
and to infer the cause of the change by associating changes in biological
variables with corresponding changes in physicochemical variables (Norris
and Georges, 1986; Barmuta, 1987). Inevitably, biological and cnviron-
mental correlates of water quality are compared across sites and times, or
against sct standards, to asscss impacts of disturbances or management ini-
tiatives, to develop models useful for prediction, or to establish cause and
effect. Study designs should facilitate the making of these comparisons through
the collection of relevant data, climination of confounding effects. and sc-
lection of appropriate analyscs.

Biologists working with benthic macroinvertebrates have long been aware
of the problems of variability in what they measure (e.g., Needham and
Usinger. 1956) and have emphasized the necd to account for variability of
benthic macroinvertebrate data in their sampling designs (Downing. 1979;
Resh, 1979; Allan, 1984; Morin, 1985; Norris and Georges, 1986; Canton
and Chadwick, 1988; Resh and McElravy, Chapter 5). These sampling de-
signs usually include some level of replication to enable subsequent analyses
to be performed (see Resh and McElravy, Chapter 5).

Several approaches have been developed to cope with the need for some-
times large numbers of replicate collections of macroinvertebrates (Needham
and Usinger, 1956; Chutter and Noble, 1966; Downing, 1979; Resh. 1979,
Allan, 1984) and the need for rapid return of results (Cairns and Van Der
Schalie, 1980). Many indices have been created and used in benthic mon-
itoring studies (see reviews by Cairns et al., 1972; Fager, 1972; Poole, 1974;
Washington, 1984; Hellawell, 1986), but many workers have avoided the
problem altogether by relying on direct measurement or by presenting data
on number of individuals or taxa with little or no analysis (lotic environ-
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7.2. Elucidating Mechanisms

A problem often encountered in assessing water quality concerns the cf-
fects of a range of environmental variables on species that comprise a bi-
ological community. As our knowledge and understanding of aquatic sys-
tems improve. an incrcased need also exists for assessment of the cffects of
interrelationships of factors having minor or subtle outcomes on such com-
munities. Studies assessing water quality often provide large data sets with
many variables. The relationships of cause and cffect between the variables
may be complex and difficult to analyze, often needing multivariate methods
(Green, 1979). Approaches used for the collection of physicochemical data
have been different from those used for the collection of biological data,
and this has resulted in difficulties in associating the two types of data during
analysis. These broad divisions in data types necd not be considered sepa-
rately (Norris and Georges, 1986).

When interpreting the relationships between biological and physicochem-
ical data, it is important to base the interpretations on real biological prop-
erties that relate to the environment rather than just on statistical interpre-
tations (Taylor, 1980; Anderson et al., 1982; Fryer, 1987). Strictly speaking,
causal relationships only can be determined through direct experimental work
in which the features of concern are tested under controlled conditions (sec
Cooper and Barmuta, Chapter 11).

7.3. Data Quality Assurance and Exploratory Analysis
7.3.1. Precision and Analysis

Assurance of the quality of data from sampling involves sound measure-
ment procedures and an understanding of sampling theory. For data to be
useful, knowledge of the variability of repeated measurements is required.
If single samples of benthic macroinvertebrates, or a single biological in-
dicator such as a diversity index, are highly variable and differ at two sta-
tions, the researcher is faced with an ambiguity: do they differ because val-
ues of the indicator actually differ at the two stations, or do they differ solely
because any two samples would be expected to differ as much, even if col-
lected at the same time and from the same station? Environmental variability
is a fundamental problem facing those interested in assessing changes in
water quality through space and time. High environmental variability and
logistical constraints on sample collection and analysis often may result in
data that are too variable to demonstrate the impact of a disturbance, or
management initiatives, on water quality (see also Resh and Jackson, Chap-
ter 6).

Conclusions that water quality at particular sites or times actually differs
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6.

ranges (e.g., a species with the incorrect number allocated to it
during sorting or data entry). Further checks will be necessary.

Calculation of means and standard deviations for subsets (possibly
by date or site) of the data is useful because aberrantly high or low
means. or aberrantly high standard deviations, indicate errors.

Univariate checks for outliers can be performed by testing for val-
ues more than three standard deviations from overall means. Since
counts rarcly are distributed normally, often being highly skewed.
this procedure is bound to produce a high number of suspicious
observations. For skewed data, calculating percentiles and scruti-
nizing values that fall above the ninety-fifth or nincty-ninth per-
centilcs may be preferable.

The frequency of occurrence of particular species in a set of rep-
licates from particular sites can be cross-checked independently.
These occurrences should fall within specified acceptable limits based
on previous work. The calculation of cumulative numbers for the
different species collected can be compared with the total numbers
recorded for each replicate.

Calculation of ratios of the numbers of selected species, which will
be site- or subcatchment-specific. will help to locate which counts
of particular species, or identifications, are in error.

Bivariate checks for outliers, using regressions of the variable un-
der scrutiny with other related variables in the data set, may cnable
identification of erroneous data. For example, numbers of animals
collected may be related linearly to distance from a point source
of organic poltution. If sources are relatively constant, then de-
partures of three or four standard deviations from the regression
will highlight procedural or real environmental problems.

Plots of variables against each other or against time or distance
from a point of impact are useful for visual checks on whether the
data follow logical sequences.

A check on total counts is useful for verifying that counts of in-
dividual species have been entered correctly. Data sheets may con-
sist of a list of macroinvertebrate species, and the data may be
counts of individuals in each species. The total number of animals
counted, although redundant because it can be calculated easily by
statistical computer packages. enables a valuable check against
mispunching of counts of individual species that are otherwise very
difficult to verify.
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man. 1972), a so-called biotic index (Washington, 1984). All biological
mcasures arc designed to capture some aspect of the community at a par-
ticular sitc or time.

Nearly 40% of all lake and river studies surveyed in Chapter 5 (Table 5.6)
used some type of index. The most common one was the Shannon (1948)
index. followed by percent similarity (Whittaker, 1952) in lentic studies and
the Simpson (1949) diversity index in lotic studies. Reviews of indices rel-
ative to aquatic systems can be found in Cairns et al. (1972), Washington
(1984), Hellawell (1986, p. 430), Abel (1989), and Johnson et al. (Chapter
4). According to Green (1979), Auclair and Goff’s (1971) ficld data on
upland forests provide an excellent example of spatial and temporal patterns
of variation, and covariation, of all commonly used diversity indices.

Indices may be used for the following reasons: (1) thcy arc seen as a useful
way to condense complex data and thus aid interpretation (Wilhm. 1972;
Hellawell, 1986); (2) people with little biological expertise can understand
them easily (Cairns et al., 1968; Wilhin and Dorris, 1968) and can gather
the data to create some of them (e.g., Cairns et al., 1968): (3) they are of
more general value than physical and chemical measures (Hellawell, 1986):
(4) they allow comparisons of sites or times where collections have been
made using different sample sizes, methods, or habitats; and (5) their data
needs are seen as relatively less expensive than other more traditional sta-
tistically based approaches. Clearly, the use of indices is popular in studies
of benthic macroinvertebrates. Therefore, it is appropriate to consider data
needs of these indices and the assumptions on which they are based, because
these will affect data analysis and interpretation.

In his extensive review of indices, Washington (1984) identified three
groups: diversity or community structure indices, biotic indices (which in-
cludes most of the rapid assessment indices discussed in Resh and Jackson,
Chapter 6). and similarity indices.

7.4.1.1. Diversity Indices

Diversity indices usually require a count of the total number of individuals
and a total count for each of the taxa. The taxa need to be separated but not
necessarily identified. Separation is often at the species level, but it is some-
times at the generic or family level (Hughes, 1978).

The combination of abundance and richness in a diversity index suppos-
edly indicates the state of the community. It seems to be generally accepted
that values of most indices decrease with decreasing water quality. Also,
low diversity supposedly indicates a stressed community that tends to be
unstable (Goodman, 1975).

Washington (1984) divided the diversity indices he reviewed into eight
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quency distributions of species abundance, including the “characteristic™ of
Fisher et al. (1943) and Yule (1944) and the log-normal curve of Preston
(1948) (Washington, 1984). The log-normal distribution is probably the most
widely used of these approaches. Some doubt cxists as to the biological
meaning of frequency distributions, and no consideration scems to have been
given to how environmental stress (including polution) will affect the re-
lationship. The indices developed by this procedure only should be used
when the curves are a good fit to the data (Pielou, 1975), which may be
difficult to satisfy because the relationship is likely to change with environ-
mental stress. Krebs (1985) and Goodman (1975) have discussed the tog-
normal distribution particularly in relation to estimating the total number of
taxa. or the number of rare taxa, at a site. This suggests the existence of a
true biological relationship (i.c., niche subdivision; Sugihara. 1980) repre-
sented by the log-normal distribution of species frequency curves.

The most widely used diversity indices are those derived from information
theory (e.g., Shannon, 1948). Washington (1984) provided a full discussion
of this type of index and pointed out the rather tenuous biological links that
have been attributed to them. Indices from information theory purport to
measure “uncertainty” in the data, which may be considered to be the same
as “information content,” and consequently “diversity”™ (Washington, 1984).
However, a direct link of biological relevance between these factors is doubtful
(Goaddiman, 1975). The Shannon Index (H') rcaches its maximum value when
all species are distributed evenly. Biologically, this is assumed to be the
most desirable situation, although it contradicts the evidence provided by
the log-normal distribution for many different communities (Goodman, 1975;
Krebs, 1985). Hurlbert (1971) showed that many indices derived from in-
formation theory are correlated because they use the same variables in their
calculation. and Krebs (1985, p. 523) concluded that “in practice it seems
to matter very little which of these different measures of diversity we use.”
Goodman (1975) pointed out that these indices may be aftected by the de-
gree of clumping, problems of different body size in the organisms col-
lected, and different habitat needs. Hughes (1978) listed six factors. other
than pollution, that affected these diversity indices, including sampling method,
sample size, depth of sampling, duration of sampling, time of year. and
taxonomic level used. Thus, diversity indices based on information theory
should be interpreted and compared with caution because their values will
depend on study design.

Diversity indices often are based on ecological theories, such as the di-
versity /stability hypothesis (Goodman, 1975) or competitive interaction
(Hurlbert, 1971). As such, authors promoting their use argue that real eco-
logical properties are being measured. For example, the meaning of diversity
and how it might be measured has been the subject of considerable debate
(Hurlbert, 1971; Goodman, 1975), which remains inconclusive (Washing-
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and is yet to be repeated in other areas of the world. The approach has
considerable merit and may greatly strengthen the basis of some biotic in-
dices.

Ephemeroptera, Trichoptera, and Plecoptera are sensitive to most types
of pollution, so the numbers of individuals in these orders will decrease with
a decrease in water quality. The numbers of some Diptera and tubificid worms
may increase in response to organic pollution. These responses have been
used as indices (e.g., Balloch et al., 1976), as the ratios between tubificids
and other organisms (e.g.. King and Ball, 1964), or just as counts of the
number of taxa belonging to the sensitive groups (c.g.. Plalkin et al., 1980
(sce Johnson et al., Chapter 4). Virtually all of the indices or other meca-
surements using these assumptions have been developed in relation to or-
ganic pollution of rivers. However, some species of Trichoptera and Ephem-
eroptera are highly tolerant of trace metal pollution (Norris et al., 1982;
Norris, 1986), so caution is advised in the general application of indices
based on the assumptions just discussed. Other difficulties include: the large
amount of initial work that may be needed to define pollution tolerances and
“clean” freshwater communities, and the limited number of taxonomic keys
to many species (Resh and Jackson, Chapter 6).

Some biotic indices are based on the assumption that the ratios of organ-
isms with different feeding strategies will change with pollution (e.g., col-
lectors will be more abundant than shredders under polluted conditions) or
that trophic generalists will be more pollution-tolerant than trophic special-
ists. Some doubt exists as to whether these general rules hold true and even
whether it is possible to assign taxa to different feeding strategies (see Chap-
ter 0).

7.4.1.3. Statistical Needs of Indices

Indices sometimes are applied on the assumption that their calculation in
some way replaces the need for hypothesis testing (Resh and Jackson, Chap-
ter 6) or statistical calculations (Beck, 1955). Clear questions must be asked
before studies are designed and before the data from them can be analyzed
in any sensible way (Green, 1979). Often, temporal trends in a diversity or
biotic index are presented, or values of a diversity index are compared with
little or no statistical analysis (e.g., Gupta and Pant, 1983: Chadwick and
Canton, 1984), as if they were absolute measures characteristic of the com-
munity in question and not subject to sampling error. Clearly, this assump-
tion is no truer than for any other finite set of measurements made, and
replicated determinations of a diversity or biotic index can be expected to
vary by chance alone. Many variance formulae for diversity indices are for
the sample variance and not the variance of the sampling distribution of the
diversity index. This latter value is needed for statistical inference. Without
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7.4.2. Analysis of Variance

Analysis of variance (ANOVA) is a well-established parametric technique
for comparing means of a single variable (Sokal and Rohlf, 1981). Its major
uses in the analysis of data from benthic surveys include: assessing the sta-
tistical significance of differences in a biological measure among various
water bodies. among different locations in the same water body., or among
samples taken from one location at different times; and partitioning total
variability in values of a biological measure into components attributable to
vartation among sites or times and components attributable to cach of one
or more levels of replication. This latter analysis is usually a prelude to
optimizing sampling design.

ANOVA arose from the study of replicated samples and is founded in
particular on a linear relationship between the variance of means of repli-
cated samples and the average variance of the values that make up each
sample. The observed variance among the means for different sites or times
can be compared with that expected to arise from this relationship; the ratio
of the two variances can be compared using an F-test.

An example of this kind of analysis is provided by Tiller (1988) who
studied the effects of human disturbance on the benthic macroinvertebrate
fauna of the Thredbo River in Kosciusko National Park, New South Wales.
Australia. The river passes by a ski resort, Thredbo Village, which dis-
charges treated sewage 1.5 km downstream. To assess the effects of this
potential source of pollution on the fauna, Tiller chose sampling stations
above and below the village itself (sites 1. 11, below a refuse dump and
above the sewage outflow (site 1H), and at various distances downstrcam of
the outflow (sites IV-VII) (Fig. 7.1). Ten replicate collections of benthic
macroinvertebrates were taken at each sampling station and total numbers
were used as an appropriate biological measure likely to be affected by the
sewage outflow. A separate analysis also was performed on species richness.
Both of these variables generally are accepted as having skewed distributions
(Elliott, 1977), so they were log-transformed before analysis. The results of
the ANOVA for logged abundance are shown in Table 7.1. The significance
of the F-value in the ANOVA table indicates that variation of macroinver-
tebrate abundance among sites was unlikely to have occurred by chance
alone.

The next step in the analysis was to determine which sites were signifi-
cantly different from the others, and Tiller chose from a range of possible
procedures (reviewed by Keppel, 1973; Sokal and Rohlf, 1981; Day and
Quinn, 1989) to do pair-wise multiple comparisons using the Student-New-
man-Kuels procedure. Site I, below the village, and site [V, immediately
below the sewage outflow, each had significantly greater numbers of benthic
macroinvertebrates than any of the other sites, demonstrating an impact on







248 / Norris and Georges

Tuable 7.1. Analysis of variance table of results from the effects of sewage
cffluent on abundance (log,y, X + 1) of macroinvertebrates in the
Thredbo River, Australia.

Sum of Mecan
Source DF Squares Square F Probability
Site 7 6.7255 0.9608 28.03 0.0001
Error 72 2.4679 0.0343
Total 79 9.1934

the stream by both the village itself and the cffluent outflow. The site up-
stream of the village and sites some distance downstream of the outflow
were not significantly different, so a persistent effcct on the stream fauna
could not be demonstrated.

The advantage of ANOVA over more qualitative approaches lies in its
ability to distinguish between true trends that occur in the river (significant
results) and those trends likely to have arisen in the sample through chance
alone (nonsignificant results), because of sampling error. However, the tech-
nique has a number of limitations, which are described next.

7.4.2.1. The Need to Replicate

Replication of the biological measure used as a summary of community
structure or community conditions is a necessary prercquisite to ANOVA.
Only by replication can the magnitude of diffcrences between sites or times
be compared against the magnitude of differences that would be expected
to occur by chance.

The number of replicates needed in a study are decided at the design stage
(sce Resh and McElravy. Chapter 5). and are related to the interpretations
to be made with the data, the magnitude of differcnces to be detected, and
the type of analyses to be performed (see Section 7.3.1, “Precision and
Analysis,” above). Replication occurs at two levels: within a site and time
and among sites and times.

The design of many benthic macroinvertebrate studies in rivers, and to a
lesser extent in lakes, is difficult because of problems measuring changes
before and after the beginning of an impact and because sites cannot be
replicated casily. Consider the case where sites are located upstream and
downstream of a harmful discharge and replicated collections are made on
each sampling occasion before and after the discharge is released. This would
appear to be a simple two-way ANOVA with two factors, each with two
levels: area (control and impact) by time (before and after) (Barmuta. 1987).
However, treatments within the design are not properly replicated. Hurlbert
(1984) referred to this design as “pseudoreplicated™ because it is possible
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Figure 7.2.  Relationship between standard deviations and means for counts of benthic
macroinvertebrates from the South Esk River. northeastern Tasmania,
Australia. n = 80, r = 0.96. P < 0.001.

extreme cases, no amount of transforming will render such data normal, and
the researcher may need to resort to ANOVA models based on altcrnatives
to the normal distribution (e.g., the GLIM package; Numerical Algorithms
Group. 1986) or to nonparametric alternatives to ANOVA (Sicgel, 1956;
Conover, 1980). This situation might occur in water bodies that are highly
polluted by some toxic waste, but fortunately the interpretation of biological
data such as these usually is a trivial matter hardly needing the use of sta-
tistics (Norris and Georges, 1986).

More sophisticated approaches to transformation include those of Taylor
(1961, 1980) and Box and Cox (1964). Box and Cox recommended the
following transformations, which are attuned to characteristics of the data:

Y =" - 1)/k if k#0
Y’ = log(Y) ifk=0

where & is the maximum value of the expression:

(—v/log, S* + (k— 1) (v/nlog, Y
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When b = 0, the distribution is considered normal and no transformation is
necessary.

Downing (1979) examined the relationship between mean and variance
for benthic macroinvertebrates collected with several types of samplers and
from various substrata. He found that h was surprisingly constant at 1.5,
suggesting that a fourth-root transformation was appropriate for all samples
examined. Subsequent studies have failed to confirm Downing’s suggested
universality of the fourth-root transformation. Allan (1982) collected 12 rep-
licate samples at cach of several sites on 31 occasions over two years. Al-
though these data showed a tendencey for b to fall near 1.5 for seven out of
21 taxa, estimates of b were significantly different from 1.5 for the other
taxa. Taylor (1980) found that, in some instances, square-root and log trans-
formations were superior to the fourth-root transformation. Morin (1985)
showed that, because the relationship between the logarithm of the variance
and the logarithm of the mean is quadratic, the best transformation will de-
pend upon the range of the means being compared.

Caution also is required when using Taylor’s procedure because a log-log
transformation may yield a grossly biased estimate of b (Zar. 1968: Sprugel,
1983). and the degree of bias will depend, in part, on the amount of scatter
about Taylor’s power relationship. A more appropriate solution for » can be
obtained by nonlinear least squares regression (NLIN procedure: SAS In-
stitute. 1987) applied directly to the means and variances suspected of fol-
lowing a power curve. Caution also should be cxercised with the procedures
of Box and Cox (1964) and Taylor (1961, 1980) where the transformation
is optimized for the sample at hand. when what really is required is a trans-
formation that will correct the population from which the sample was drawn.,
Sampling error may lead to selection of an inappropriate transformation, so
the traditional log and square-root transformations should not be rejected too
readily.

Finally, transformations alter the statistical properties of the data, and they
also may alter the way in which underlying biological-environmental rela-
tionships are expressed. If a habitat had all but one of the characteristics
that were necessary to support a species, this habitat would not support the
species. A logarithmic transformation of habitat characteristics would render
them multiplicative, rather than additive; a zero value would correctly define
the site as uninhabitable, whereas untransformed data would remain additive
and possibly obscure the true situation (Meffe and Sheldon, 1988). The con-
sequences of transformation on the interpretations also may need to be con-
sidered.

7.4.2.3.  Suitability of Diversity and Biotic Indices for ANOVA

Most of what has been said above about transformations applies to simple
biological measures, such as total abundance or species richness. The be-
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each environmental variable and the evaluation of their rank order of im-
portance are meaningless when the “independent™ variables are correlated
(Green, 1979). Application of Principal Components Analysis to environ-
mental variables before multiple regression will overcome violations of as-
suming independence among variables but will frustratc the major objective
of providing a minimum subset of variables for prediction.

Contrary to common perception, multiple regression cannot provide in-
sight into causal relationships between environmental variables and the bi-
ological measure of interest. Causal relationships only can be established by
experimentation, where environmental factors can be manipulated (see Cooper
and Barmuta, Chapter 11). At the very best. multiple regression may provide
a subset of environmental variables that can be considered to be the most
parsimonious explanation for variation in the biological measure, but then
parsimony serves only as a foundation for future experimentation and test-
ing. On its own, a multiple regression seldom provides great insight into the
true state of affairs. However, where true controls are unavailable and true
replication of treatments (sites or times) often is impossible (as in most ficld
situations), meeting the requirements for manipulative expcriments may not
be achievable. Under these circumstances, many take the view that, as an
exploratory tool for gaining insight into causal relationships, only multiple
regression and related procedures are available. Although multiple regres-
sion is unable to demonstrate conclusively a causal link between variables,
it is superior to just staring at a table of data or at a neat representation of
an ordination.

The strength of multiple regression lies in its ability to yicld predictive
models. For example, Downing (1986) successfully usced regression tech-
niques to establish predictive relationships between the number of organisms
for each of several epiphytic invertebrate taxa and the biomass of cach ma-
crophyte specics. In this example, the relative significance of environmental
variables in the model, or whether or not they were causally rclated to the
dependent variable, were not of concern. An empirical tool useful for pre-
diction was of interest, based on some minimum set of environmental vari-
ables.

If used in stepwise fashion, multiple regression will yield a subset of avail-
able environmental variables that is best able to predict the value of the
biological index of interest. Only these variables need be measured to obtain
the prediction, often with considerable savings in time and cost. The re-
sulting model may be used to predict the value of the biological index at
sites where only measurements of environmental variables are available or
to predict changes in the biological index on the basis of postulated changes
in environmental variables. The model may be used to predict the value of
a biological index in an impacted area, which then can be compared with
the value observed, to assess the impact.
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cated together in a table; (2) nonhicrarchical classification procedures that
group the most homogencous samples or taxa (the investigator usually pre-
determines the number of groups that are formed); (3) hicrarchical classi-
fication, which forms groups but arranges them using a hierarchy (dendro-
gram); and (4) ordination.

Groups gencrally are formed by convenient management of information.
The groups so formed usually are informationally somewhat homogencous,
a feature in which grouping offers a simplification of the complexities of
the natural world (Gauch, 1982). The relationships among scveral group-
forming procedures are illustrated in Table 7.2.

Table arrangement, which is used for classifying a “taxa by sample™ ma-
trix. was suggested first by Braun-Blanquet (1932) for work with plant com-
munities. The approach subsequently has been used widely in Europe by
plant ecologists (Gauch, 1982). The data originally were compiled manually
for display in a table of compositionally similar samples and distributionally
similar species. The table indicates relationships among groups of sites and/
or species along a continuum, rather than in distinct groups as is the case
with classification. This is the basis for the Saprobicn system (Kolkwitz and
Marsson, 1909; see Cairns and Pratt, Chapter 2, and Johnson et al., Chapter
4). The method has been used by Norris et al. (1982) in their “total numbers
classification,” which grouped taxa based on abundance and distribution rel-
ative to effluent from an abandoned metal mine (Table 7.3). Here, sites |-
3 are upstreamn controls, whereas sites 5-8 indicate a gradient of recovery
downstream. Group | taxa were tolerant of trace metals, Group 2 were sen-
sitive. and Group 3 were taxa that recached maximum numbers downstream
of the cffluent inflow (Norris et al., 1982). Allocation of taxa to groups is
subjective (e.g., helminthid beetles in Group 1), so table arrangements by
others may differ, usually at group boundaries (Gauch, 1982). Nevertheless,
the method is useful for showing gradients in abundance of taxa, in groups
or community types, and in sites.

Numerical techniques generally begin with the calculation of some mea-
sure of association between pairs of samples. The indices then are grouped
using a mathematical technique. Many different indices are available (see
reviews by Goodman and Kruskal, 1954, 1959; Sokal and Sneath. 1963,
Southwood, 1978; Washington, 1984; Hruby, 1987, Johannsson and Minns,
1987). Many of the indices presented have different theoretical justifications
(Grassle and Smith, 1976; Southwood, 1978; Hruby, 1987: Johannsson and
Minns, 1987), so it is important for anyone approaching the field to decide
which index is best suited to their particular needs. The methods used to
group the indices are basically of two types (Table 7.2): classification pro-
cedures and ordination (e.g., Principal Components Analysis, Principal Co-
ordinates Analysis, and Multidimensional Scaling).

Several features of classification procedures need to be considered when
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choosing an approach (Gauch, 1982). Nonhierarchical methods will produce
groups of sites or samples that are as similar as possibie, but they do not
provide information on the relationships among groups. Hicrarchical meth-
ods, the most commonly used procedures, seck to find the most efficient
step at each stage either in the progressive synthesis (agglomerative) of the
population or in its subdivision to individuals (divisive), but the route may
sacrifice homogeneity of the groups through which it passes. It is uncertain
whether any method simultaneously can maximize hierarchical efficiency
and cluster homogeneity (Lance and Williams, 1966). Classification meth-
ods can usc cither qualitative (presence or absence data: ¢.g., Crossman ct
al., 1974; Wright et al., 1984, Ormerod, 1987; Ormerod and Edwards, 1987)
or quantitative data (abundance: e.g., Norris ct al., 1982; Barnes, 1983;
Osborne and Davies, 1987).

Divisive classification strategies use mathematical techniques that begin
with all entities together and divide them into successively smaller groups
until each one contains a single member or until a limit is reached that is
determined by the researcher. Predetermined limits are useful because they
save computing time and because individual entities are difficult to interpret
(otherwise a classification procedure would not have been used in the first
place). Agglomerative techniques begin with individual entitics and form
successive groups until all are included.

Monothetic approaches divide the sets of entitics (usually sites or times)
according to presence or absence of a single species. Such an approach would
prove useful for determining individual species that are most indicative of
particular pollution or habitat conditions (e.g.. Murphy and Edwards, 1982).
Polythetic methods use the entire taxonomic composition of samples when
deriving clusters. When single indicator taxa are used to split groups, such
monothetic methods may be only divisive, whereas polythetic techniques
may be divisive or agglomerative (Gower, 1967). Polythetic, agglomerative
approaches are the most commonly used methods (Gauch, 1982).

An important initial decision is whether or not the relationships among
groups are neceded (hierarchical vs. nonhierarchical clustering). Hierarchical
methods will yield groups that are in some order. A hierarchy is the most
efficient pathway for obtaining a number of groups, but not necessarily the
most efficient means of obtaining final subdivisions. For example, if a group
of taxa does not appear near a closely related group early in the hierarchy.
it will be more dissimilar from succeeding groups. and its final represen-
tation in the hierarchy may be most dissimilar from groups to which it is,
in reality, closely related. Nonhierarchical classification methods such as the
REMUL program (Lance and Williams, 1975) may form groups. the mem-
bers of which are as similar to each other as possible.

For example, several clustering methods were used by Norris et al. (1982)
to create groups of taxa, the distribution and abundance of which responded
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Figure 7.4. Dendrogram resulting from the hierarchical classification using an ag-
glomerative polythetic clustering method with average linkage sorting.
Subgroup 2A is composed of taxa whose distribution and abundance
were close to Group 2, but which joined at the end of the hierarchy
through a chaining effect. From Norris et al. (1982), reprinted by per-
mission of the CSIRO Editorial and Publishing Unit.
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data should be transformed (Noy-Meir, 1973; Gauch. 1982; Hruby. 1987),
or an index should be chosen that accounts for these differences (e.g.. the
Canberra Metric lndex, Clifford and Stephenson. 1975 or the Morisita In-
dex. Hruby. 1987). The need for transformation was discussed by Gauch
(1982) who suggested that ranges of 0 to 10 are best, but that ranges of 0
up to 300 can be tolerated. When community samples are relatively ho-
mogencous, and variation is manifested in small differences in abundance,
a transformation may compress the values, thereby destroying important in-
formation (Gauch, 1982). Additionally, rare taxa, which usually are defined
by some arbitrary limit (c.g., Gauch, 1982: Norris et al., 1982; Macchant
et al.. 1984), often arc deleted from the data matrix before analysis. Such
taxa should not be disregarded totally because they may provide uscful data
particularly in relation to conservation (e.g., reanalysis by Faith and Norris,
1989. of Metzeling et al., 1984, from the La Trobe River, Victoria).

Indices of association that are based on the total number of taxa found in
all samples and that treat the abundance of a taxon from samples being com-
pared as a point of similarity, should be disregarded (Hruby., 1987). Co-
absence is considered to be of little ecological significance (Clifford and
Stephenson, 1975; Boesch, 1977), especially in data sets that may have many
zero entries (Hruby, 1987). Additionally, Morisita's Index has abundance
in the denominator, so its use can be rejected for any data sets that include
sample records with no animals, a situation that may be common in polluted
areas.

Euclidean distance gives more weight to abundant taxa (Clifford and Ste-
phenson, 1975; Washington, 1984: Hruby, 1987). Pinkham and Pearson’s
Cocfficient is sensitive to changes in rare taxa, which also may make it
sensitive to normal sampling error.

The Bray-Curtis Index is favored by some (e.g., Boesch. 1977) because
it varies lincarly to changes in species numbers and abundance: the Canberra
Metric Index does not (Bloom, 1981). Percent similarity also is useful (Jo-
hannsson and Minns, 1987) and also has been shown to respond linearly to
community overlap (Bloom, 1981; Gauch, 1982).

Whittaker (1952) noted that percent similarity failed when relative pro-
portions of taxa remained similar but overall abundance varied, because it
only can be sensitive to changes in relative abundance.

Indices should be chosen relative to the type of data being analyzed, which
may be transformed accordingly. Investigators should use several indices,
rather than relying on a single, all-purpose one (Brock, 1977).

7.4.7. Clustering Strategies

A procedure must be selected to build up the hierarchy: such procedures
are described by Sneath and Sokal (1973), Gauch (1982), and Belbin (1987).
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rection of maximal remaining variation. Sites or samples then are vis-
ualized in the new factor space, and least informative dimensions are
discarded, with some loss of information. Patterns in the reduced space
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ity between each pair of samples is measured, using some chosen mea-
sure of dissimilarity, and the points then are plotted to make the squared
distance between every pair of points correspond to the squared dissimilar-
ity. An initial “sample by species™ matrix is not required by the analysis.
Any metric distance matrix summarizing the relationships between samples
can be used so that the researcher is not limited to similarities based on the
correlation coefficient.

Should the dissimilarity measure be nonmetric, the procedure will produce
satisfactory results provided that care is taken not to include axes in the final
solution for which the cumulative pereentage variation explained equals or
exceeds 1.0, or for which the associated eigenvalues are negative. The often-
quoted assumption of normality of the measurements that form the data sct
also may be disregarded, provided no statistical tests or inferences are to be
made and that the technique is to be used only in the search for pattern
(Marriott, 1974).

One difficulty with PCA and PCoA is that the solution is optimized in
terms of squared distances, so that larger distances between samples are
given disproportionate weight. This may be an advantage if one is seeking
clusters. because the first few axes will emphasize distances between natural
groupings at the expense of distances between samples within the groupings.
However. less information will be summarized in the same number of axes
compared with a technigque such as Multidimensional Scaling (MDS) (Krus-
kal, 1964a,b). MDS endeavors to find, using an iterative procedure. the best
fit between the input dissimilarities and the distances between samples in
the resulting ordinated space. MDS now is chosen by many over PCA and
PCoA when dealing with ecological data. MDS also is less likely to produce
the distorted representations of underlying gradients that affect PCA
(Noy-Meir and Austin, 1970; Austin and Noy-Meir. 1971). PCA and
PCoA assume a linear response in the abundance of species along en-
vironmental gradients, which is a poor reflection of reality. Nonmetric
Multidimensional Scaling (NMDS), so-called because only the rank order
of the dissimilarities between samples is preserved in the geometric repre-
sentation, can accommodate a much wider range of response functions
(Minchin, 1987) but still assumes monotonicity in the response of spe-
cies abundances to environmental gradients. A disadvantage of MDS
in comparison with PCA and PCoA is that the analyst must provide the
dimension of the solution in advance, and the most appropriate dimen-
sion may not be very evident. One must repeat the computationalty expen-
sive analysis for each of several dimensions and look for a significant decline
in “stress” (Manly, 1986) with increasing dimension. Stress is a measure
of the fit of the dissimilarity between samples and the distance between them
in the ordinated space. In PCA and PCoA, one needs only to peruse the list
of eigenvalues to decide on the most appropriate dimension for the solution.
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Figure 7.6. A visual rationale for Discriminant Function Analysis. In this hypo-
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discrimination. When taken together and used to define a linear dis-
criminant function, these variables are able to discriminate absolutely
between upstream and downstrecam samples.
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discriminant functions to determine the proportion of sites that are misclas-
sified (e.g. Marchant et al., 1984). This approach is circular because the
sites used to validate the predictive model arc those used to formulate it
initially, but it provides a rough indication of the power of discrimination.
A more rigorous approach is to validate on the basis of a set of sites of
known group membership, but which were not used in developing the dis-
criminant functions, or to use bootstrapping (where DFA is calculated from
a subset of the data and validated using the remainder, and the process is
repeated for an estimate of the reliability of discrimination).

7.4.10. Time-Series and Trend Analvses

7.4.10.1. Time Series

Many study designs for the collection of benthic macroinvertebrates in-
volve sampling through time. The numbers of animals collected at succes-
sive samplings in time and space may be correlated highly with the numbers
collected in previous samples. Such autocorrelation (Hurlbert, 1984 Stew-
art-Oaten et al., 1986; Barmuta, 1987) may invalidate the use of many para-
metric statistical tests because the assumption of independence is violated.
A family of statistical methods called “time-series analysis™ may be appro-
priate for analyzing these types of data, but the methods seem to have been
overlooked in benthic macroinvertebrate studies. The approach has been re-
viewed by Green (1979) and Millard et al. (1985), and Van Latesteijn and
Lambeck (1986) have applied time-serics analysis to the ceffects of estuary
closure on oyster catchers in Holland. An easily read introductory text on
the subject is provided by Chatfield (1984). Examplcs of the application of
time-series analysis to benthic biomonitoring studies arc lacking, but be-
cause it is a potentially useful approach with which few scem to be familiar,
a description of the procedure follows.

Time-series analysis involves the calculation of autocorrelations and cross-
correlations. The autocorrelation of a series of observations taken over time
is a measure of the extent to which a variable is dependent on its own past
values. Calculation of the autocorrelation function (ACF) of a time series
involves determining the correlation of each value with values 1, 2, 3, . . .
k intervals (lags) preceding it. “k™ of these autocorrelations will exist for a
series, together making up the autocorrelation function (Box and Jenkins,
1976). The ACF of a time series with a seasonal pattern will exhibit a pcak
at a lag that corresponds to the length of the cycle. A time series with no
serial dependence will produce an ACF with scatter around zero. The ACF
of a random series can be shown to have a mean of zero, a variance of 1/
N and a normal distribution, so values that lie outside * 1.96 / VN are
significant at the 5% probability level (Chatficld, 1984). Calculation of the
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a closer fit to the data than a global polynomial because the fit of the function
for each region is determined by local, not global, conditions (Wold, 1974).

Time-series analysis techniques require that variables be distributed nor-
mally and that no relationship exist between the mean and variance (Chat-
field. 1984). Many limnological variables are distributed approximately log-
normally, so a logarithmic transformation is appropriate (Platt et al., 1970;
Rutherford. 1984). This has a further bencfit: if variables have a secasonal
component, it will convert any multiplicative relationship between the mean,
the seasonal term, and the crror term to an additive one, which allows the
series to be fitted to a lincar equation (Chatficld, 1984).

Time-series analysis further requires that any long-term trend in variables
be removed before analysis (Chatficld, 1984). This can be done by “dif-
ferencing” the data, that is, producing a ncw series made up of the differ-
ences between successive pairs of observations in the original series. A lin-
ear trend will be removed by differencing once. a quadratic trend by
differencing the already differenced series. and so on. Scasonal variation
also may be removed by seasonal differencing, that is. subtracting pairs of
observations that are a season apart. This allows resolution of features that
may have been concealed by the magnitude of seasonal variation.

The first steps in analysis are interpolation of missed observations and,
where necessary, transformation of variables (pH excepted). ACFs of each
variable then may be calculated and. using these functions, ARIMA models
of the series can be fitted. The residual series from these models, the filtered
series, are used to calculate the CCFs between variables.

7.4.10.2. Trends

Trends in water quality data may be detected by a variety of methods,
including nonparametric. parametric, spectral, and time-series analysis.
Nonparametric methods have been suggested for water quality data by Hirsch
et al. (1982) and Van Belle and Hughes (1984) because of the problems of
nonnormality, nonlinearity, nonindependence, missing values, censored data,
and periodic cycles. The seasonal Kendall test can be recommended (Hirsch
et al., 1982) because, under realistic stochastic processes (exhibiting sea-
sonality, skewness, and serial correlation), it is robust in comparison to para-
metric alternatives, although it is not an exact test in the presence of serial
correlation (autocorrelation). A second test recommended by Hirsch et al.
(1982) is the Kendall slope estimator, which estimates trend magnitude and
is an unbiased estimator of the slope of a linear trend. It has considerably
higher precision than a regression estimator in which data are highly skewed,
but it has lower precision when the data are distributed normally. The third
procedure recommended provides a means of testing for change over time
in the relationship between constituent concentrations and flow, thus avoid-
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of occurrences. ratios, regressions, plotting, and subcounts vs.
total counts. Missing data also need to be identified and a strategy
to deal with them adopted (either by dcletion of records or by
some means of estimating the missing value).

Diversity and biotic indices are used commonly to condense pres-
ence/absence and abundance data for further analysis and inter-
pretation. Many of the arguments in favor of using indices arc not
theoretically valid, many shortcomings arc evident in their appli-
cation, and the biological or ecological mcaning of what they pur-
port to measure is poorly understood. Most biotic indices ire spe-
cific to the conditions and sites of their development, and much
background information on responses of taxa to pollution usually
is needed before they can be implemented. They are as subject to
error as any other community measures would be, and the level
of uncertainty in their usc needs to be established before they can
be interpreted properly. It is concluded that indices should be used
with caution.

ANOVA is a major method of analysis used to make comparisons
and 1o partition total variability into components of the study. It
relies on replicated sampling and requires that certain assumptions
be met. Normally distributed data is one assumption that may be
attended to after data collection: this is done by transformation.
Caution 1s advised in the use of diversity or biotic indices with
ANOVA, unless the statistical distribution of the data is known
and appropriate transformations (if needed) can be performed.

Multiple regression may be a uscful technique for developing pre-
dictive models and for hypothesis generation. When a subset of
environmental variables is required that is best able to predict the
biological measure of interest, a stepwise application of the method
should be used.

Many benthic studies will be multiple-variable problems and,
therefore, are amenable to the use of multivariate statistical tech-
niques. Multivariate procedures consider each species to be a vari-
able and the presence/absence or abundance of each species to
be an attribute of a site or time. Subtle changes in the species
composition or in the abundance of particular species across sites
are not inherently masked by the need to summarize the combined
characteristics of the site as a single value. Multivariate tech-
niques, therefore, show greater promise than univariate compar-
isons for detecting and understanding spatial and temporal trends
in the benthic macroinvertebrate fauna.

Several methods are available for the classification or grouping
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series analysis rclies on data that arc collected regularly at inter-
vals more frequent than the period of variation among the vari-
ables of interest. These requirements, although quite stringent, are
fulfilled by most monitoring programs.
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