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ABSTRACT. — There are currently ca. 317 recognized species of turtles and tortoises in the world. Of
those that have been assessed on the IUCN Red List, 63% are considered threatened, and 10% are
critically endangered, with ca. 42% of all known turtle species threatened. Without directed
strategic conservation planning, a significant portion of turtle diversity could be lost over the next
century. Toward that conservation effort, we compiled museum and literature occurrence records
for all of the world’s tortoises and freshwater turtle species to determine their distributions and
identify priority regions for conservation. We constructed projected range maps for each species
by selecting geographic information system—defined hydrologic unit compartments (HUCs) with
verified locality points, and then added HUCs that connected known point localities in the same
watershed or physiographic region and that had similar habitats and elevations as the verified
HUCs. We analyzed a total of 305 turtle species and assigned each to 1 of 7 geographic regions of
the world. Patterns of global turtle species distributions were determined and regional areas of
turtle species richness identified. In only 2 areas of the world did as many as 18 or 19 species occur
together in individual HUCs. We then compared species distributions with existing global
conservation strategies (GCSs) and established biodiversity priority areas. Presence of a species in
a GCS was defined as = 5% its range. Of the 34 biodiversity hotspots, 28 collectively contain the
projected ranges of 192 turtle species, with 74 endemic; the 5 high-biodiversity wilderness areas
contain 72 species, with 17 endemic; and 16 other wilderness areas contain 52 species, with 1
endemic. However, 116 turtle species have either < 50% of their ranges in existing GCSs (57
species) or do not occur in them at all (59 species, 19.3%), thus potentially leaving many tortoises
and freshwater turtles without any regional GCS. For each of these 116 species we identify a
priority Ecoregion for further conservation consideration, and we identify 3 new global Turtle
Priority Areas for conservation based on aggregated Ecoregions. These are the Southeastern
United States, Lower Gangetic Plain, and Coastal Australia Turtle Priority Areas.

Key Worps. — Reptilia; Testudines; tortoise; turtle; distribution; species richness; endemism;
conservation; global conservation strategies; biodiversity hotspots; high-biodiversity wilderness
areas; Ecoregions

Turtles have existed on Earth since the rise of the
dinosaurs. The first fossil with clear turtle affinities is
Odontochelys semitestacea from the Triassic of China (Li
et al. 2008; Reisz and Head 2008), estimated to be 220
million years old, somewhat older than the earliest fossil
turtle with a complete shell, Proganochelys, from the late
Triassic of Germany (Gaffney and Meeker 1983; Gaffney
1990; Zug 1993). The turtle shell is a unique and

successful body plan that has enabled turtles to persist
over 200 million years of changing climates and despite
the evolution of a diverse array of vertebrate predators.
Today, tortoises and freshwater turtles are represented by
as many as 460 taxa (species and subspecies) found
throughout the tropical and temperate regions of the world
(Iverson 1992b; Iverson et al. 2003; Fritz and Havas 2007,
TTWG 2007; Rhodin et al. 2008).
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Turtles represent one of the most threatened groups
of vertebrates, with 10% of the ca. 317 currently
recognized species considered critically endangered on
the TUCN Red List of Threatened Species (Turtle
Conservation Fund 2002; ITUCN 2008) and approximately
63% of the assessed species and ca. 42% of all known
species considered threatened (IUCN 2008). Exploitation
and unregulated trade are the primary causes for sharp
declines in many turtle species, especially those from
Asia, with habitat loss and degradation also being major
factors in widespread declines (van Dijk et al. 2000,
Gibbons et al. 2000, Turtle Conservation Fund 2002). The
persistence of such an ancient and iconic group is under
concerted assault, and turtles have become prominent
casualties of the looming global biodiversity crisis (van
Dijk et al. 2000). Without directed strategic conservation
planning, a significant portion of turtle diversity could be
lost over the next century.

In view of their plight, knowledge of current turtle
diversity and global distribution patterns could not be
more important. Identification of areas of richness,
endemism, and threat enable conservation assessments
and prioritization of conservation options (Iverson 1992a;
Stuart and Thorbjarnarson 2003; Rhodin 2006). Evaluat-
ing species by the size of their geographic range on the
landscape provides a first estimation of possible threat to
the individual species, and analyses of species’ range
overlaps reveal patterns of richness and endemism.

Diverse approaches to setting priorities in biodiver-
sity conservation have been used by various conservation
organizations. Most of these established templates
prioritize areas of high irreplaceability, but differ in their
emphasis on high or low vulnerability (Brooks et al.
2006). For example, the biodiversity hotspots (BHs)
approach (Mittermeier et al. 1998, 2004; Myers et al.
2000) prioritizes areas of concomitant high irreplaceabil-
ity and high vulnerability, and the high-biodiversity
wilderness areas (HBWAS) approach prioritizes areas of
high irreplaceability and low vulnerability (Mittermeier et
al. 2003); whereas, the megadiversity countries (Mitter-
meier et al. 1997) and Global 200 (Olson and Dinerstein
1998) templates prioritize only regions of high irreplace-
ability. Turtles are disproportionately represented among
threatened vertebrate species that require conservation
action at the landscape scale (Boyd et al. 2008), but often
fall outside traditional conservation priority regions.

Although patterns of species richness for freshwater
and terrestrial turtles have been evaluated before (Iverson
1992a), these patterns have not been evaluated in the
context of global conservation strategies (GCS). There-
fore, our primary objectives were to 1) determine global
and regional patterns of species richness and endemism in
tortoises and freshwater turtles, 2) evaluate the effective-
ness of existing biodiversity conservation strategies at
incorporating areas of highest conservation importance
for turtles, and 3) identify where significant additional
conservation effort is needed by defining areas of high

turtle richness and endemism that fall outside the
currently recognized global biodiversity conservation
strategies.

METHODS

We used a taxonomic list of extant tortoises and
freshwater turtle species, totaling 305 species, that we
compiled from recent reviews (Iverson 1992b; Ernst et al.
1994; van Dijk et al. 2000; Iverson et al. 2003; Thomson
et al. 2006) and primary literature (Starkey et al. 2003;
Spinks et al. 2004; Stuart and Parham 2004; Spinks and
Shaffer 2007). The final list was a consensus among the
authors, noting that the number of recognized turtle taxa
is a subject of some contention (Lenk et al. 1999; Fritz
and Havas 2007; Stuart and Parham 2007; Turtle
Taxonomy Working Group [TTWG] 2007), even among
the authors. Subsequent taxonomic changes and contro-
versies, which are accumulating rapidly, are identified in
TTWG (2007), Fritz and Havas (2007), and Rhodin et al.
(2008). A complete analysis of turtle distributions and
conservation areas would include the evaluation of all
species, subspecies, evolutionarily significant units, and
important management units, but for this initial analysis,
we address only species.

Point locality data for all freshwater turtles and
tortoises, but not marine turtles, were obtained from
museum-verified records, published accounts, and data-
bases (Iverson 1992b; Iverson et al. 2003; Kiester and
Bock 2007); from the literature published since 1992; and
from unpublished records provided by the authors. We did
not attempt to reduce ranges to reflect recent extirpations,
nor did we enlarge ranges to account for nonnative
introductions.

The continents were subdivided into hydrologic unit
compartments (HUCs) that delineate watershed boundar-
ies. HUCs were derived from geographic information
system (GIS) layers obtained from the Hydro 1K
(1:1,000,000 scale; USGS EROS Data Center, Sioux
Falls SD, http://edc.usgs.gov), Australian River Basins
(Geoscience Australia 2002; and World Wildlife Fund (R.
Abell and C. Revenga, pers. comm.). We chose these GIS
layers as mapping units because delineation methods were
fairly uniform across the world; watershed basin HUCs
averaged 4000 km?. Because they reflect topography and
drainage patterns, HUCs delineate potential ecological
boundaries of species distribution around point localities;
although, knowing the exact habitats would require actual
distributional survey data. HUCs were imported into
ArcView 3.3™ and each HUC that included a turtle point
locality for a species was included in the overall
distribution for that species.

The integration of turtle point locality data and HUCs
provided an initial approach to mapping distributions of
turtle species. We then constructed total *‘projected
range’’ maps (hereafter referred to as ‘‘range’’) for each
species by selecting additional HUCs that connected
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Table 1. Tortoise and freshwater turtle species occurrence in 7
defined world geographic regions.

Region® Species richness Endemic species Shared species
NA 53 40 13 with CA
CA 51 32 13 with NA
6 with SA
SA 48 42 6 with CA
MD 14 12 2 with AF
AF 48 46 2 with MD
AS 77 77 0
AU 35 35 0

# NA, North America; CA, Central America; SA, South America; MD,
Mediterranean; AF, Sub-Saharan Africa; AS, Asia; AU, Australasia.

known point localities in the same larger watershed or
physiographic region, and contained similar habitats and
elevations as the adjacent verified HUCs. Ranges were
used to calculate each species distribution in square
kilometers in ArcView ™. A few HUCs in some species’
projected ranges were edited to eliminate areas where no
turtles occurred (i.e., HUCs that partially included the
high-altitude Himalayas and the central mountains of
New Guinea, and nonoccupied portions of unusually large
HUCs within the ranges of Testudo horsfieldii in Central
Asia and Chelodina steindachneri in Western Australia).

We used the ArcView Spatial Analyst to overlay
these species distributions on the following major
biogeographic and continental regions: BHs (Mittermeier
et al. 2004), wilderness arcas (Mittermeier et al. 2003),
and terrestrial Ecoregions (Olson et al. 2001). We
considered a species to be endemic to any defined region
if = 95% of its range was included within that region. A
species was considered present if < 95%-5% of its range
was included, and in some instances we identify critical
range (= 50%) and important range (< 50%-5%). To
minimize commission errors in our analyses, we dis-
counted (i.e., considered absent) species with < 5% of
their range in a given region. However, the exact
percentage of occurrence as calculated by our methodol-
ogy, even if < 5%, is presented in Appendix 1.

RESULTS

Global Distribution of Turtles. — Tortoises and
freshwater turtles analyzed in our sample set total 305
species in 12 families and are found in 7 major
biogeographic regions of the globe (Table 1): 1) North
America (United States and Canada; Nearctic); 2) Central
America (Mexico to Panama, including the Caribbean;
northern Neotropical); 3) South America (southern
Neotropical); 4) Mediterranean (Europe and east to the
Caspian Sea, the Middle East, and northern coastal
Africa; western Palearctic); 5) Sub-Saharan Africa
(African continent south of the Saharan Desert, Mada-
gascar and associated oceanic islands; Afrotropical); 6)
Asia (Pakistan to Japan, including Indonesian and
Philippine archipelagos; Oriental and eastern Palearctic);

Table 2. Turtle families, number of species, and primary global
region of occurrence (each species is only counted once). (See
Table 1 for definition of region-name abbreviations.)

Geographic region

Family NA CA SA MD AF AS AU Total
Chelidae 23 32 55
Pelomedusidae 19 19
Podocnemididae 7 1 8
Chelydridae 2 1 1 4
Platysternidae 1 1
Trionychidae 3 1 5 16 2 27
Carettochelyidae 1 1
Dermatemydidae 1 1
Kinosternidae 8§ 15 2 25
Emydidae 33 16 3 2 54
Geoemydidae 5 4 3 53 65
Testudinidae 2 2 5 6 23 17 45
Total species 48 40 45 12 48 77 35 305
Total families 5 6 7 4 4 4 3 —

and 7) Australasia (Australia, New Guinea, and islands
east of Weber’s line; Australasian).

The use of these biogeographic regions allows for the
most parsimonious aggregations of closely related species
(i.e., all species in the genus Testudo are found in the
Mediterranean; most members of Kinosternidae are found
in Central America; Australasia and Asia do not share
species). Only 21 of 305 species occur in more than 1 of
the 7 regions (Table 1). In terms of phylogenetic depth,
South America is the most diverse region with 7 families
represented, and Australasia is the least (3 families,
Table 2). Land tortoises (Testudinidae) comprise only 45
species (14.8% of 305 total) but are represented across 6
of the 7 global regions (Table 2).

In the northern latitudes, turtles reach lat 56°N in
Europe (Emys orbicularis); whereas, Testudo horsfieldii
reaches lat 51°N in central Asia. In eastern Asia,
Pelodiscus sinensis reaches 52°N. In North America, 2
species (Chrysemys picta and Chelydra serpentina) reach
latitudes of 52°N and 53°N, respectively. In the southern
latitudes, chelonians reach lat 42°S in South America,
represented by Geochelone chilensis. The southernmost
reaches of the African continent (lat 35°S) harbor turtles,
including 6 sympatric tortoises. The snakeneck, Chelo-
dina longicollis, is found in southernmost mainland
Australia (lat 40°S); however, New Zealand (lat 34°S—
47°S) lacks native turtles. Large continental areas devoid
of turtles include much of Canada, the Rocky Mountains,
southern South America, Russia, Mongolia, the Tibetan
Plateau, the Sahara, the Arabian Peninsula, and interior
Australia (Fig. 1).

Turtle Richness. — Regions of relatively low turtle
richness (1-7 species) occur in western North America
and Mexico, eastern South America, the Mediterranean,
large regions of Sub-Saharan Africa, eastern Asia, and
most of Australia (Fig. 1). However, land tortoises
(Testudinidae) have their greatest species richness in the
southern portions of Sub-Saharan Africa, which includes
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Madagascar (Table 2). In the tropical regions, much of
Central America, most of the Amazon drainage, western
coastal Africa, and the northern coasts of Australia have
HUC:s containing 8 to 10 species. Greater richness (14—16
species) is found in the Amazon’s Rio Negro drainage of
Brazil (lat 4°S-5°S), the Malaysian Peninsula (lat 1°N-
11°N), northern Vietnam (lat 16°N-22°N), the Ganges—
Brahmaputra Basin from Bangladesh to the base of the
Himalayas (lat 23°N-29°N), and the North American
drainages that enter the Gulf of Mexico (lat 29°N-36°N;
Fig. 1). Exceptional richness (18—19 species) occurs in
very few individual HUCs: in Asia, part of the lower
Ganges—Brahmaputra Basin (lat 26°N-28°N, 19 species;
Shrestha 1997; Fig. 2a), and a smaller region in North
America in the Mobile Basin, Alabama (lat 30°N-31°N,
18 species; Fig. 2b).

Size of Turtle Ranges. — Ranges for 17 species
(5.5% of the total) were calculated at less than
10,000 km? each (Appendix 1). These include Pelusios
seychellensis, which has the smallest range (154 kmz),
endemic to the Seychelles Islands, and most likely extinct
(Bour and Gerlach 2008; Gerlach 2008), and Chelodina
mecordi, endemic to Roti Island, Indonesia, 1223 km?.
Thirty-six species (11.8%) occupy an area of less than
25,000 km? each (e.g., Graptemys oculifera, endemic to
the Pearl River basin, southeastern United States,
22,348 km?; Fig. 3a). Eighty-nine species (29.2%) have
an area of between 1 million and 10 million km? (e.g.,
Chrysemys picta occupies 5.1 million km” in North
America). The largest range belongs to Pelomedusa
subrufa at 16.2 million km? in the Sub-Saharan African
region (Fig. 3b). The largest percentage of turtle species
(44%) have ranges falling between 100,000 and 1 million
km?> (Fig. 4). Mean range size was 1,076,798 kmz, and
median range size was 331,919 km?, represented in rank
order by Gopherus polyphemus.

Turtles in GCSs. — Twenty-eight of 34 BHs
(Mittermeier et al. 2004) collectively contain the ranges
for 192 species (Appendix 1; Table 3). Five BHs are
known not to contain turtles (Chilean Winter Rainfall—
Valdivian Forests, New Caledonia, New Zealand, Poly-
nesia—Micronesia, and East Melanesian Islands) and 1
was discounted in our analyses (mountains of Southwest
China) because it contained < 5% of the ranges of 3
species. Individually, BHs contain as few as 1 and as
many as 51 species (e.g., Indo-Burma; Table 3). BHs
contain = 50% of the ranges of 120 species, with 74 of
those endemic to BHs collectively (53 species are each
endemic to a single BH and a further 21 to a combination
of more than one BH; see Appendix 1). Only 1 species,
Cuora amboinensis, occurs in 4 BHs. The Indo-Burma
BH contains 15 endemics, Mesoamerica contains 10
endemics, Madagascar and the Indian Ocean Islands
contains 7 endemics, and the Caribbean Islands BH
contains 4 endemics (all Trachemys sp.).

All 5 HBWAs (Mittermeier et al. 2003) contain
turtles (Table 3). Individually, HBWAs contain as few as

11 species and as many as 20 (Amazonia; Table 3).
Collectively, 72 species are present. Of those, HBWAs
contain = 50% of the ranges of 40 species, and 17 are
endemic. Only 1 species, Pelomedusa subrufa, is present
in 2 HBWAs, Miombe-Mopane Woodlands and Congo
Forests.

Of the 24 Other Wilderness Areas (OWAs; Mitter-
meier et al. 2003; Table 3), 5 do not contain turtles
(Antarctica, Arctic Tundra, Greenland, Magellanic For-
ests, and Tasmania), and 3 more were discounted
(Patagonia, Pacific Northwest, and Boreal Forests)
because they contained < 5% of the ranges of up to 5
species. The remaining 16 OWAs contain 52 species. Of
those, OWAs collectively contain = 50% of the ranges of
12 species. One species is endemic to a single OWA
(Elseya “‘South Alligator’’; Arnhem Land Tropical
Savanna) and 1 nearly so (93%, Acanthochelys pallidi-
pectoris; Chaco). Twenty species have ranges in multiple
(up to 3) OWAs (Appendix 1).

In combination, BH, HBWA, and OWA GCSs
capture 106 turtle species as endemic (= 95%), 34.8%
of the world total (305). An additional 140 species are
present (< 95%-5%), and these are subdivided into those
< 95%-50% present (83 species) and those < 50%
present (57 species). However, 59 species (19.3%) are
absent (< 5%) from these GCSs (Table 4), and the
number of species either < 50% present or absent from
GCSs is 116 (38.0%).

Turtles and Ecoregion-Focused Conservation. — Of
867 Ecoregions worldwide (Olson and Dinerstein 1998;
Olson et al. 2001), 680 include the ranges of turtle
species. However, we excluded 330 of these 680, as well
as the ‘‘Lake’” Ecoregion (which is not unique to any
continent) because of minimal overlap (< 5%) with turtle
species ranges. Hence, 349 Ecoregions each contain
= 5% of varied numbers of species, ranging from 1 to 29
(Appendix 2). The top 5 Ecoregions of the world for
turtles include the Southeastern Mixed Forest (United
States, 29 species), the Southeastern Conifer Forest
(United States, 25 species), the Northern Indochina
Subtropical Forest (Vietnam, Laos, Myanmar, and China;
21 species), the Lower Gangetic Plain Moist Deciduous
Forest (India, 18 species), and the Central Forest/
Grasslands Transition Zone (United States, 18 species).
The Northern Indochina Subtropical Forest is located in
the Indo-Burma BH, but it is striking that the remaining
top 4 world Ecoregions for turtles are found outside of the
GCS schemes that we considered.

For each of the 116 turtle species that have either
< 50% or no GCS coverage we identified a ‘‘first-
priority’” Ecoregion based on the species’ greatest percent
range of occurrence (Appendix 1), and exclusive of GCS.
The 45 Ecoregions in this category are counted by global
geographic region in Table 4 and listed in Appendix 1.
Twelve of the 116 species are endemic to single
Ecoregions (Australia, 5 species; China, 4; Congo, 1;
United States, 2).
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Figure 2. a) The world’s greatest turtle species richness area, based on the co-occurrence of species in hydrologic unit compartments
in the Ganges—Brahmaputra river basin drainages of India and Bangladesh in South Asia. b) The world’s second-greatest turtle
richness area, centered on the Mobile River basin in the southeastern United States. Color codes as in Fig. 1.
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Figure 3. Examples of relative numbers of hydrologic unit compartments that comprise turtle ranges: a) Graptemys oculifera,
22.348 km?, southeastern United States; b) Pelomedusa subrufa, 16.2 million km?2, Sub-Saharan Africa. Figs. 3a, b are not at
equivalent scales.
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Figure 4. Range distributions (in km? of projected hydrologic unit compartments ranges) for 305 turtle species in this analysis.

New Global Turtle Priority Areas (TPAs)

Toward our goal of identifying areas of global turtle
species richness that were outside of existing GCSs, we
identified 3 new global Turtle Priority Areas (TPAs) that
collectively include 72 (62%) of the 116 species without
adequate GCS coverage. As previously noted, some of
these species have partial ranges in existing GCSs, but the
following areas of high species richness lie outside of
GCS regions.

Southeastern United States TPA. — North America is
the primary region for 48 species (Table 2). Three of
these are included in GCSs (Gopherus agassizii, Actin-
emys marmorata, and Kinosternon sonoriense), and the
remaining 45 each have ranges of < 50% (4 species) in
GCSs or are absent (41 species; Appendix 1). Five
Ecoregions collectively comprise a Southeastern United
States TPA that includes portions or all of the range for 43
of the 45 species; only Glyptemys insculpta and
Emydoidea blandingii are not included (Fig.5): 1)
Southeastern Mixed Forests, 29 species, 2) Southeastern
Conifer Forests, 25 species, 3) Mississippi Lowland
Forests, 10 species, 4) Piney Woods Forests, 13 species,
and 5) Edwards Plateau Savanna, 3 species.

Lower Gangetic Plain TPA. — Asia is the primary
region for 77 species (Table 2). Most Asian species are
included in GCSs, but 18 have < 50% of their ranges in
GCSs, and 6 are absent (24 species; Table 4, Appendix 1).
However, 10 of these 24 are Chinese endemics or nearly
so and 14 are found on the Indian subcontinent. The
Lower Gangetic Plain Moist Deciduous Forests Ecoregion
lies adjacent to the Indo-Burma and Himalaya BHs
(Fig. 6) and contains 18 species, which includes 12 of the
14 Indian species in need of conservation coverage; only
2 Indian species, Geochelone elegans and Aspideretes
leithii, occur in other areas.

Coastal Australia TPA. — Australasia is the primary
region for 35 species (Table 2). Twenty-five are included
in GCSs, but 6 have < 50% of their ranges in GCSs, and
10 are absent from GCSs. Thus, 16 species in Australia

have > 50% of their range outside of GCSs (Appendix
1). The Coastal Australia TPA complements the existing
Kimberly, Arnhem Land, and Cape York Tropical
Savanna OWAs and includes the following Ecoregions:
1) Carpentaria Tropical Savanna, 7 species, 2) Brigalow
Tropical Savanna, 9 species, 3) Queensland Tropical Rain
Forest, 1 endemic species, Elseya ‘‘Johnstone’ (A.
Georges, unpubl. data), and 4) Eastern Australia Temper-
ate Forests, 9 species (Fig. 7). The Coastal Australia TPA
collectively captures 15%-100% of the ranges of all 16
species and contains some portion of the ranges of 22
species (Appendix 1).

DISCUSSION

HUC Methodology. — Knowledge of species distri-
butions in certain global regions is thorough, down to
local watershed levels (e.g., North America). For species
in these areas, ranges and actual known distributions are
effectively the same. In other regions of the world (e.g.,
Sub-Saharan Africa, Asia), museum and other known
distributional data are limited, and therefore, ranges are
extrapolations based on expert opinion, similar physiog-
raphy and habitats, elevation, and drainage connections.
At the broadest, most applied scale, the use of HUCs
(watersheds) to map turtle distributions is an ecologically
valid approach. However, all ranges overestimate the
actual habitat available to each species, such as
erroneously extending the ranges of turtles to high
elevations (i.e., ‘‘Sky Islands’” of the Madrean Pine-Oak
Woodlands BH) when the species are restricted to the
lowlands of the watershed, or extending turtle ranges into
adjacent, but unoccupied, Ecoregions. Only 1 turtle
species, Kinosternon oaxacae, has a significant portion
(> 50%) of its range in the Madrean Pine-Oak
Woodlands, but at lower elevations the HUCs clearly
delineate the primary watershed conservation boundary
for the turtles. Therefore, HUC-derived ranges are
representative of landscape-level distributions, especially
for many freshwater turtles where identification of
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Table 3. Number of turtle species in various Global Conservation Strategies (GCS). A species was counted as occurring in a
Biodiversity Hotspot (BH), High Biodiversity Wilderness Area (HBWA), or Other Wilderness Area (OWA) if = 5% of its range
occurred within one of those regions. Because true boundaries of species ranges may not match exactly with HUC (watershed)
boundaries, species with < 5% of its range in a region were excluded; conversely, species with = 95% of range inside a region were
considered endemic. GCS regions were regarded as critical for conservation of a species when = 50% of the species’ range occurred
within a region. Four-letter codes for BHs, HBWAs, and OWAs are the same as those in Appendix 1.

Geographic ~ GCS region Range Range Range > 95%  Total
region codes < 50%-5% > 50%-95% (endemic) species

Biodiversity Hotspots (BH)
Indo-Burma AS INBU 21 15 15 51
Mesoamerica CA MEAM 11 10 10 31
Madrean Pine—Oak Woodlands CA MPOW 23 1 24
Himalaya AS HIMA 16 2 18
Sundaland AS SUND 7 8 2 17
Cerrado SA CERR 13 1 14
Tropical Andes SA TRAN 13 1 14
Atlantic Forest SA ATLF 8 1 2 11
Mediterranean Basin MD MEDB 5 3 2 10
Tumbes—Choco—Magdalena SA TUCM 8 2 10
Guinean Forests of West Africa AF GFWA 8 1 9
Madagascar and the Indian Ocean Islands AF MADG 1 7 8
Succulent Karoo AF SUKA 7 1 8
Eastern Afromontane AF EAFM 7 7
Cape Floristic Region AF CPFP 5 1 6
Maputaland—Pondoland—Albany AF MAPA 5 1 6
Western Ghats and Sri Lanka AS WGSL 4 2 6
Caribbean Islands CA CAIS 4 4
Wallacea AS,AU WALL 1 3 4
Horn of Africa AF HOAF 4 4
Japan AS JAPN 1 2 3
Southwest Australia AU SWAU 1 2 3
Caucasus MD CAUC 3 3
Coastal Forests of Eastern Africa AF CFEA 3 3
Irano-Anatolian MD IRAN 3 3
Philippines AS PHIL 1 1 2
California Floristic Province NA CAFP 1 1
Mountains of Central Asia MD MCAS 1 1
High Biodiversity Wilderness Areas (HBWA)
Amazonia SA AMAZ 4 10 6 20
North American Deserts NA,CA NAMD 10 7 2 19
Congo Forests AF COFO 7 5 12
New Guinea AU NEGU 1 9 11
Miombo—Mopane Woodlands and Savannas AF MMWS 11 11
Other Wilderness Areas (OWA)
Chaco SA CHAC 10 2 12
Arnhem Land Tropical Savanna AU ARTS 8 1 9
Kimberly Tropical Savanna AU KMTS 5 2 7
Sahel AF SAHL 6 1 7
Llanos SA LLAN 5 1 6
Banados del Este SA BADE 4 1 5
Central Asian Deserts MD,AS CASD 4 1 5
Cape York Tropical Savanna AU CYTS 4 4
Kalahari Xeric Savanna AF KAXS 4 4
Sahara MD.,AF SAHR 4 4
Arabian Deserts MD ARDE 3 3
Australian Deserts AU AUDE 3 3
Sundarbans AS SBAR 3 3
Pantanal SA PANT 2 2
Kalahari-Namib AF KANA 1 1
Rocky Mountains NA ROMO 1 1

drainage basin catchment boundaries, such as to control
pollution inputs, is the first step in drawing accurate
conservation boundaries.

The HUC approach to mapping distributions might
arguably be less accurate for tortoises (Testudinidae)
because these species are less likely to be restricted by
drainages and are more capable of crossing drainage

divides than some aquatic turtles. Future refinement of
individual HUC ranges should be made by removing
portions along ecoregional boundaries and elevational
contours, when those aspects of a species distribution are
well known.

Global Richness Patterns. — Our primary objectives
were to determine the global and continental patterns of
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Table 4. Number of turtle species by region within the Global Conservation Strategies (GCS) and the number of first-priority
Ecoregions (see text) needed to capture all species < 50% present in GCS or absent. (See Appendix 1 for Ecoregion names.)

Endemic to <95%-50% <50%—-5% <5%—-0% (absent) No. of first-priority
Region GCS present in GCS present in GCS from GCS Ecoregions
NA 0 3 4 41 14
CA 28 10 2 0 1
SA 18 22 4 1 4
MD 3 8 1 0 1
AF 8 17 22 1 12
AS 36 17 18 6 9
AU 13 6 6 10 4
Totals 106 83 57 59 45

species richness and endemism in tortoises and freshwater
turtles, evaluate how well existing biodiversity conserva-
tion strategies overlap with the distributions of turtles, and
identify areas of high turtle richness and endemism that
fall outside the currently recognized GCSs for biodiver-
sity, and on which future efforts should be focused.

The compilation of all ranges for the 305 turtle
species using HUCs (Fig. 1) resulted in the identification
of many areas of high species richness within the 7 global
regions. Areas with up to 10 co-occurring species are

found on the northern and northeastern coasts of
Australia, the western coastal belt of Sub-Saharan Africa
from Liberia southward to Gabon, and much of southeast
Asia including southern China, Vietnam, and Cambodia,
as well as Borneo. Areas where more than 11 species are
likely to co-occur include the Mississippi and Atlantic
Coast drainages of southeastern United States, the upper
Amazon River drainage of Brazil and Colombia, the
Ganges and Brahmaputra drainages of India and Bangla-
desh, the Irrawaddy drainage of Myanmar, the Salween

Figure 5. Southeastern United States turtle priority area (TPA) for 43 turtle species not included in existing global conservation
strategy areas. Ecoregions comprising the TPA include 1) Southeastern Mixed Forests, 2) Southeastern Conifer Forests, 3) Mississippi
Lowland Forests, 4) Piney Woods Forests, and 5) Edwards Plateau Savanna. Vertical green striping indicates an adjacent high-
biodiversity wilderness area (North American Deserts); diagonal red striping indicates nearby biodiversity hotspots (Mesoamerica and

Caribbean). Color codes as in Fig. 1.
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Figure 6. Lower Gangetic Plain turtle priority area (TPA) for 18 species, including 12 species not covered in existing global
conservation strategies. A single Ecoregion encompasses the following TPA: 1) Lower Gangetic Plains Moist Deciduous Forests.
Diagonal red striping indicates adjacent biodiversity hotspots: 3) Indo-Burma; 4) Himalayas; horizontal purple striping indicates an

adjacent OWA: 2) Sundarbans. Color codes as in Fig. 1.

drainage of southern Thailand south throughout Malaysia,
and the coastal drainages of Sumatra. The areas of the
world where the greatest species density is found include
the upper portions of the Ganges and Brahmaputra Basin
in India and the lower Mobile Bay drainage along the
Gulf Coast of North America (Figs. 1-2).

Our 7 global turtle regions correspond loosely with
biogeographic realms (Olson et al. 2001), with the
exception that we categorized Central America, including
Mexico, as a separate ‘‘northern Neotropical’’ realm, as
similarly recognized by Bour (2008). Central America
represents a wide region of overlap of Nearctic and
Neotropical turtles, but also contains a sizeable endemic
turtle fauna exemplified by the genera Dermatemys,
Claudius, and Staurotypus, and large radiations within the
genera Trachemys, Kinosternon, and Rhinoclemmys. Our
7 regions also minimized overlap of species between
regions. For example, the turtle faunas on the African
continent were assigned to 1 of 2 groups: 1) those species
existing south of the Saharan Desert, and 2) those found
on the north coast along the Mediterranean Sea, which are
biogeographically allied with European and Middle East
species (e.g., the genera Mauremys and Testudo). Only 2
of 48 Sub-Saharan species (Pelomedusa subrufa and

Trionyx triunguis) enter our defined Mediterranean
region. Turtles are largely absent from the vast majority
of the Palearctic realm, and those that are present in the
western Palearctic are derived from the Mediterranean
region above; whereas, in the eastern Palearctic (i.e.,
northeast China and Japan, Korea, and Siberia) the turtle
fauna is Indo-Malayan in origin. Also, as with many other
faunas (Lomolino et al. 2006), Weber’s Line effectively
separates Asian from Australasian turtles.

Although turtles have had a successful 200+ million
year history, their living diversity is among the lowest of
major vertebrate clades (both older and younger). In
addition, unlike most groups of organisms (Lomolino et
al. 2006), they do not exhibit a pattern of highest diversity
in the tropics. Indeed, their greatest diversities are reached
at ca. lat 23°N-24°N (Ganges River basin in Asia) and lat
31°N-32° N (Mobile River basin in North America). The
combination of their generally low richness, their unusual
distribution patterns, and their unusual life history
strategies (Heppell 1998) make them especially difficult
to conserve.

Existing GCSs. — Our analyses identified turtle and
tortoise species that would, in theory, be afforded
conservation attention, and possibly protection, under
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Figure 7. Coastal Australia turtle priority area (TPA) includes for 16 species not covered in existing global conservation strategies.
Ecoregions comprising the TPA include the following: 1) Carpentaria Tropical Savanna, 2) Queenland Rainforest, 3) Brigalow
Tropical Savanna, and 4) Eastern Australia Temperate Forest. Vertical green striping indicates a nearby high-biodiversity wilderness
area (New Guinea), diagonal red striping indicates nearby biodiversity hotspots (Southwest Australia, Wallacea; horizontal purple
striping indicates adjacent other wilderness areas: 5) Kimberly Tropical Savanna, 6) Arnhem Land Tropical Savanna, 7) Cape York
Tropical Savanna, and 8) Australian Deserts. Color codes as in Fig. 1.

existing GCSs; although, occurrence in these areas certainly
carries no guarantee of protection. By identifying these
species and also the proportions of their ranges that coincide
with GCS regions, we can evaluate the likely importance
and effectiveness of particular conservation strategies, as
well as the seriousness of landscape-level threats.

BHs are human constructs, ecologically character-
ized, but defined by disparate levels of human activity
(i.e., BHs have lost 70% or more of their original native
vegetation; Myers et al. 2000). The 34 BHs hold
especially high numbers of endemic species, but their
combined area of remaining habitat covers only 2.3% of
the earth’s land surface; over 50% of the world’s plant
species and 42% of all terrestrial vertebrate species are
endemic to the hotspots (Mittermeier et al. 2004). Clearly,
the most important hotspot for turtle conservation is Indo-
Burma with 15 endemics and another 15 species with
> 50% of their ranges encompassed therein. Similarly,
the Mesoamerica BH has 10 species in each of those same
2 categories, and although they contain smaller numbers
of species, it must be noted that the entire turtle faunas of
Southwest Australia, Madagascar and the Indian Ocean
islands, and the Caribbean islands are fully encompassed
within their respective BHs.

Our analysis indicated that 74 turtle species (24%)
are endemic to BHs, a figure that is significantly lower
than the overall endemic terrestrial vertebrate percentage
(42%; Mittermeier et al. 2004). However, conservation
resources are flowing to BHs (Myers 2003), and the
species that are endemic to BHs often receive consider-
able conservation attention because of the focus on
hotspot conservation. Nevertheless, the persistence of
these species in the wild depends on conservation success
(sensu Brooks et al. 2002) in their respective hotspots of
occurrence. Thus, although the identification of BHs has
focused attention on their conservation, even if their
protection was successful across the globe, only 120 turtle
species (39% of the total) have = 50% of their ranges
within these hotspots. Hence, global turtle conservation
must look well beyond the possible protection offered by
the conservation of BHs.

Five HBWAs (Amazonia, Congo, New Guinea,
North American Deserts, and Miombo—Mopane Wood-
lands) are large areas of exceptional diversity that remain
mostly intact, with greater than 70% of their natural land
cover remaining and with relatively low human density
and threats (Mittermeier et al. 1998, 2003). Indeed,
HBWAs in New Guinea and Amazonia rank below only
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the top 2 BHs (Indo-Burma and Mesoamerica) in terms of
endemic turtle fauna. In theory, the 17 turtle species
endemic to the HBWAs should be some of the most
secure because by definition more than 70% of their
habitat remains. An assumption, however, is that other
threats, including human encroachment, disease, pollu-
tion, climate change, and exploitation (sensu Gibbons et
al. 2000) are not impacting those turtles at high levels.
Unfortunately, they are, as is the case with the
exploitation of Amazonian river turtles for food (Ojasti
1996; Moll and Moll 2004; Conway-G6émez 2007) and the
extraction for bush meat in the Congo (Luiselli 2003;
Maran and Pauwels 2005). These 17 endemic species
represent 6% of turtles, which is also lower than the
overall endemism in other groups (18% of the world’s
plants and 10% of all terrestrial vertebrates; Mittermeier
et al. 2003).

Of the 24 OWAs analyzed, some are large (i.e.,
Antarctica, Arctic Tundra), but do not contain turtles.
Most of the others are smaller than 1 million km?”.
However, several OWAs individually include > 50% of
the ranges of 9 turtle species (e.g., Banados del Este
[Trachemys dorbigni]; Chaco [Acanthochelys pallidipec-
toris and Geochelone petersi]; Llanos [Podocnemis vogli];
Sahel [Geochelone sulcata], Central Asian Deserts
[Testudo horsfieldii]; Kimberly Tropical Savanna [Emy-
dura victoriae and Elseya dentatal); and Arnhem Land
Tropical Savanna [Elseya ‘‘South Alligator’’]). Collec-
tively, OWAs encompass = 50% of the ranges of 12
species (the 9 above, plus Phrynops williamsi, Chelodina
burrungandjii, and Emydura tanybaraga; Appendix 1).

Ecoregion Approach. — When all the above GCS
strategies are combined, 246 of 305 (80.7%) turtle species
are addressed at some level. However, additional
conservation strategies must be invoked if we are to meet
the goal of “‘no turtle left behind”’ for the other 19.3%.
Thus, we prioritized individual or groups of Ecoregions
for additional turtle conservation strategies, designating 3
new TPAs. For this paper we did not include priority
Ecoregions for every turtle species, but instead presented
Ecoregions only for those species that must rely solely on
them for conservation (i.e., they fall outside of BHs,
HBWAs, and OWAs; Appendix 1). Ecoregions are
important in conservation planning at regional levels
(e.g., The Nature Conservancy’s Ecoregion planning
process, Partners for Amphibian and Reptile Conservation
(PARC) habitat management guidelines—North America;
Bailey et al. 2006) and identifying species at the
Ecoregion level allows for maintenance of ecological
processes on the local landscape. Ecoregion conservation
is clearly important for the 12 turtle species that are
endemic to single Ecoregions, including some of the
rarest species in the genus Cuora in Asia (Appendix 1).

We assigned species to a priority Ecoregion based on
the species’ greatest percentage of range. This does not
mean that we consider that Ecoregion to necessarily be
the most important for the conservation of that species; it

simply means that because the species has a significant
portion of its range there, it would probably be a
reasonable area to consider initially for protection. It is
also necessary to look at subsequently ranked Ecoregions
because, by selecting a first-priority Ecoregion based on
greatest range, we may not address the needs for species
conservation at the periphery of a species’ range. We
recognize that field inventory of status and threats,
assessment of populations and their sizes, determination
of quality of habitat, and the ability to achieve
conservation (i.e., political will, local capacity, funding,
etc.) will all combine to determine the most effective
priority Ecoregion for each species. We also note that
future analyses may integrate turtle ranges with recent
freshwater Ecoregion delineations (Abell et al. 2008).

In North America, 14 Ecoregions were identified for
45 species. Many species clustered in several adjacent
Ecoregions in the southeastern United States (Southeast-
ern United States TPA). The two most turtle-species-rich
Ecoregions in the world, Southeastern Mixed Forests and
Southeastern Conifer Forests occur here (Fig. 5). How-
ever, the Blanding’s turtle (Emydoidea blandingii) was
identified as a focal species in conservation planning for
the Great Lakes Ecoregion; whereas, the wood turtle
(Glyptemys insculpta) was assigned to the New England
Acadian Forests because no broader-level strategy
previously identified will properly address these species’
needs. For 3 wide-ranging North American species
(Apalone spinifera, Chelydra serpentina, and Chrysemys
picta), each of their ranges spanned 23-29 Ecoregions
with < 10% of their range in any one; thus, no single
Ecoregion was selected for their conservation.

In Central America, the occurrence of BHs and
HBWASs resulted in the inclusion of many turtle species,
but some Ecoregions were outside the GCS, including the
Tamaulipan Mezquital, important for Gopherus berlan-
dieri and Pseudemys gorzugi. For future analyses, some
species (i.e., Trachemys yaquia and Kinosternon alamosae)
marginally missed our cutoff for needing Ecoregion-
focused attention, but would likely benefit from protection
in the Sonoran—Sinaloan transition Ecoregion. Likewise,
the Caatinga and the Argentine Monte Ecoregions lie
outside of GCSs in South America but are important for
Batrachemys tuberculata and Geochelone chilensis, re-
spectively. Overall, 5 South American species would
benefit from conservation focused on these Ecoregions.

Most Mediterranean species had substantial overlap
with the Mediterranean Basin BH, but Emys orbicularis
would likely benefit from additional conservation atten-
tion in the Central European Mixed Forests Ecoregion.

The distributions of turtles in Sub-Saharan Africa are
poorly known (Bour 1983), and ranges were difficult to
construct because museum data were sparser than for
other regions (Iverson 1992b). The percentages of some
species’ ranges falling in or out of GCSs were difficult to
determine with certainty because HUC layers for Africa
do not always align well with the boundaries of
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Ecoregions and GCSs. Nevertheless, at least 23 species
have > 50% of their ranges outside of GCSs, and several
Ecoregions emerged as priorities for turtle conservation,
including the West Sudanian Savanna as a priority area
for at least 5 species and the Nama Karoo for 3 species
(see Appendix 1). Pelusios broadleyi would benefit from
focus on the Masai Xeric Grasslands and Shrublands
Ecoregion. Further detailed analysis of the distributions of
individual African species is needed for conservation
planning (Burgess et al. 2005, Luiselli 2008).

Asia could be treated as 2 separate regions because it
contains the fauna of the Indian subcontinent and that of
Southeast Asia. The Indo-Burma BH contains species
from both India and Southeast Asia but contains the
greatest percentage range for the latter. The Ganges—
Brahmaputra region of India and Bangladesh exhibits the
greatest range overlap for turtles in a single area in the
world, with 19 species known from each of 4 connected
HUCs (Figs. 2a, 6; Lower Gangetic Plain TPA; see also
Iverson 1992a, 1992c). The richness of turtles in the
Ganges—Brahmaputra Basin is in part because of the
overlap in the 2 faunas. The Lower Gangetic Plains Moist
Deciduous Forest Ecoregion, representing the third-most
species-rich turtle Ecoregion in the world (18 species),
accounted for 12 species that were not previously covered
by GCSs (Appendix 1). The Upper Gangetic Plains Moist
Deciduous Forests Ecoregion, although clearly needed for
conservation of the Ganges River system and its fauna,
does not gain any more turtle species, just more range of
the same species. Other Ecoregions that include the same
high turtle species richness (but are within the Indo-
Burma and Himalaya BHs) include Meghalaya Subtrop-
ical Forests, Brahmaputra Valley Evergreen Forests,
Mizoram—Manipur—Kachin Rainforests, and Terai—Duar
Savannas and Grasslands. Both the Deccan Thorn Scrub
and the Eastern Highlands Moist Deciduous Forests are
important Ecoregions for 3 species (Lissemys punctata,
Geochelone elegans, and Aspideretes leithii) because
these species are 84%-92% outside of GCSs. India has
one of the most diverse turtle faunas with 28 species, and
ranks among the top 5 countries in terms of importance
for turtle conservation in Asia (Stuart and Thorjarnarson
2003) and the world (Rhodin 2006). In addition, climate
change studies suggest that glacial melt in the Himalaya
will affect water flow in the Ganges Basin (Xu et al.
2009), thus adding another conservation concern to this
priority area.

There are 12 Southeast Asian species that are not
accounted for in the Indo-Burma BH, and the Ecoregions
needed for their conservation include the Jian Nan
Subtropical Evergreen Forest (5 species), Chiangjiang
Plain Evergreen Forest (3 species), the Yunnan Plateau
Subtropical Evergreen Forest (3 species, all presumably
endemic: Cuora mccordi, Cuora yunnanensis, Cuora
zhoui), and the Qin Lin Mountains or Daba Mountains
(1 species, Cuora pani).

For Australasia, those species that occur in Ecor-
egions in New Guinea (Southern New Guinea Freshwater
Swamps and Lowland Rain Forests, and Trans-Fly
Savanna Grasslands) are accounted for in the New Guinea
HBWA. However, there are 16 species in Australia that
were not adequately addressed by GCSs, for which we
identified the Coastal Australian TPA. Three OWAs in
northern coastal Australia correspond with the boundaries
of Ecoregions of the same name (Kimberly, Arnhem
Land, and Cape York Tropical Savannas). Additional
Ecoregions for Australian turtle conservation include the
Carpentaria Tropical Savanna, Brigalow Tropical Savan-
na, Queensland Tropical Rain Forest, and Eastern
Australia Temperate Forests. Other Ecoregions that are
important for some of the same turtles include the
Victoria Plains Tropical Savanna, the Western Australia
Mugla Shrublands, and the Einasleigh Upland Savanna.

Our analysis demonstrates that even if we assume
that conservation actions will be effective under current
GCSs and cover all turtle species within these geographic
areas, at least 59 species fall completely outside that
potential protection. We hope our classification of 3 new
TPAs will create awareness of landscape-level protection
opportunities for conservation of additional species in
North America, Asia, and Australia. By our calculations,
with the addition of our 3 TPAs to the existing GCSs
discussed in this paper, only 10 species would not have
been addressed. These include Emydoidea blandingii and
Glyptemys insculpta (North America), Geochelone chi-
lensis (South America), Pelusios broadleyi (Sub-Saharan
Africa), and 6 Cuora species (Cuora aurocapitata, Cuora
flavomarginata, C. mccordi, C. pani, C. yunnanensis, C.
zhoui; Asia); however, we list Ecoregions for these
species for future focus in Appendix 1.

Clearly, conservation strategies that target species-
specific action (Buhlmann and Gibbons 1997; Rodrigues
2006), improve coverage of protected areas worldwide
(Rodrigues et al. 2004), and address threats to turtles
specifically (Turtle Conservation Fund 2002) and in the
larger landscape (Boyd et al. 2008) must be employed
collectively and synergistically in order to include and
hopefully protect every species effectively under a
conservation umbrella strategy. Our goal with this
analysis was to develop an improved strategy to ‘‘leave
no turtle behind’’ in the global race to conserve this
unique and imperiled group of vertebrates.
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TURTLE TAXONOMY NOTE

We began our project with a taxonomy acceptable to
all authors, and we have retained that taxonomy in this
paper. However, a number of names have changed since
we began (e.g., see Fritz and Havas 2007, Rhodin et al.
2008). They are listed here, with the more recently
proposed name in brackets: Batrachemys [Mesoclemmys]
zuliae, Batrachemys [Mesoclemmys] dahli, Bufocephala
[Mesoclemmys] vanderhaegei, Chinemys [Mauremys]
nigricans, Chinemys [Mauremys] reevesii, Pyxidea
[Cuora] mouhotii, Elseya “Burnett” [albagula], Geoche-
lone [Chelonoidis] carbonaria, Geochelone [Chelonoi-
dis] chilensis, Geochelone [Chelonoidis] denticulata,
Geochelone [Chelonoidis] nigra, Geochelone [Chelonoi-
dis] petersi, Geochelone [Stigmochelys] pardalis, Geo-
chelone [Astrochelys] radiata, Geochelone [Astrochelys]
yniphora, Geoemyda [Vijayachelys] silvatica, Heosemys
[Siebenrockiella] leytensis, Hieremys [Heosemys] annan-
dalii, Homopus sp. [solus], Ocadia [Mauremys] sinensis,
Ranacephala [Phrynops] hogei, Rhinemys [Phrynops]
rufipes, Dipsochelys [Aldabrachelys] dussumieri [gigan-
tea], Aspideretes [Nilssonia] gangeticus, hurum, leithii,
and nigricans; Batagur affinis; Callagur [Batagur]
borneoensis, and Kachuga [Batagur] dhongoka, kachuga,
and trivittata.
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Appendix 2. Ecoregions of the world (349) that encompass > 5% of a turtle species’ range, ranked by number of species per
Ecoregion. (See Table 1 for definition of abbreviations.)

Species
Total species, Species with  endemic (95%
Region Ecoregion name 5% or more 50-94.9% or more)
NA Southeastern Mixed Forests 29 4
NA Southeastern Conifer Forests 25 8 2
AS Northern Indochina Subtropical Forests 21
AS Lower Gangetic Plains Moist Deciduous Forests 18
NA Central Forest/Grasslands Transition Zone 18
AS South China—Vietnam Subtropical Evergreen Forests 15
SA Cerrado 14 1
AS Central Indochina Dry Forests 14
AS Peninsular Malaysian Rain Forests 14
NA Central US Hardwood Forests 14
CA Chihuahuan Desert 13 4 1
NA Piney Woods Forests 13 1
AS Upper Gangetic Plains Moist Deciduous Forests 13
AS Sumatran Lowland Rain Forests 13
SA Southwest Amazon Moist Forests 13
AS Jian Nan Subtropical Evergreen Forests 12 2
AS Mizoram—Manipur—Kachin Rain Forests 12
AS Tenasserim-South Thailand Semi-Evergreen Rain Forests 12
SA Uatuma-Trombetas Moist Forests 12
AF Central Zambezian Miombo Woodlands 11 1
AF West Sudanian Savanna 11
AS Borneo Lowland Rain Forests 11
AS Irrawaddy Moist Deciduous Forests 10 1
AF Zambezian and Mopane Woodlands 10
AF Guinean Forest-Savanna Mosaic 10
CA Sierra Madre Occidental Pine—Oak Forests 10
NA Middle Atlantic Coastal Forests 10
NA Mississippi Lowland Forests 10
AU Eastern Australian Temperate Forests 9 3
AU Brigalow Tropical Savanna 9 1 1
AU Arnhem Land Tropical Savanna 9 1
CA Petén-Veracruz Moist Forests 9 4
AF Northwestern Congolian Lowland Forests 9
CA Yucatan Moist Forests 9
SA Madeira—Tapajés Moist Forests 9
AF Nama Karoo 8 1
AF Succulent Karoo 8 1
AF Western Congolian Forest—Savanna Mosaic 8
AS Sumatran Peat Swamp Forests 8
AS Northwestern Thorn Scrub Forests 8
AU Mitchell Grass Downs 8
AU Victoria Plains Tropical Savanna 8
AU Southern New Guinea Freshwater Swamp Forests 8
AU Southern New Guinea Lowland Rain Forests 8
NA Appalachian/Blue Ridge Forests 8
NA Central and Southern Mixed Grasslands 8
NA Southern Great Lakes Forests 8
SA Alta Parana Atlantic Forests 8
SA Humid Chaco 8
AS Changjiang Plain Evergreen Forests 7 1 1
AU Kimberly Tropical Savanna 7 2
AU Carpentaria Tropical Savanna 7 1
CA Isthmian—Atlantic Moist Forests 7 1
AF Southern Miombo Woodlands 7
AS Khathiar-Gir Dry Deciduous Forests 7
AS Kayah—Karen Montane Rain Forests 7
AS Southeastern Indochina Dry Evergreen Forests 7
AU Central Range Montane Rain Forests 7
CA Sierra Madre Oriental Pine—Oak Forests 7
CA Sinaloan Dry Forests 7
CA Sonoran-Sinaloan Transition Subtropical Dry Forest 7
NA Western Short Grasslands 7
SA Northwestern Andean Montane Forests 7
AF Sahelian Acacia Savanna 6 1
CA Chocé-Darién Moist Forests 6 1
CA Sonoran Desert 6 1
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Appendix 2. Continued.

Species
Total species, Species with  endemic (95%
Region Ecoregion name 5% or more 50-94.9% or more)
NA Appalachian Mixed Mesophytic Forests 6 1
SA Guianan Moist Forests 6 1
SA Magdalena-Uraba Moist Forests 6 1
AF Atlantic Equatorial Coastal Forests 6
AF East Sudanian Savanna 6
AF Northern Congolian Forest—Savanna Mosaic 6
AS Central Deccan Plateau Dry Deciduous Forests 6
AS Deccan Thorn Scrub Forests 6
AS Eastern Highlands Moist Deciduous Forests 6
AS Irrawaddy Dry Forests 6
AS Northern Annamites Rain Forests 6
AS Myanmar Coastal Rain Forests 6
AU Trans Fly Savanna and Grasslands 6
CA Central American Atlantic Moist Forests 6
CA Pantanos De Centla 6
NA Everglades 6
SA Chaco 6
SA Japurd—Solimoes—Negro Moist Forests 6
AS Yunnan Plateau Subtropical Evergreen Forests 5 3
AF Southern Africa Bushveld 5 1
SA Uruguayan Savanna 5 1
AF Drakensberg Montane Grasslands 5
AF Montane Fynbos and Renosterveld 5
AF Madagascar Succulent Woodlands 5
AF Central Congolian Lowland Forests 5
AF Northeastern Congolian Lowland Forests 5
AF Northern Acacia—Commiphora Bushlands and Thickets 5
AF Southern Congolian Forest-Savanna Mosaic 5
AS Brahmaputra Valley Semi-Evergreen Forests 5
AS Chhota—Nagpur Dry Deciduous Forests 5
AS Southern Annamites Montane Rain Forests 5
AU Einasleigh Upland Savanna 5
CA Central American Pine—Oak Forests 5
CA Trans-Mexican Volcanic Belt Pine-Oak Forests 5
NA Northeastern Coastal Forests 5
NA Western Gulf Coastal Grasslands 5
SA Mato Grosso Seasonal Forests 5
SA Serra Do Mar Coastal Forests 5
AU Southeastern Papuan Rain Forests 4 1
AF Madagascar Dry Deciduous Forests 4 2
CA Veracruz Moist Forests 4 2
AF Eastern Guinean Forests 4 1
AU Southeast Australia Temperate Savanna 4 1
CA Sierra Madre del Sur Pine—Oak Forests 4 1
SA Caatinga 4 1
SA Llanos 4 1
AF Kalahari Acacia-Baikiaea Woodlands 4
AF Kalahari Xeric Savanna 4
AF Lowland Fynbos and Renosterveld 4
AF Somali Acacia-—Commiphora Bushlands and Thickets 4
AF Western Guinean Lowland Forests 4
AS Eastern Himalayan Broadleaf Forests 4
AS Narmada Valley Dry Deciduous Forests 4
AS South Deccan Plateau Dry Deciduous Forests 4
AS Northern Vietnam Lowland Rain Forests 4
AS Southern Vietnam Lowland Dry Forests 4
AS Luang Prabang Montane Rain Forests 4
AU Cape York Tropical Savanna 4
CA Southern Pacific Dry Forests 4
CA Yucatidn Dry Forests 4
MD Arabian Desert and East Sahero-Arabian Xeric Shrublands 4
NA Eastern Great Lakes Lowland Forests 4
NA East Central Texas Forests 4
NA Ozark Mountain Forests 4
NA Texas Blackland Prairies 4
SA Napo Moist Forests 4
SA Solimoes—Japurd Moist Forest 4
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Appendix 2. Continued.

Species
Total species, Species with  endemic (95%

Region Ecoregion name 5% or more 50-94.9% or more)
SA Negro—Branco Moist Forests 4

SA Magdalena Valley Montane Forests 4

SA Araucaria Moist Forests 4

CA Tamaulipan Mezquital 3 1
MD Aegean & Western Turkey Sclerophyllous and Mixed Forests 3 1
AF Eastern Miombo Woodlands 3

AF Southern Acacia—Commiphora Bushlands and Thickets 3

AF Highveld Grasslands 3

AF Madagascar Lowland Forests 3

AF Angolan Miombo Woodlands 3

AF Namibian Savanna Woodlands 3

AF Western Congolian Swamp Forests 3

AS Irrawaddy Freshwater Swamp Forests 3

AS Huang He Plain Mixed Forests 3

AS Borneo Peat Swamp Forests 3

AS Tonle Sap-Mekong Peat Swamp Forests 3

AU Eastern Australia Mulga Shrublands 3

AU Murray-Darling Woodlands and Mallee 3

AU Southeast Australia Temperate Forests 3

CA Western Ecuador Moist Forests 3

CA Central American Dry Forests 3

CA Meseta Central Matorral 3

MD Zagros Mountains Forest Steppe 3

MD Mediterranean Woodlands and Forests 3

MD Illyrian Deciduous Forests 3

MD Eastern Mediterranean Conifer—Sclerophyllous—Broadleaf 3

Forests

MD Mediterranean Dry Woodlands and Steppe 3

MD Mesopotamian Shrub Desert 3

NA Eastern Forest/Boreal Transition 3

NA Allegheny Highlands Forests 3

NA Western Great Lakes Forests 3

NA Central Tall Grasslands 3

NA Edwards Plateau Savanna 3

NA Upper Midwest Forest/Savanna Transition Zone 3

SA Bahia Interior Forests 3

SA Caqueta Moist Forests 3

SA Jurui-Purus Moist Forests 3

SA Tapajés-Xingu Moist Forests 3

SA Guajira-Barranquilla Xeric Scrub 3

SA Sind Valley Dry Forests 3

SA Humid Pampas 3

SA Southern Cone Mesopotamian Savanna 3

SA Cauca Valley Montane Forests 3

AF Madagascar Spiny Thickets 2 2
AS Sulawesi Lowland Rain Forests 2 2
AU Northern New Guinea Lowland Rain and Freshwater Swamp 2 1

Forests

AU Southwest Australia Woodlands 2 1
CA Jalisco Dry Forests 2 1
CA Hispaniolan Moist Forests 2 1
MD Tyrrhenian—Adriatic Sclerophyllous and Mixed Forests 2 1
SA Argentine Monte 2 1
SA Catatumbo Moist Forests 2 1
AF Southern Zanzibar—Inhambane Coastal Forest Mosaic 2

AF Albany Thickets 2

AF Madagascar Subhumid Forests 2

AF East African Montane Forests 2

AS Sulawesi Montane Rain Forests 2

AS Himalayan Subtropical Broadleaf Forests 2

AS Meghalaya Subtropical Forests 2

AS North Western Ghats Moist Deciduous Forests 2

AS North Western Ghats Montane Rain Forests 2

AS Terai-Duar Savanna and Grasslands 2

AS Chin Hills-Arakan Yoma Montane Forests 2

AS Malabar Coast Moist Forests 2

AS South Western Ghats Moist Deciduous Forests 2
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Appendix 2. Continued.

Species
Total species, Species with  endemic (95%
Region Ecoregion name 5% or more 50-94.9% or more)
AS South Western Ghats Montane Rain Forests 2
AS Daba Mountains Evergreen Forests 2
AS Gizhou Plateau Broadleaf and Mixed Forests 2
AS Hainan Island Monsoon Rain Forests 2
AS Borneo Montane Rain Forests 2
AS Cardamom Mountains Rain Forests 2
AS Chao Phraya Freshwater Swamp Forests 2
AS Sumatran Montane Rain Forests 2
AS Tonle Sap Freshwater Swamp Forests 2
AU Southwest Australia Savanna 2
AU Simpson Desert 2
AU New Guinea Mangroves 2
AU Kwongan Heathlands 2
CA Ecuadorian Dry Forests 2
CA Bajio Dry Forests 2
CA Hispaniolan Dry Forests 2
CA Hispaniolan Pine Forests 2
CA Balsas Dry Forests 2
CA Central Mexican Matorral 2
CA Costa Rican Seasonal Moist Forests 2
CA Talamancan Montane Forests 2
MD Eastern Anatolian Montane Steppe 2
MD Middle East Steppe 2
MD Central Persian Desert Basins 2
MD Registan—North Pakistan Sandy Desert 2
MD Balkan Mixed Forests 2
MD Pindus Mountains Mixed Forests 2
MD North Saharan Steppe and Woodlands 2
NA Northern Short Grasslands 2
SA Atlantic Dry Forests 2
SA Pantanal 2
SA Bahia Coastal Forests 2
SA Purus Varzed 2
SA Venezuelan Andes Montane Forests 2
SA Guayanan Highlands Moist Forests 2
SA Tocantins/Pindare Moist Forests 2
SA Maranhao Babacu Forests 2
SA Cordillera Oriental Montane Forests 2
SA Maracaibo Dry Forests 2
AF Aldabra Island Xeric Scrub 1 1
AF Granitic Seychelles Forests 1 1
AS Timor and Wetar Deciduous Forests 1 1
AS Palawan Rain Forests 1 1
AU Queensland Tropical Rain Forests 1 1
SA Galapagos Islands Xeric Scrub 1 1
AF Masai Xeric Grasslands and Shrublands 1 1
AS Nansei Islands Subtropical Evergreen Forests 1 1
AS Qin Ling Mountains Deciduous Forests 1 1
AS Taiheiyo Evergreen Forests 1 1
CA Cuban Dry Forests 1 1
CA Jamaican Moist Forests 1 1
SA Northeastern Brazil Restingas 1 1
AF Maputaland Coastal Forest Mosaic 1
AF Angolan Mopane Woodlands 1
AF Zambezian Baikiaea Woodlands 1
AF Zambezian Flooded Grasslands 1
AF Namib Desert 1
AF Madagascar Mangroves 1
AF Albertine Rift Montane Forests 1
AF Eastern Congolian Swamp Forests 1
AF Nigerian Lowland Forests 1
AF Saharan Flooded Grasslands 1
AF South Saharan Steppe and Woodlands 1
AF Victoria Basin Forest-Savanna Mosaic 1
AS Eastern Java—Bali Rain Forests 1
AS Thar Desert 1
AS Himalayan Subtropical Pine Forests 1
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Appendix 2. Continued.

Species
Total species, Species with  endemic (95%
Region Ecoregion name 5% or more 50-94.9% or more)
AS Sundarbans Mangroves 1
AS Central China Loess Plateau Mixed Forests 1
AS Nihonkai Evergreen Forests 1
AS Taiheiyo Montane Deciduous Forests 1
AS Taiwan Subtropical Evergreen Forests 1
AS Red River Freshwater Swamp Forests 1
AS Chao Phraya Lowland Moist Deciduous Forests 1
AS Indochina Mangroves 1
AS Myanamar Coast Mangroves 1
AS Sundaland Heath Forests 1
AU Carnarvon Xeric Shrublands 1
AU Pilbara Shrublands 1
AU Western Australian Mulga Shrublands 1
AU Esperance Mallee 1
AU Jarrah-Karri Forest and Shrublands 1
AU Northern New Guinea Montane Rain Forests 1
AU Vogelkop Montane Rain Forests 1
AU Vogelkop-Aru Lowland Rain Forests 1
CA Esmeraldes/Chocé Mangroves 1
CA Cuban Moist Forests 1
CA Cuban Pine Forests 1
CA Cuban Wetlands 1
CA Baja California Desert 1
CA Gulf Of California Xeric Scrub 1
CA Sierra De La Laguna Dry Forests 1
CA Puerto Rican Moist Forests 1
CA Greater Antilles Mangroves 1
CA Jamaican Dry Forests 1
CA Central American Montane Forests 1
CA Miskito Pine Forests 1
CA Sierra Madre De Chiapas Moist Forest 1
CA Sierra Madre De Oaxaca Pine-Oak Forests 1
CA Tamaulipan Matorral 1
CA Veracruz Dry Forests 1
CA Veracruz Montane Forests 1
MD Tigris—Euphrates Alluvial Salt Marsh 1
MD Caucasus Mixed Forests 1
MD Iberian Sclerophyllous and Semi-Deciduous Forests 1
MD Mediterranean Acacia-Argania Dry Woodlands/Succulent 1
Thickets
MD Southwest Iberian Mediterranean Sclerophyllous/Mixed 1
Forests
MD Central European Mixed Forests 1
MD Dinaric Mountains Mixed Forests 1
MD East European Forest Steppe 1
MD Italian Sclerophyllous and Semi-Deciduous Forests 1
MD Pannonian Mixed Forests 1
MD Rodope Montane Mixed Forests 1
MD South Appenine Mixed Montane Forests 1
MD Baluchistan Xeric Woodlands 1
MD Central Asian Northern Desert 1
MD Central Asian Southern Desert 1
MD Kazakh Semi-Desert 1
MD Pontic Steppe 1
MD South Iran Nubo-Sindian Desert and Semi-Desert 1
MD Anatolian Conifer and Deciduous Mixed Forests 1
MD Eastern Anatolian Deciduous Forests 1
MD Nile Delta Flooded Savanna 1
MD Sahara Desert 1
MD Southern Anatolian Montane Conifer and Deciduous Forests 1
NA California Central Valley Grasslands 1
NA California Interior Chaparral and Woodlands 1
NA Klamath-Siskiyou Forests 1
NA Central and Southern Cascades Forests 1
NA Eastern Cascades Forests 1
NA California Coastal Sage and Chaparral 1
NA Sierra Nevada Forests 1
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Appendix 2. Continued.

Species
Total species, Species with  endemic (95%
Region Ecoregion name 5% or more 50-94.9% or more)
NA Mojave Desert 1
NA Atlantic Coastal Pine Barrens 1
NA New England/Acadian Forests 1
NA Arizona Mountains Forests 1
NA Colorado Plateau Shrublands 1
SA Arid Chaco 1
SA Semiarid Pampas 1
SA Chiquitano Dry Forests 1
SA Ucayali Moist Forests 1
SA Apure—Villavicencio Dry Forests 1
SA Iquitos Varzea 1
SA Marajé Varzed Forests 1
SA Monte Alegre Varzea 1
SA Rio Negro Campinarana 1
SA Xingu-Tocantins—Araguaia Moist Forests 1
SA Maranhao Mangroves 1
SA La Costa Xeric Shrublands 1
SA Argentine Espinal 1
SA Parand Flooded Savanna 1
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