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Abstract 13 

1. Innumerable approaches to analyse genetic data are now available to guide conservation, 14 

ecological and agricultural projects. However, streamlined and accessible tools are needed 15 

to bring these approaches within reach of a broader user base. dartR was released in 2018 16 

to lessen the intrinsic complexity of analysing single nucleotide polymorphisms (SNPs) and 17 

dominant markers (presence/absence of amplified sequence tags) by providing user-friendly 18 

data quality control and marker selection functions. dartR users have grown steadily since 19 

its release and provided valuable feedback on their interaction with the package allowing us 20 

to enhance dartR capabilities.  21 

2. Here, we present Version 2 of dartR. In this iteration, we substantially increased the 22 

number of available functions from 45 to 144. In addition to improved functionality, we 23 

focused on enhancing the user experience by extending plot customisation, function 24 
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standardisation, increasing user support and function speed. dartR provides functions for 25 

various stages in analysing genetic data, from data manipulation to reporting.  26 

3. dartR provides many functions for importing, exporting and linking to other packages, to 27 

provide an easy-to-navigate conduit between data generation and analysis options already 28 

available via other packages. We also implemented simulation functions whose results can 29 

be analysed seamlessly with several other dartR functions.  30 

4. As more methods and approaches mature to inform conservation, we envision that 31 

accessible platforms to analyse genetic data will play a crucial role in translating science into 32 

practice. 33 

Keywords: DArT, single nucleotide polymorphism, conservation genetics, next generation 34 

sequencing, R  35 
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Introduction 36 

The plummeting costs of DNA sequencing have opened a powerful window of opportunity 37 

to use genetic data to inform biodiversity conservation, restoration of ecosystems, invasive 38 

species management and breeding of animals and plants (Breed et al., 2019). Remarkably, 39 

applied genetic studies have transitioned from typically analysing a dozen molecular 40 

markers to tens and even hundreds of thousands of markers in less than a decade. Similarly, 41 

the process of marker development that could take months of laboratory work a decade ago 42 

has been taken over by sequencing companies using novel approaches, such as genotyping 43 

by sequencing (Narum et al., 2013) or using restriction enzymes to reduce genome 44 

complexity (DArTseq; Kilian et al., 2012). These technological advances are reflected in the 45 

growing number and diversity of ways genetic data is analysed and applied. (e.g. 46 

identification of adaptive variation is now within reach for non-model organisms; Weigand 47 

& Leese, 2018) 48 

Even though genetic data are increasingly accessible and population genomics has proved to 49 

be a powerful tool to improve biodiversity conservation and ecological restoration efforts 50 

(Garner et al., 2016; Hohenlohe et al., 2021), genetic information is not yet regularly used 51 

outside of the research community (Shafer et al., 2015). BSeveral barriers to bridging this 52 

gap between research and practice have been identified, including poor communication 53 

between researchers and other stakeholders, insufficient funding, and lack of genetics 54 

expertise (Taylor et al., 2017). A further barrier is arguably the intrinsic complexity involved 55 

in analysing genetic data. For instance, to interpret analysis results appropriately, it is 56 

necessary to understand theoretical models and population genetics principles (Andrews & 57 

Luikart, 2014). Furthermore, advanced computer and programming skills and the use of 58 
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several programs, which are often complex and time-consuming to master, are required to 59 

make full use of the genetic data (Hohenlohe et al., 2021). Therefore, today, it is no longer 60 

the time needed for DNA sequencing that limits the speed of results, but rather a deficit of 61 

knowledge and skills to analyse genetic data. 62 

dartR, an R package for analysing single nucleotide polymorphisms (SNPs) and 63 

presence/absence of amplified sequence tags was released in 2018 (Gruber et al., 2018) and 64 

designed to bridge the gap between science and practice. dartR aims to bring the timeframe 65 

to analyse genetic data into line with the timeframe required by stakeholders to make their 66 

decisions and at the same time provide a broad range of analyses and pipelines in a user-67 

friendly platform that allows no programming expertise to do so. dartR leverages the 68 

capabilities of the open-source programming language R (R Core Team, 2021) and the 69 

robustness of the genlight object from the package adegenet for representing large genetic 70 

datasets (Jombart & Ahmed, 2011). In the four years since its release, dartR has grown a 71 

large user base, evidenced by several hundred daily downloads and an active Google group 72 

(https://groups.google.com/g/dartr). With the genomic revolution well underway, there is a 73 

constant and rapid diversification of new methods and analyses, which users seek to include 74 

in their work, ideally without switching between platforms.  75 

Here we present a significant update of dartR. Our purpose is to bring diverse and 76 

sophisticated analytical tools within reach of a broad user base of genomic data. dartR 77 

facilitates all stages in analysing genetic data, from data quality control to the preparation of 78 

publishing quality plots through streamlined and accessible functions and strong user 79 

support, including tutorials, detailed function documentation, and error checking.  80 
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What is new in dartR 2.0?  81 

In dartR 2.0, we have added 99 functions to the initial 45 functions from version 1 (Fig. 1 and 82 

Supplementary Table 1). In response to user feedback, we provide users with a deeper 83 

understanding of the purpose of each function, its underlying theory and its limitations by 84 

expanding and improving our tutorials and function documentation. Additionally, we have 85 

implemented messages to communicate errors, warnings, reports, and important 86 

information while running each function. All the functions have been extensively tested, 87 

debugged, standardised, and their speed has been increased in many cases. Following the 88 

adage “a picture is worth a thousand words”, we have improved all the graphical outputs by 89 

standardising their format, increasing readability, and extending their scope for 90 

customisation. 91 

We realised that many individual researchers had developed their own scripts and analyses, 92 

which would be very helpful for others if made available. Therefore, we encourage these 93 

“independent developers” to collaborate with dartR having provided a framework on how 94 

to write and document functions for dartR. To further encourage this collaboration, we have 95 

regularly developer meetings and personal support to integrate analyses of independent 96 

developers.  97 

Initially, dartR aimed to primarily analyse the genomic data format provided by the 98 

sequencing company Diversity Arrays Technology Pty Ltd (DArT 99 

https://www.diversityarrays.com/). In version two, we extended dartR’s capabilities to 100 

import from and export to several formats to store SNP data to make dartR accessible to a 101 

broader pool of users. 102 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2022. ; https://doi.org/10.1101/2022.03.30.486475doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.30.486475
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 103 

Figure 1 | Overview of the functions currently available in dartR covering various stages in the analysis of gen104 
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netic data. 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

available under a
w

as not certified by peer review
) is the author/funder, w

ho has granted bioR
xiv a license to display the preprint in perpetuity. It is m

ade 
T

he copyright holder for this preprint (w
hich

this version posted A
pril 1, 2022. 

; 
https://doi.org/10.1101/2022.03.30.486475

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/2022.03.30.486475
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7

Function categories available in dartR 105 

To facilitate the usage and identification of the resources available in dartR, we categorised 106 

the functions based on the different stages in the analysis of genetic data. Typical steps are 107 

data input, data manipulation, filtering, reporting, exploration, visualization, and analysis. 108 

We also provide tutorials to guide the user for the most relevant stages, which can be 109 

accessed at http://georges.biomatix.org/dartR. In this section, we enumerate dartR function 110 

categories while highlighting representative functions from each category.   111 

As our basic format to input and store genetic data, we adopted the genlight object from 112 

the package adegenet (Jombart & Ahmed, 2011). One of the main attributes of the genlight 113 

object is its efficient data compression using a bit-level coding scheme. We extended the 114 

genlight object by adding two additional compartments containing metadata for individuals 115 

(ind.metrics) and loci (loc.metrics). dartR can read common formats, including FASTA, VCF, 116 

PLINK, DArTseq
TM

, genepop and CSV files. To ensure the compatibility of the imported data, 117 

we developed the function gl.compliance.check() to inspect the elements within the genlight 118 

object and, if necessary, correct incompatibilities.  119 

dartR offers functions to facilitate data manipulation for loci, individuals and populations, 120 

such as renaming individuals, assigning and reassigning them to populations, removing 121 

individuals, populations and loci, merging populations and subsampling individuals and loci. 122 

After data manipulation, some locus metrics will no longer apply; the function 123 

gl.recalc.metrics() will recalculate the various locus metrics as necessary.  124 

The filtering process is a decisive step in analysing genetic data that depends on sensible 125 

threshold decisions (O'Leary et al., 2018). With this in mind, we provide a complementary 126 
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reporting function for each of our 16 filtering functions. Reporting functions present the 127 

data in the form of summary statistics, tabulation of quantiles, boxplots, and histograms. In 128 

a two-stage process, users can use the results of reporting functions to implement 129 

thresholds in filter functions that are appropriate for their application and data 130 

characteristics. For example, identifying and filtering loci that deviate from Hardy-Weinberg 131 

proportions is essential in many workflows. Several technical and biological phenomena can 132 

cause this deviation and must be distinguished for correct interpretation of the data 133 

(Waples, 2015). Our functions gl.diagnostics.hwe(), gl.report.hwe() and gl.filter.hwe() allow 134 

the diagnosis, evaluation and filtering of loci deviating from Hardy-Weinberg proportions 135 

using either the Exact or the Chi-square method, adjustment for multiple comparisons and 136 

ternary plots (Fig. 2). 137 

 138 
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Figure 2 | Output from function gl.diagnostics.hwe() which implements the 139 

recommendations from Waples (2015) and De Meeûs et al  (2007). a) Histogram showing 140 

the distribution of p-values of Hardy-Weinberg Equilibrium (HWE) tests. The distribution 141 

should be roughly uniform across equal-sized bins. b) Bar plot showing observed and 142 

expected number of significant HWE tests for the same locus in multiple populations. If HWE 143 

tests are significant by chance alone, observed and expected number of HWE tests should 144 

have roughly a similar distribution. c) Scatter plot with a linear regression between FST and 145 

FIS, averaged across subpopulations. In the lower right corner of the plot, the Pearson 146 

correlation coefficient is reported. A positive relationship is expected in case of the presence 147 

of null alleles (De Meeûs, 2018). 148 

The exploration and visualisation stage is critical to identify and interpret genetic patterns, 149 

generate hypotheses and set the path for downstream analyses. Functions for this stage in 150 

dartR include gl.pcoa() and gl.pcoa.plot(), which perform and plot principal component 151 

analysis (PCA; Fig. 3) and the related principal coordinates analysis (PCoA). PCA and PCoA 152 

are particularly suitable for genetic data. Despite not relying on genetic principles or models, 153 

results can reveal spatial patterns, evolutionary or ecological processes such as migration, 154 

geographical and reproductive isolation, and admixture (McVean, 2009). Other visualisation 155 

and exploration tools available include heatmaps, network plots, smear plots and mapping 156 

of sampling locations.  157 
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 158 

Figure 3 | Principal component analyses (PCA) using a platypus dataset provided with the 159 

package. PCA shows that platypuses sampled below (Severn below) and above (Severn 160 

above) a large dam form separated clusters in contrast to platypuses sampled in an 161 

unregulated river (Tenterfield Creek). 162 

Once the dartR user has read, manipulated, filtered and explored their genetic data, many 163 

analyses can be performed to inform the decision making, evaluation and monitoring 164 

processes of conservation, restoration and breeding projects. Genetic data can provide 165 

insights into biological processes on two different but tightly linked fronts: a) issues 166 

associated with genetic diversity and its relationship with fitness, such as inbreeding 167 

depression and evolutionary potential, and; b) demographic issues, such as dispersal, 168 

population size and hybridisation. dartR offers various functions that address both of these 169 

suites of processes.  170 

Genetic variation can be monitored or evaluated with the function gl.report.diversity(), 171 

which calculates the q-profile, a spectrum of measures whose contrasting properties 172 
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provide a rich summary of diversity, including allelic richness, Shannon information and 173 

heterozygosity (Sherwin et al., 2017). These measures are then converted to a standard 174 

scale of effective numbers (Hill’s numbers), so they can be directly compared. Other 175 

functions allow different aspects and metrics of diversity to be characterised by partitioning 176 

variation geographically using Analysis of Molecular Variance (AMOVA), statistical testing of 177 

heterozygosity difference between populations, or standardising heterozygosity estimates 178 

using the number of invariant sites.  179 

Identifying natural aggregations of individuals and populations using genetic data has been 180 

an important tool to maximise and prioritise available resources in conservation and 181 

restoration projects, for example, to define evolutionarily significant units (ESUs; Funk et al., 182 

2012), to delimitate species (Georges et al., 2018; Unmack et al., 2022), to identify 183 

populations suitable for eradication (Robertson & Gemmell, 2004) and to demarcate seed 184 

transfer zones for ecological restoration (Durka et al., 2017). dartR functions suitable for 185 

these applications include gl.fixed.diff(), which generates a matrix of fixed allelic differences 186 

between populations. The function gl.collapse() can be used to iteratively combine 187 

populations and aggregations of populations based on the absence of fixed allelic 188 

differences to yield a set of diagnosable units. These functions accommodate the risk of 189 

false positive fixed differences likely to occur when samples sizes are small. A further 190 

application of identifying populations is the assignment of individuals of unknown 191 

provenance to their source population, which is particularly important in wildlife forensics 192 

to support law enforcement (Bourret et al., 2020). Functions such as gl.assign.pa() and 193 

gl.assign.pca() are capable of assigning individuals of unknown provenance to a population 194 
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using private alleles (i.e., alleles that are exclusive to particular populations) and 195 

standardized proximity, respectively. 196 

Dispersal and gene flow are fundamental evolutionary and ecological processes that enable 197 

individuals to recolonise new habitat and replenish population’s gene pool (Tigano & 198 

Friesen, 2016). These processes can be investigated by assessing the correlation between 199 

genetic distance among populations or individuals and the geographic distance separating 200 

them (Cayuela et al., 2018). The function gl.genleastcost() performs a least-cost path 201 

analysis based on a friction matrix to test the hypothesis that genetic distance correlates 202 

with landscape attributes, such as barriers or habitat corridors, rather than geographic 203 

distance. Other functions include the calculation of several genetic distances between 204 

individuals and populations, testing for isolation by distance (Van Strien et al., 2015) and 205 

dispersal simulations. 206 

The evaluation and monitoring of inbreeding and relatedness can provide valuable 207 

information to maximise existing genetic variation and avoid inbreeding depression. This 208 

information has been used in captive breeding programs to prevent the detrimental effects 209 

of small population size, founder effects, and lack of gene flow (Wright et al., 2021). Various 210 

functions can guide the breeding of plants and animals; gl.grm() calculates and plots the 211 

mean probability of identity of descent across all loci that would result from all the possible 212 

crosses of the individuals that were sampled (Fig. 4; Endelman & Jannink, 2012). This 213 

information can identify potential pairs of individuals whose crossing might prevent 214 

inbreeding.  215 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2022. ; https://doi.org/10.1101/2022.03.30.486475doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.30.486475
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13

 216 

Figure 4 | Heatmap of the probabilities of identity by descent (IBD) in which yellow and red 217 

colours indicate individuals more related to each other. The identification number of each 218 

individual is shown in the margins of the figure, where the last letter denotes whether the 219 

individual is male (M) or female (F). This information is being used to guide the captive 220 

breeding program of the Arabian oryx at the Al-Wusta Wildlife Reserve in Oman (Al Rawahi 221 

et al., 2022). 222 

We have developed functions to simplify the process of running external software that 223 

requires several steps (a.k.a. wrapping functions), linking to programs such as Outflank 224 

(Whitlock & Lotterhos, 2015), BLAST (Altschul et al., 1990; Altschul et al., 1997), NewHybrids 225 

(Anderson & Thompson, 2002), Neestimator2 (Do et al., 2014), STRUCTURE (Pritchard et al., 226 

2000), Clumpp (Jakobsson & Rosenberg, 2007), Distruct (Rosenberg, 2004) and Evanno’s 227 

method (Evanno et al., 2005). For example, the latter four programs can be run within dartR 228 
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using the functions below and results plotted in an interactive map as shown in Fig. 5. Note 229 

that while we aimed to facilitate access to resources and analytical tools, the users should 230 

remain aware of assumptions and characteristics of such analyses so that they can be run 231 

and interpreted properly. We envisage that future version of dartR will continue the 232 

development of functions that will facilitate testing of assumption and screening of 233 

adequate execution (e.g. convergence). 234 

> out_struc <- gl.run.structure(bandicoot.gl, k.range = 2:5, num.k.rep = 10, exec = 235 

"~/structure.exe", noadmix=FALSE) 236 

> out_evanno <- gl.evanno(out_struc) 237 

> qmat <- gl.plot.structure(out_struc, k=3, CLUMPP="~/CLUMPP.exe") 238 

> gl.map.structure(qmat, bandicoot.gl) 239 

 240 

Figure 5 | Interactive map showing the results from the software STRUCTURE (Pritchard et 241 

al., 2000), using the software Clumpp (Jakobsson & Rosenberg, 2007) to align the results of 242 

different independent runs and the software Distruct (Rosenberg, 2004) to display the 243 

results graphically. Individuals are shown as vertical bars coloured in proportion to their 244 
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estimated ancestry within each inferred population (K=3). The dataset used in the figure is 245 

provided with the package. 246 

Exporting genetic data to other formats is a common step and one of the most time-247 

consuming and susceptible to errors in the analysis of genetic data. dartR offers 24 functions 248 

to export genlight objects to other formats, including FASTA, PLINK and VCF. 249 

Computer simulations are powerful tools for understanding complex evolutionary and 250 

genetic processes and their relationships to ecological processes and can be used, for 251 

example, to predict complex scenarios involving the interaction between evolutionary 252 

forces or evaluate the plausibility of alternative hypotheses or, validate and evaluate genetic 253 

methods (Hoban et al., 2012). In this second version of dartR, we developed a realistic 254 

simulation model that can be parameterised with real-life genetic characteristics such as the 255 

number, location, allele frequency and the distribution of fitness effects (selection 256 

coefficients and dominance) of loci under selection. In the simulation model recombination 257 

is accurately modeled, and it is possible to use real recombination maps as input. 258 

We have also developed a set of internal functions that facilitate the user’s interaction with 259 

dartR. For example, the function gl.install.vanilla.dartR() installs all required packages for 260 

using all the functions available in dartR; and the functions gl.print.history() and 261 

gl.play.history() prints and replays the history of all the analyses performed previously in a 262 

genlight object, respectively.  263 

Concluding remarks  264 
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The remarkable recent advances in applied and theoretical genetics offer many novel 265 

opportunities to address and better manage rates of biodiversity and ecosystem loss. 266 

Notwithstanding this, the list of skills and level of expertise required to integrate novel 267 

genomic resources and perform increasingly complex analyses have increased 268 

simultaneously. Thus, researchers and stakeholders often struggle to keep up with the 269 

various ways to analyse and apply genetic data and to take maximum advantage of them to 270 

inform conservation and restoration. We envision that as the number of analyses and their 271 

complexity continues to increase, accessible, streamlined and reliable platforms to analyse 272 

genetic data, such as dartR, will play a crucial role in translating science into practice. 273 
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Data availability statement 286 

The current version of the dartR package (2.0.3) can be downloaded and installed via CRAN 287 

R repository [install.packages(”dartR”)]. The latest development version is hosted on GitHub 288 

under: https://github.com/green-striped-gecko/dartR, accompanied by a detailed 289 

description of how to install the latest version and a changelog. Errors, feature requests and 290 

contributions should be submitted via the GitHub repository.  291 
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