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Abstract  

1. Distance measures are widely used for examining genetic structure in datasets that 
comprise many individuals scored for a very large number of attributes. Genotype datasets 
composed of single nucleotide polymorphisms (SNPs) typically contain bi-allelic scores 
for tens of thousands if not hundreds of thousands of loci.  

2. We examine the application of distance measures to SNP data (both genotypes and 
sequence tag presence-absence) and use real datasets and simulated data to illustrate 
pitfalls in the application of genetic distances and their visualization. 

3. Missing values arise from ascertainment biases in the SNP discovery process (null alleles 
in the case of SNP genotyping; true missing data in the case of sequence tag presence-
absence data). Missing values can cause displacement of affected individuals from their 
natural groupings and artificial inflation of confidence envelopes, leading to potential 
misinterpretation. Failure of a distance measure to conform to metric and Euclidean 
properties is important but only likely to create unacceptable outcomes in extreme cases. 
Lack of randomness in the selection of individuals and lack of independence of both 
individuals and loci (e.g. polymorphic haploblocks), can lead to substantial and otherwise 
inexplicable distortions of the visual representations and again, potential misinterpretation.  

4. Euclidean Distance is the metric of choice in many distance studies. However, other 
measures may be preferable because of underlying models of divergence, population 
demographic history, linkage disequilibrium, because it is desirable to down-weight joint 
absences, or because of other characteristics specific to the data or analyses. Distance 
measures for SNP genotype data depend on the arbitrary choice of reference and alternate 
alleles (e.g. Bray-Curtis distance) should be avoided. Careful consideration should be 
given to which state is scored zero when applying binary distance measures to fragment 
presence-absence data (e.g. Jaccard distance). Filtering on missing values then imputing 
those that remain avoids distortion in visual representations. Presence of closely related 
individuals or polymorphic haploblocks in the genomes of target species with limited 
genomic information occasionally emerge as challenges that need to be managed. 

Keywords: Principal Components Analysis, Principal Coordinates Analysis, Genetic distance, 
Metric distance, Euclidean distance 

Introduction 

Population genetics is the study of the interplay of genetic drift, gene flow, recombination and 
selection, and to a lesser extent mutation, as they come to influence the contemporary genetic 
composition of populations. Finite populations can be expected to vary in genetic composition 
in space and through time under the influence of genetic drift alone. Rate of genetic drift 
strongly depends on overall population size and the level of spatial sub-structuring within 
populations. Populations are not static, and the history of population size fluctuations has a 
bearing on contemporary patterns of divergence evident in distance analyses, particularly if 
there has been a recent reduction in size or a sustained bottleneck. Divergence in allelic profiles 
can be reinforced and accelerated (or in some cases, impeded) by local selection (Edwards & 
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Cavalli-Sforza, 1967). The effect of these evolutionary processes on genetic distance are 
moderated by demographic events such as gene flow between populations of the same species, 
and hybridization and introgression between closely related species.  Mutation sustains allelic 
variation in the context of allelic loss through drift and/or selection, but its effects are likely to 
be small compared to other influences in the context of population genetics (Edwards & 
Cavalli-Sforza, 1967). 

Many measures of genetic similarity and dissimilarity have been developed to quantify 
inter-individual and inter-population variation. The concept of genetic distance (Sanghvi, 
1953) is now a fundamental tool in genetics (Nei & Kumar, 2000). Genetic distances fall into 
several broad classes. Some are obtained by direct measurement, such as immunological 
distance (Faith, 1985) or DNA-DNA hybridization (de Ley et al., 1970; Hirayama et al., 1996; 
Kirsch et al., 1990). However, most genetic distances are calculated from character states 
(genotypes) arranged as a matrix of individuals (as entities) by attributes (genetic loci). Genetic 
distances can be further classified by whether they will be used to infer patterns of ancestry 
and descent among species (phylogenetics), the structure and relationships among populations 
of a species at various scales of divergence with or without gene flow (population genetics), or 
relationships among individuals (e.g. kinship).  

Even if the focus is on elucidating contemporary divergence among populations, 
genetic distances between populations and the genetic distances between the individuals that 
comprise those populations are interdependent.  In this paper, we deal with distances defined 
for both individuals and populations, in the broader context of divergence among populations.  

The array of available measures of distance and similarity/dissimilarity (Deza & Deza, 
2009) is daunting. In this article, we specifically address analyses of single nucleotide 
polymorphisms (SNPs), markers that are commonly used in studies of spatial or temporal 
variation among individuals and populations of a species or closely related species. SNPs have 
particular characteristics that influence the choice of a distance measure. SNPs can have more 
than two alleles (i.e. are multiallelic) but in practice, sites with more than two allelic states are 
filtered out during the selection of markers as part of pipelines to eliminate non-homologous 
sequence tags. Fortunately, multiallelic SNP sites are rarely observed. As a result of this 
filtering, SNP markers are bi-allelic, typically scored as the frequency of the alternate allele – 
0 for homozygous reference allele, 1 for heterozygotes, and 2 for homozygous alternate allele 
(in diploid organisms). Such biallelic markers have characteristics that substantially limit 
options for a distance measure. For example, the values of 0 and 2 carry equal weight because 
the choice of reference allele and alternate allele is arbitrary. Any distance measure that gives 
differential weight to joint zeros (e.g. Bray & Curtis, 1957 Distance) will yield values that 
depend on the arbitrary choice of which allele is reference and which is alternate at each locus. 
Such distance measures can be eliminated from options available for SNP genotype data. 
Standardization or normalization across attributes (loci) is not required because the attributes 
(loci) are all measured as genotypes on the same scale (0, 1 or 2); this is not the case under 
some circumstances in multiallelic systems. That said, the biallelic nature of SNP markers 
permits the easy calculation of the maximum distance possible, which permits scaling distances 
to fall conveniently in the range of [0,1] while maintaining comparability across studies. 
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Finally, issues that arise in a multiallelic context do not apply in a biallelic context. For 
example, Rogers D (Rogers, 1972), and therefore Standard Euclidean Distance, can yield 
undesirable results when two populations are both polymorphic at a site, but share no alleles 
(Nei & Kumar, 2000:246). This situation does not arise in the biallelic case, and so Standard 
Euclidean Distance (or Rogers D) is often the distance of choice in SNP studies.  

A second form of informative genetic data comprises presence or absence of the 
sequence tag typically denoted as 1 for presence and 0 for absence. Absence of a sequence tag 
in this case is not because of missing data per se (absence of evidence), but instead is the true 
absence of sequence tag in a sample (evidence of absence). Technical artefacts such as low 
DNA quality or quantity, or failure of experimental protocol resulting in shallow sequencing 
depth, may occasionally lead to the missing data owing to the absence of evidence. Typically, 
this is overcome by quality control processes, and data filtering is routinely performed to 
distinguish between the true absence and missing data for sequence tags. Therefore, absence 
of a sequence tag is assumed to arise as a null allele, which signifies a mutation at one or both 
of the restriction enzyme recognition sites. Provided technical reproducibility is achieved in 
the generation of data, sequence tag presence-absences are valid genetic markers in their own 
right. Since sequence tag presence-absence data are binary data, many binary distance 
measures (Deza & Deza, 2009) have been co-opted for genetic studies of presence-absence 
SNP data (e.g. Jaccard Distance).  

In this paper, we consider genetic distances commonly used in analyses of SNP data 
(both genotypic and tag presence-absence) as they apply to individuals and populations. 
Although genetic distances are used in a wide range of contexts (Jansen & van Hintum, 2007; 
Libiger et al., 2009; Yin, 2020), we focus (not exclusively) on the application of distances in 
studies of spatial and temporal genetic structure among populations where allelic profiles are 
governed principally by recent or contemporary processes of drift, selection and gene flow. We 
do not consider distance measures used to reveal deeper historical patterns of ancestry and 
descent among lineages on independent evolutionary trajectories where the pattern of 
mutational events dominates (species-level phylogenetics). Nor do we consider distance 
measures used to quantify distances between pairs of SNPs as opposed to pairs of individuals 
or populations (Müller et al., 2005). 

We further examine approaches for visualizing distances in multivariable space, in 
particular, Principal Components Analysis (PCA) (Hotelling, 1933; Jolliffe, 2002; Pearson, 
1901) and Principal Coordinates Analysis (PCoA) (Gower, 1966) collectively referred to as 
ordination. These techniques have found application in many diverse fields such as ecology, 
economics, psychology, meteorology, oceanography, human health and genetics as a 
descriptive and an exploratory tool to generate hypotheses for further examination (Jolliffe & 
Cadima, 2016) rather than a formal statistical analysis (but see Patterson et al., 2006).   

With the relatively recent advent of large SNP matrices, many applications of 
ordination examine spatial and temporal population structure in SNP datasets. We pay 
particular attention to underlying assumptions of the application of distance analyses and 
visualization of spatio-temporal structure using ordination, which are poorly appreciated. 
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These assumptions include the properties of various distance measures and the importance of 
metric and/or Euclidean properties for visualization, the impact of missing values and the 
importance of randomness in sampling and independence of both those individuals' genotypes 
and the loci selected for screening. We briefly review the most commonly used distance 
measures as they apply to SNP datasets and their usefulness in analysing population structure. 

 In what follows, the term "SNP data" includes both SNP genotype data and SNP 
sequence tag presence-absence data. We use the concept of distance loosely to encompass the 
notions of measures of dissimilarity through to metric distances and rigid Euclidean distances 
(Gower & Legendre, 1986). Where the distinction is necessary, a distance is referred to as a 
non-metric distance, a metric distance, or a Euclidean distance. In describing a SNP matrix, we 
refer to individuals, samples or specimens as entities, the SNP loci that are scored for each 
entity as attributes, and the scores themselves as states. 

Methods 

For the purposes of illustration, a dataset was constructed from a SNP matrix generated for the 
freshwater turtles in the genus Emydura, a recent radiation of Chelidae in Australasia.  The 
dataset includes populations that vary in level of divergence to encompass variation within 
species and variation between closely related species. Populations (i.e. sampling localities) 
with evidence of admixture between species were removed. Monomorphic loci were removed, 
and the data was filtered on call rate (<95%), repeatability (< 99.5%) and read depth (5x < read 
depth < 50x). Where there was more than one SNP per sequence tag, only one was retained at 
random. The resultant dataset had 18,196 SNP loci scored for 381 individuals from 7 
populations (sampling localities) – Emydura victoriae [Ord River, NT, n=15], E. tanybaraga 
[Holroyd River, Qld, n=10], E. subglobosa worrelli [Daly River, NT, n=25],  E. subglobosa 
subglobosa [Fly River, PNG, n=55], E. macquarii macquarii [Murray Darling Basin north, 
NSW/Qld, n=152], E. macquarii krefftii [Fitzroy River, Qld, n=39] and E. macquarii emmotti 
[Cooper Creek, Qld, n=85]. The missing data rate was 1.7%, subsequently imputed by nearest 
neighbour (Beretta & Santaniello, 2016) to yield a fully populated data matrix. 

The above manipulations were performed in R package dartR Version 2.0.3 (Gruber et 
al., 2018; Mijangos et al., 2022). Principal Components Analysis was undertaken using the 
glPCA function of the R adegenet package (as implemented in dartR, Gruber et al., 2018; 
Jombart, 2008; Jombart & Ahmed, 2011). Principal Coordinates Analysis was undertaken 
using the pcoa function in R package ape (Paradis & Schliep, 2019) implemented in dartR 
Version 2 (Mijangos et al., 2022).  

To exemplify the effect of missing values on SNP visualisation using PCA (Figure 6), 
we performed computer simulations in dartR Version 2.0.3 (Mijangos et al., 2022). Ten 
simulated populations reproducing over 200 non-overlapping generations were placed in a 
linear series with low dispersal between adjacent populations (one disperser every ten 
generations). Each population had 100 individuals, of which 50 individuals were sampled at 
random. Genotypes were generated for 1000 neutral loci on one chromosome.  
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The data for the Australian Blue Mountains skink Eulamprus leuraensis (Figure 7) were 
generated for 372 individuals collected from 17 swamps isolated to varying degrees in the Blue 
Mountains region of New South Wales. A total of 13,496 loci were scored which reduced to 
7,935 after filtering out secondary SNPs on the same sequence tag, filtering on reproducibility 
(threshold 0.99) and call rate (threshold 0.95), and removal of monomorphic loci.  

The algorithms discussed in this paper form the basis of the distance analysis 
implemented in R software package dartR (Gruber et al., 2018; Mijangos et al., 2022). 

The Concept of Distance 

Standard Euclidean distance is a common-sense notion derived as an abstraction of physical 
distance. It is possible to calculate the Standard Euclidean distance between two points from 
their coordinates in a two-dimensional space defined by orthogonal Cartesian axes (Figure 1). 
The distance between two points in space is calculated by applying Pythagoras’ rule to their 
projection onto the Cartesian axes (Figure 1a). 

𝑑 𝐴, 𝐵 𝑦  𝑥  𝑦  𝑥   

and so the distance between two points A and B can be represented algebraically by 

𝑑 𝐴, 𝐵 𝑦  𝑥  𝑦  𝑥   

This calculation can be generalized to 3 dimensions  

𝑑 𝐴, 𝐵 𝑦  𝑥  𝑦  𝑥 𝑦  𝑥   

and beyond to L dimensions  

𝑑 𝐴, 𝐵 𝑥 𝑦  
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Figure 1. Distance between two points A and B represented in two-dimensional space (a) 

can be calculated from their Cartesian coordinates using Pythagoras’ rule – the square of 

the hypotenuse of a right-angled triangle is equal to the sum of the squares of the two 

adjacent sides. Each axis can be considered to represent a locus (b), with the value taken 

by an individual (A or B) on that axis called as xAi and xBi = 0, 1 or 2 for SNP genotype. As 

such, each individual is represented by a point in a multidimensional space defined by the 

i = 1 to L loci. Populations A and B can be similarly depicted, as in (c), with the relative 

frequency of the alternate allele in the population (pAi and pBi) as the value taken on each 

SNP axis. Representation for sequence tag presence-absence data can be similarly defined. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.22.533737doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.22.533737
http://creativecommons.org/licenses/by-nd/4.0/


8 

 

Applying Standard Euclidean distance to SNP data is straightforward. Where points A and B 
represent two individuals (Figure 1b), the horizontal axis represents SNP Locus 1 and the 
values xA1 and xB1 represent the scores for that locus (0 or 1 or 2 for SNPs; 0 or 1 for tag 
presence-absence) for individuals A and B respectively; the vertical axis represents SNP Locus 
2 with the values xA2 and xB2 similarly defined. 

𝑑 𝐴, 𝐵 𝑥 𝑥  

Standard Euclidean Distance can be similarly defined for populations, 

𝐷 𝐴, 𝐵 𝑝 𝑝  

where pAi and pBi are the relative frequencies of the alternate allele at locus i in populations A 
and B respectively (Figure 1c).  

The equations for d(A,B) and D(A,B) can be scaled to fall in the range [0,1] on noting 
that its maximum is achieved for SNP data when all xAi are 0 and all xBi are 2; for tag presence-
absence data the maximum is achieved when all xAi are 0 and all xBi are 1. Note also that the 
equations for d(A,B) and D(A,B) are symmetric with respect to choice of which allelic state is 
assigned to reference (0 for homozygous reference) and which is assigned to alternate (2 for 
homozygous alternate). Interchanging the reference and alternate alleles (that is applying 
transformation x' = 2 – x for SNP genotype data or x' = 1 – x for presence-absence data) has 
no impact on the value of the distance between A and B. 

Visualization of SNP data 

Principal Components Analysis (Hotelling, 1933; Jolliffe, 2002; Pearson, 1901) takes a SNP 
data matrix (genotypes or presence-absence data), represents the entities (individuals or 
samples or specimens) in a space defined by the L loci, centres and realigns that space by linear 
transformation (rotation) to yield new orthogonal axes ordered on the contribution of variance 
(represented by their eigenvalues) in their direction (defined by their eigenvector). This process 
maintains the relative positions of the entities. Because the resultant axes are ordered on the 
amount of information they contain, the first few axes, preferably two or three, tend to contain 
information on any structure in the data (signal) and later axes tend to contain only noise 
(Gauch, 1982). This is a powerful visual technique for examining structure in the SNP dataset. 
An example of a PCA is presented in Figure 2. Important variations include the combination 
of PCA with discriminant analysis (DAPC, Jombart et al., 2010) and adjustment for 
confounding factors (AC-PCA, Lin et al., 2016). 
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Figure 2. Principal Components Analysis (PCA) as applied to a SNP genotype dataset for the 

Australasian species of Emydura (Chelonia: Chelidae). Plot of individuals in a two-dimensional space 

(a) defined by Principal Component 1 (horizontal axis) and Principal Component 2 (vertical axis). 

Together they explain 61.7% of the total variance among individuals. A scree plot (b) shows the 

contributions to variance by the first nine principal components (those that exceed the Kaiser-Guttman 

threshold, Guttman, 1954) of which only two each explain more than 10% of variation. Proximity of 

Emydura subglobosa/worrelli to E. victoriae/tanybaraga in 2D obscures their distinction, evident 

when Principal Component 3 is considered (c). The variation explained by the first two principal 

components can be largely set aside by considering structure within the cluster Emydura 

subglobosa/worrelli/victoriae/tanybaraga only (d), effectively allowing consideration of deeper 

dimensions. 

Note that, were the data to have been drawn from a panmictic population (arguably the 
null proposition), each of the original variables would, on average, be expected to capture the 
same quantity of variance, and the ordination would fail (the first two axes would each 
represent only a small and random percentage of the total variance). When there is structure, 
the absolute value of the percentage of variation explained by a principal component cannot be 
compared across studies as a measure of the strength of the result; the percentage variance 
explained by a principal component needs to be taken in the context of the average percent 
variation explained by all components (Guttman, 1954).  

Note also that a PCA plot can be misleading if one chooses, for convenience, only two or 
three dimensions in which to visualize the solution. For example, separation in a 2-D plot can 
be accepted as real, but proximity cannot because further separation can occur in deeper 
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dimensions each coupled with a substantial explained variance (Figure 2c).  A widely used 
approach to determining the number of dimensions for the final solution is to examine a scree 
plot (Cattell, 1966), where the eigenvalues (proportional to variance explained) associated with 
each of the new ordered dimensions are plotted (Figure 2b). It is usual to apply the Kaiser-
Guttman criterion (Guttman, 1954) whereby only those dimensions with more than the average 
eigenvalue are considered, or to apply a related but less conservative approach to take into 
account sampling variability (Jolliffe, 1972). Even so, this may result in many informative 
dimensions. One must decide how much information to discard (e.g. keeping only those 
components that explain more than 10% of total variation) or adopt, as a threshold, a visually-
evident sudden drop in the percentage variation explained, commonly referred to as an elbow. 
More formal techniques (Cangelosi & Goriely, 2007; Jackson, 1993; Peres-Neto et al., 2005) 
include the broken-stick approach of Macarthur (1957), which provides a good combination of 
simplicity of calculation and evaluation of suitable dimensionality (Jackson, 1993). The 
broken-stick model retains components that explain more variance than would be expected by 
randomly dividing the variance into equal parts. Another related approach is to observe that the 
eigenvalues of lower "noise" dimensions are likely to decline geometrically, a trend that can 
be linearized by a log transformation. Informative dimensions are those that exceed this linear 
trend line (more strictly, exert disproportionate leverage on the regression). A more recent 
approach assesses the statistical significance of the variation explained by each Principal 
Component (Patterson et al., 2006). Under specified assumptions, the sampling distribution of 
the ordered eigenvalues, under the null hypothesis of no structure in the data, follows Tracy-
Widom distribution (Tracy & Widom, 1993). Thus, it is possible to assign a probability to an 
observed eigenvalue and retain for consideration only those principal components that are 
statistically significant (Patterson et al., 2006). The technique is sufficiently robust to violations 
of its underlying assumptions (e.g. normality) to be applicable to large genetic biallelic data 
arrays.  

Displaying the results in a two-dimensional plot is straightforward. Various software 
packages can display the results in three dimensions and allow rotation of the three axes to 
provide the best perspective (e.g. dartR, Gruber et al., 2018; Mijangos et al., 2022). Higher 
dimensions can be visualized by plotting the set of largest components in pairwise fashion. 
Alternatively, if there are strong groupings in the PCA plot in two dimensions, individuals in 
each of these groupings can be isolated and analysed by PCA separately (Georges & Adams, 
1992) (Figure 2d). 

Generalization of the concept of Distance 

Standard Euclidean distance is just one of many distance measures. The concept of distance 

more generally can be distilled down to three basic properties. For a metric distance we have: 

d(A,B) = 0 if and only if A = B 

d(A,B) = d(B,A) 

d(A,B) < d(A,C) + d(B,C) 
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The first condition asserts that indiscernible entities are one and the same. The second condition 
asserts symmetry. The last condition is referred to as the triangle inequality which enforces the 
notion that the distance between two points is the shortest path between them. From these 
properties we can conclude that metric distances must be non-negative. 

d(A,B) > 0 

In essence, metric distances are well-behaved distances. Standard Euclidean Distance, as with 
all Euclidean distances, is a metric distance. 

Graphically, the metric properties make complete sense for a distance (Figure 3). Given 
three points defined by the distances between them, the position of each of them is uniquely 
defined (Figure 3a). This is necessary (though not sufficient) if we are to draw an analogy 
between our distances and a representation in a linear physical space.  

 

Figure 3. Visual representation of the triangle inequality as used to define a metric distance. (a) – if three 

distances between points A, B and C satisfy the metric property 𝑑 𝐴, 𝐵 𝑑 𝐴, 𝐶  𝑑 𝐵, 𝐶 , then the 

position of each of A, B and C in space is well defined. (b) – if not, and 𝑑 𝐴, 𝐵 𝑑 𝐴, 𝐶  𝑑 𝐵, 𝐶 , 

then point C is undefined. 

While the metric properties of a distance are clearly important, many measures used in genetics 
are non-metric. An example of a dissimilarity measure that fails to satisfy the symmetry 
condition is one defined on private alleles. Private alleles are those uniquely possessed by one 
population when compared to other populations. The number of private alleles possessed by 
population A compared to population B will typically be different from the number of private 
alleles possessed by population B compared with A. Thus the resultant distances will not satisfy 
the second metric criterion of symmetry. Other genetic distances in use do not satisfy the 
triangle inequality. For example, percent fixed differences satisfy the first two conditions of a 
metric distance, but not the triangle inequality and so is non-metric. Nor is Nei's D a metric 
distance for the same reason, but the common alternative of Rogers' D is metric. FST is non-
metric. The Bray-Curtis dissimilarity measure is non-metric but is rank-order similar to the 
Jaccard distance, which is metric. And so on (refer Legendre & Legendre, 2012-- tables 7.2 
and 7.3). 
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Generalization of PCA 

Principal Co-ordinates Analysis (PCoA, Gower, 1966) is an alternative visualization technique 
that represents a distance matrix in a Euclidean space defined by an ordered set of orthogonal 
axes, as does PCA. Again, the axes are ordered on the amount of information they contain so 
that the first few axes tend to contain information on any structure in the data (signal) and later 
axes tend to contain only noise (Gauch, 1982). Important variations include adjustment for 
confounding factors (AC-PCoA, Wang et al., 2022) and application of iterative procedures to 
best match measured distances against distances in the visual representation for a specified 
number of dimensions (Belbin, 1991; Kruskal, 1964; metric, non-metric and hybrid MDS, 
Shepard, 1962). 

The primary difference between PCA and PCoA is that PCA works with the covariance 
(or correlation) matrix derived from the original data whereas PCoA works with a distance 
matrix. Because the mathematics of PCA moves forward from the covariance (or correlation) 
matrix, the insight attributed to John Gower (1966) was to substitute any distance matrix at this 
point in the analysis, following a simple transformation. This yields an ordered representation 
of those distances, metric or otherwise, in multivariable space akin to PCA, greatly expanding 
the range of application of ordination. In PCA, the N individuals are represented in a space of 
L dimensions defined by the loci whereas in PCoA, the individuals are represented in an N-1 
space with coordinate axes based solely on their pairwise distances. Thus the PCoA is not 
implicitly connected to any raw SNP genotype or tag presence-absence data. 

Choosing the number of dimensions to display in visualizing a PCoA is similar to PCA. 
Missing values are less disruptive for PCoA than classical PCA because they are 
accommodated in pairwise fashion rather than globally, but they nevertheless require 
consideration. Missing values result in variation in the precision of estimates of allele 
frequencies across loci and can break the Euclidean properties of a sample distance matrix even 
when the chosen metric is Euclidean in theory. Other considerations arise in PCoA from using 
distance matrices that are non-Euclidean. If a Euclidean distance matrix is used in PCoA then, 
in the absence of missing values, the distances in the input matrix are represented faithfully in 
the full ordinated space, that is, without distortion (Figure 4c). The same cannot be said of 
metric distances in general, as the metric properties ensure that the individuals can be 
represented in an ordinated space, but not in a rigid linear space (Figure 4a, after Gower, 1982) 
– some curvature of the space may be required to satisfy the triangle inequality (Figure 4b), 
which will potentially compromise ability to faithfully represent the distances between entities 
in a space defined by Cartesian coordinates. When applying PCoA to non-metric distances, the 
distortion in the representation can be severe.  
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Figure 4. Metricity is not sufficient to represent distances in a rigid space defined by 

Cartesian coordinates; the distances must be Euclidean. (a) – distances between four 

individuals that satisfy the metric properties can nevertheless not be represented in a 

linear space defined by Cartesian coordinates because the position of individual D is 

not defined by the interindividual distances (after Gower, 1982). (b) – this distortion 

can be resolved by allowing non-linear links (geodesics) to represent distances 

between individuals as, in the case of four points shown, the edges of an irregular 

Reuleaux tetrahedron in three dimensions. (c) – in contrast, Euclidean distances 

between four individuals can always be represented by linear segments without 

distortion, as edges of an irregular conventional tetrahedron in three dimensions. 
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Distortion arising from using non-Euclidean distances manifests as displacement of the 
points in the visualization, so that the distances among them no longer fundamentally represent 
the input values; some eigenvalues will be negative (representing imaginary eigenvectors) 
(Gower & Legendre, 1986). However, the level of distortion is likely to be of concern only if 
the absolute magnitude of the largest negative eigenvalue is greater than that of any of the 
dimensions chosen for the reduced representation (Cailliez & Pages, 1976).  A few small 
negative eigenvalues do not detract much from the visual representation if only a few of the 
highest dimensions are retained in the final solution (Sibson, 1979). Thus, departure from 
theory needs to be addressed in practice only if it causes serious issues. Note also that a distance 
measure does not need to be metric or Euclidean in theory for a sample distance matrix itself 
to be metric or Euclidean.  

Negative eigenvalues complicate interpretation of the variance contributions. In 
particular, one can no longer calculate the percentage variation explained by a PCoA axis by 
expressing the value of its eigenvalue over the total sum of the eigenvalues. A correction is 
necessary (Legendre & Legendre, 2012:506). 

% 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 
𝑒 𝑘

∑ 𝑒 𝑁 1 𝑘
 

where ei is the eigenvalue for PCoA axis i, N is the number of entities, and k is the absolute 
magnitude of the largest negative eigenvalue. 

If negative eigenvalues are considered problematic for the reduced space 
representation, a transformation can render them all positive and the distance matrix Euclidean. 
Common transformations put to this purpose are the square root (Legendre & Legendre, 
2012:501), Cailliez transformation (Cailliez, 1983; Gower & Legendre, 1986) and the Lingoes 
transformation (Gower & Legendre, 1986; Lingoes, 1971). 

Square root D′ A, B D A, B  

Cailliez D′ A, B D A, B   c for all 𝐴 𝐵 

Lingoes D′ A, B D A, B   c for all 𝐴 𝐵 

The value of c is chosen to be the smallest value required to convert the most extreme negative 
eigenvalue to zero. 

Finally, the outcome of a PCoA with an input matrix comprised of Standard Euclidean 
Distances  is identical to the outcome of a PCA (Cox & Cox, 2001:43-44). In this context, the 
interchangeability of the two, PCA and PCoA leads to considerable confusion on the distinction 
between the two analyses. 
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Genetic Distances for Individuals 

Binary Data 

Tag presence-absence data involves scoring SNP loci as “called” [1] or “not called” [0]. They 
are called because the two restriction enzymes find their mark (in DArTSeq or ddRAD), the 
corresponding sequence tags are amplified and sequenced, and the SNP is scored. The 
individual is thus scored as 1 for that locus. If, however, there is a mutation at one or both of 
the restriction enzyme sites, then the restriction enzyme does not find its mark, the 
corresponding sequence tag in that individual is not amplified or sequenced, or if it is amplified 
from a different start site, is no longer considered homologous during SNP pre-processing, and 
the SNP is called as missing for that individual. The individual is scored as 0 for that locus. 

Taking individuals two at a time, we can count up the different cases, 

𝑁
1, where 𝑥 𝑥 0

 0, where 𝑥 𝑥           

 ................................................................................................................... (1) 

where xAi and xBi are the tag presence-absence scores for individuals A and B respectively. 
N00 is the sum of loci scored 0 (absent) for both individuals; 

𝑁
1, where 𝑥 1
0, where 𝑥 0  

 ................................................................................................................... (2) 

that is, sum loci scored 1 (present) for Individual A and 0 (absent) for Individual B; 

𝑁
1, where 𝑥 0
0, where 𝑥 1  

 ................................................................................................................... (3) 

that is, sum of loci scored 0 (absent) for Individual A and 1 (present) for Individual B; 

𝑁
1, where 𝑥 𝑥 1
0, where 𝑥 𝑥           

 ................................................................................................................... (4) 

that is, sum of loci scored 1 (present) for both individuals. These summations do not include 
loci for which data are missing (NA) for one or both individuals. 

The number of loci L is given by 
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𝐿 𝑁 𝑁 𝑁 𝑁  

 ................................................................................................................... (5) 

Based on the above intermediates [(1) – (5)], there are several ways to calculate a binary 
distance between two individuals (Choi et al., 2010), some of which are shown in Table 1. The 
two most commonly used distance measures are Standard Euclidean distance and Simple 
Matching Distance (Sokal & Michener, 1958). Both are based on the number of mismatches 
between two individuals (N01 + N10), expressed as a proportion of the total number of loci 
considered (L), and used when there is symmetry (equivalence) in the information carried by 0 
(absence) and 1 (presence). Simple Matching Distance is simply the Standard Euclidean 
distance squared (and hence is non-metric).  

The Jaccard Distance is a variation on the Simple Matching Distance that down-weights 
joint absences and so is no longer symmetric with respect to 0 and 1 scores. Down-weighting 
absences of the sequence tags is arguably what you do not want for data comprised of counts 
of sequence tag absences arising from a positive event, that of a mutation at one (or both) of 
the restriction enzyme sites. If you wish to use the Jaccard Distance on DArT or ddRAD tag 
presence-absence data, you might consider recoding the data (x' = 1 - x) so that 1 represents 
presence of a mutation at one or both of the restriction enzyme sites (i.e. absence of the 
amplified tag) and 0 represents absence of such a disruptive mutation (i.e. success in amplifying 
the sequence tag). Having made this simple adjustment, the Jaccard Distance will down-weight 
joint absence of a disruptive mutation. The Jaccard Distance is a metric distance (Levandowsky 
& Winter, 1971). 

The Sørensen Distance adjusts the denominator to down-weight the joint absences (0,0) and 
up-weight joint presences (1,1). As with the Jaccard Distance, you might consider reversing 
the scores for absence (0) and presence (1) to 1 and 0 respectively when dealing with DArT or 
ddRAD sequence tag presence-absence data. Special attention may be required to manage 
missing values when applying the Sørensen and Jaccard Distances, because adjustment of the 
denominator in their formulae (Table 1) can lead to a potential systematic bias (Orlóci, 
1978:62). The Sørensen Distance is not a metric distance (Orlóci, 1978:61). 
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Table 1. Some genetic distances commonly applied to binary SNP data, that is, to sequence 
tag presence-absence data. Variables are described in the text. Formulae are presented to 
illustrate the adjustments made to the denominator for Jaccard and Sørensen distances rather 
than their conventional algebraic form. 

Name Formula Alternate Names Reference

Standard 
Euclidean 
Distance 

𝑑
𝑁 𝑁

𝐿
   

Simple Matching 
Distance 𝑑

𝑁 𝑁
𝐿

 Scaled Hamming Distance 
(Sokal & 

Michener, 1958) 

Jaccard Distance 𝑑
𝑁 𝑁

𝐿 𝑁
 

Marczewski-Steinhaus D 
(Marczewski & Steinhaus, 
1959); Ružička D; Soergel 

D

(Jaccard, 1912) 

Sørensen 
Distance 

𝑑
𝑁 𝑁

𝐿 𝑁 𝑁
 

Dice D (Dice, 1945) Sørensen D 
(Sørensen, 1948) 

SNP Genotype Data 

Unlike binary data, SNP data take on three values at a locus 

0, homozygous reference allele 
1, heterozygous 
2, homozygous alternate allele 

This scoring scheme is convenient computationally because the value adopted represents the 
count of the alternate allele. 

Standard Euclidean Distance as applied to SNP genotype data is defined in the usual 
way with loci as the axes in a coordinate space, and the value on each axis is 0, 1 or 2 as defined 
above. The scaling factor of ½ arises because the maximum squared distance between two 
individuals at a locus is (2-0)2 = 4. 

𝑑 𝐴, 𝐵
1
2

𝑥 𝑥
𝐿

 

where xAi and xBi are the counts of the alternate allele at locus i for individual A and B 
respectively; L is the number of loci for which both xAi and xBi are non-missing. 

The Simple Mismatch Distance uses the counts of shared alleles between two 
individuals i and j at a locus is given by 

𝑐 , 0, where no alleles are shared 0,2 | 2,0  
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1, where one allele is shared 0,1 | 1,0 | 2,1 | 1,2   
2, where both alleles are shared 0,0 , 1,1 , 2,2  

and is calculated as 

𝑑 𝐴, 𝐵 1  
1

2𝐿
𝑐  

where L is the number of loci non-missing for both individuals i and j. It is non-metric and 
similar to the Allele Sharing Distance (Gao & Starmer, 2007), differing from it by a factor of 
2. 

Czekanowski Distance (Czekanowski, 1913) is calculated by summing the scores 
across the axes  

𝑑 𝐴, 𝐵  
1

2𝐿
|𝑥 𝑥 | 

where xAi and xBi are the counts of the alternate allele at locus i for individual A and B 
respectively; L is again the number of loci for which both xAi and xBi are non-missing. Referred 
to also as the Manhattan D or the City Block D, Czekanowski Distance is a metric distance.  

SNP genotype data can be converted to binary data by counting the shared alleles 
between two individuals i and j at a locus 

𝑐 , 0, no alleles are shared 0,2  
      1, one or both alleles are shared [0,0]|[0,1]|[1,2]|[2,2]  

whereby distance measures devised for binary data can be applied. These distances are in effect 
considering only fixed allelic differences between the two individuals. 

Genetic Distances for Populations 

Standard Euclidean Distance as applied to allele frequencies is defined in the usual way with 
loci as the axes in a coordinate space, and the value for the population on each axis is set to the 
frequency of the alternate allele for the respective locus (Table 2). An appropriate scaling factor 
is applied to bring the value of the distance into the range [0,1], which renders it identical to 
Roger's D (Rogers, 1972). Standard Euclidean distance is a model-free metric distance, in that 
its formulation makes no assumptions regarding evolutionary processes generating the genetic 
distances.  

Nei's standard genetic distance (Nei, 1972) is favoured by some over Standard 
Euclidean Distance because of its relationship to divergence time. When populations are in 
mutation-drift balance throughout the evolutionary process and all mutations result in new 
alleles in accordance with the infinite-allele model, Nei’s D is expected to increase in 
proportion to the time after divergence between two populations (Nei, 1972). Nei’s D is non-
metric. 
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Reynolds genetic distance (Reynolds et al., 1983) is also approximately linearly related 
to divergence time in theory, but unlike Nei’s Standard Genetic Distance, it is based solely on 
a drift model and does not incorporate mutation. Thus, it may be more appropriate than Nei’s 
distance for spatial population genetics (divergence on relatively short timescales) and in 
particular, representation of genetic similarity in trees (phenograms) or networks where branch 
lengths need to be interpretable. A better approximation (Reynolds et al., 1983) of the linear 
relationship with time is given by 

𝐷′ 𝐴, 𝐵  𝑙𝑛 1 𝐷 𝐴, 𝐵  

Reynold’s D is non-metric.  

There is some confusion arising from the translation of Bray-Curtis Distance (Bray & 
Curtis, 1957) from an ecological perspective to a genetics perspective. The Bray-Curtis 
Distance applies to abundances and down-weights joint absences in a manner analogous to 
the Jaccard Distance. When applied to SNP data, the Bray-Curtis Distance uses the 
abundance of the reference allele which renders it asymmetric with respect to the arbitrary 
choice of which is reference and which is alternate allele. Bray-Curtis Distance defined in 
this way should thus not be used on SNP data. Some authors have suggested that the Bray-
Curtis equation be applied separately to the counts of each allele, averaged for the locus, for 
computing genetic distance populations (Allele Frequency Difference or AFD, Berner, 2009; 
Bray-Curtis/Allele Frequency Difference or BCAFD, Sherwin, 2022). However, when this 
formulation is applied to either individuals or populations, it becomes algebraically 
equivalent to the Czekanowski Distance (=Manhattan D). It no longer has the properties of 
Bray-Curtis Distance (being neither non-metric nor asymmetric). To avoid confusion, 
members of this class of distances should not be referred to as Bray-Curtis, AFD or 
BCAFD, but rather as Czekanowski Distance or the more familiar Manhattan D, given that 
naming of a distance measure should not be context dependent. The same issue has arisen in 
ecology (Yoshioka, 2008). Czekanowski Distance applied to SNP data and corrected for 
maximum value dependency is referred to as AA Distance (Sherwin, 2022). 
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Table 2. Some genetic distances commonly applied to populations. pAi is the proportion of the 

alternate allele for Locus i in population A, pBi is the proportion of the alternate allele for Locus 

i in population B.  qAi and qBi are similarly defined for the reference alleles. L is the number of 

called loci. 

Name Formula Reference

Standard 
Euclidean 
Distance 

Binary P/A 

𝐷 𝐴, 𝐵
1
𝐿

𝑝 𝑝  

SNP genotypes 

𝐷 𝐴, 𝐵
1
2

1
𝐿

𝑝 𝑝  

 

 

 

 

 

Czekanowscki 
Distance 

(Manhattan 
Block) 

𝐷 𝐴, 𝐵
1

2𝐿
|𝑝 𝑝 |  

(Berner, 2009, as 
AFD; 

Czekanowski, 
1913) 

Nei Standard 
Genetic 
Distance 

𝐷 𝐴, 𝐵

𝑙𝑛

⎝

⎛
∑ 𝑝 𝑝  𝑞 𝑞

∑ 𝑝 𝑞 ∑ 𝑝 𝑞
⎠

⎞ (Nei, 1972) 

Reynolds 
Distance 

𝐷 𝐴, 𝐵

∑ 𝑝 𝑝 𝑞 𝑞
2 ∑ 1 𝑝 𝑝 𝑞 𝑞

 
(Reynolds et al., 

1983) 

Chord 
Distance 𝐷 𝐴, 𝐵 1

1
𝐿

𝑝 𝑝 𝑞 𝑞  
(Edwards & 

Cavalli-Sforza, 
1964) 

Wright's 
paired FST 

Paired FST requires estimation with approaches such as 
that used by R package hierfstat [genet.dist(gl, 
method="WC84")] 

(Wright, 1951) 
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Chord Distance (Edwards & Cavalli-Sforza, 1964) (Table 2) assumes divergence 
between populations is via drift alone, and so again may be more appropriate than Nei’s D for 
spatial population genetics. Chord Distance is based on Geodesic or Angular Distance 
(Bhattacharyya, 1946; Edwards, 1971; Edwards & Cavalli-Sforza, 1967), 

𝑐𝑜𝑠 𝛼 𝑝 𝑝 𝑞 𝑞  

where α is the Angular Distance. For a geometric interpretation using biallelic data, see Nei & 
Kumar (2000:267). Chord Distance approximates Angular Distance by replacing the arc 
distance with the length of the corresponding straight-line segment (Edwards & Cavalli-Sforza, 
1964) (Table 2). It is a metric distance that can be transformed to be approximately Euclidean 
(Edwards, 1971). As with Reynold's D, Chord Distance is proportional to shallow divergence 
time (for relatively small values of D) under specified assumptions (Edwards, 1971). It may be 
preferred over the model-free Standard Euclidean Distance where an underlying genetic model 
of divergence with time is preferred. 

Wright’s F-statistics (Wright, 1951) describe the distribution of genetic diversity within 
and between populations (Holsinger & Weir, 2009). F-statistics are defined in terms of the 
proportion of heterozygotes observed (Hobs) and the proportion of heterozygotes expected 
under Hardy-Weinberg equilibrium (Hexp), as follows: 

𝐹 1
𝐻
𝐻

 

A deficit in the observed proportion of heterozygotes compared with that expected under 
Hardy-Weinberg equilibrium will yield a Wright’s F that deviates from zero. If, at a single 
locus, observed and expected heterozygosity are in agreement, then F=0. If, at the extreme, no 
heterozygotes are observed, then F=1. If there is an excess of heterozygotes, F will be less than 
zero. When F is averaged across a large number of independent loci for a population, F will 
typically fall between zero and one. If two populations that differ in allelic profiles are 
combined (pooled), then Hardy-Weinberg equilibrium is not a sensible null expectation. 
Divergence of the two allele frequency profiles will manifest as non-random mating and a 
departure from Hardy-Weinberg equilibrium (the “Wahlund Effect”, Wahlund, 1928). 
Wright’s F applied to the pooled populations is thus informative when examining population 
subdivision, because the resultant deficit in heterozygotes is an indication of genetic structure. 
F applied in this way incorporates two components -- one arising from departure from Hardy-
Weinberg expectation within each population and the second arising from departure from 
Hardy-Weinberg expectation because of structure between the two populations or sub-
populations. For this reason, Wright's pairwise FST is most commonly used as a measure of 
genetic distance between two populations or sub-populations (see Nei, 1977; Nei & Kumar, 
2000:236). FST is a measure of the reduction in heterozygosity attributable to differences in 
allelic frequency profiles between populations or sub-populations, having partitioned out the 
contributions from departure from Hardy-Weinberg expectation within populations or sub-
populations. Although not a genetic distance in the strict sense, FST can be viewed a non-metric 
distance that varies in value between 0 and 1. Several methods to estimate FST have been 
developed and some are complex (Excoffier, 2001; Weir & Cockerham, 1984), but there are 
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many software packages available to estimate FST for SNP genotype data (e.g. R package 
hierfstat, Goudet, 2005). 

Finally, SNP genotype data at the population level can be converted to binary data by 
counting the shared alleles between two populations A and B at a locus 

𝑐 , 0, no alleles are shared by the two populations at that locus 
      1, one or both alleles are shared at that locus  

whereby distance measures devised for binary data can be applied. These distances are, in 
effect, considering only fixed allelic differences between the two populations. 

Missing values 

Missing data are problematic for distance analyses. Techniques like classical PCA that access 
the raw data matrix cannot accommodate missing data. PCoA, which accesses a distance 
matrix, is affected in ways that are not immediately transparent – potentially breaking metric 
or Euclidean properties, and varying the precision of estimates of population allele frequencies 
across loci. The trade-off is one of balancing data loss with bringing distortion of the visual 
representation within acceptable levels. 

SNP datasets typically have substantial numbers of missing values. With SNP 
genotypes, missing data can arise because the read depth is insufficient to detect SNP-
containing sequence tags consistently, or because mutations at one or both of the restriction 
enzyme recognition sites in some individuals result in allelic drop-out (null alleles). Because 
those that arise from mutation are inherited, they are subject to genetic drift (and potentially 
local selection) differentially within each sampled population, and so are not randomly 
distributed across the entire dataset. Indeed, in some populations the mutation(s) leading to 
missing values may become fixed. Filtering on call rate with a threshold applied globally will 
potentially admit high frequencies of missing data at particular loci at the level of single 
populations, which has consequences as outlined below. 

In SNP sequence tag presence-absence data, the null alleles are themselves the data, 
scored as presence or absence of the amplified tag. In this context, missing values arise because 
the read depth is insufficient to be definitive about the absence of a particular sequence tag.  

Because classical PCA will not accept missing values, when a locus is not scored for a 
particular individual, either the data for the entire locus must be deleted or the data for the entire 
individual must be deleted. This is clearly very wasteful of information, and unacceptable loss 
when working with SNP datasets. The data loss can be controlled to an extent by pre-filtering 
on call rate by locus (say requiring a call rate > 95%) or by individual (say requiring a call rate 
> 80%), but the remaining missing data may still need to be managed. Numerous ways for 
handling missing data in PCA have been suggested (Dray & Josse, 2015), but the most common 
method is to replace a missing value with the mean of the allele frequencies for the affected 
individual (mean-imputed missing data). 
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Figure 5. Principal Components Analysis (PCA) applied to two 

populations where five individuals in one population (Emydura 

worrelli) have had percentages of SNP loci ranging from 10% to 

100% set to missing. (a) – the impact of this on PCA where 

missing data are filled with the average global allele frequencies 

(mean-imputed missing data) is clear, and subject to 

misinterpretation as hybridization or various levels of 

introgression. (b) – the issue can be resolved by local imputation, 

in this case by nearest-neighbour imputation. 

Mean-imputation of missing data can lead to the individuals (or samples or specimens) with a 
high proportion of missing data being drawn out of their natural grouping and toward the origin, 
leading to potential misinterpretation (Yi & Latch, 2021). For example, if individuals in the 
PCA aggregate into natural clusters, perhaps representing geographic isolates, and these 
clusters are on either side of the origin, then an individual with a high frequency of missing 
values will be drawn out of its cluster when the missing values are replaced by the global 
average allele frequencies (Figure 5). Its location intermediate to the two clusters might be 
falsely interpreted as a case of admixture.  Individuals with missing data corrected by mean-
imputation will also distort confidence envelopes as applied to clusters with consequences for 
interpretation (Figure 6). 
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Figure 6. A PCA plot of simulated data showing aggregations and their associated 95% confidence 

limits for (a) data with no missing values and (b) data with 50% missing values. Note the inflationary 

effect missing values have on the spread of the points in each aggregation, manifested as inflation of 

the 95% confidence limits, an artifact. This is of particular relevance to studies of population 

assignment. 

Better ways than global mean-imputation for handling missing values in SNP datasets include 
local filtering for call rate or local imputation. There are several options: 

1. Apply a threshold for an acceptable call rate separately to each population, noting that a 
missing value rate of <10% causes only modest distortion (Figure 5a). Filtering on call 
rate by population with a threshold of 95% can be expected to constrain the distortion 
satisfactorily. 

2. Replace missing values for an individual with the mean observed allele frequency for the 
population from which the individual was drawn. In this way, the individual is displaced 
toward the centroid of the population from which it was drawn, not the origin of the PCA.  

3. Replace missing values for an individual with the expected value for the population to 
which the individual belongs, based on the assumption of Hardy-Weinberg equilibrium. 
The individual will again be displaced toward the centroid of the population from which it 
was drawn, not the origin of the PCA.  

4. Replace missing values for an individual by the value at the same locus from its nearest 
neighbour (the individual closest to the focal individual based on Standard Euclidean 
genetic distance) (Beretta & Santaniello, 2016). The focal individual will be drawn toward 
its nearest neighbour, typically an individual within the same population. This method has 
the advantage of filling missing values even where all individuals in a population are 
missing for a given locus. 
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Strictly, methods of local imputation should be applied to each group of individuals sampled 
from the same locality. In practice, it is unlikely to matter too much so long as the imputation 
is restricted to each aggregation that appears as distinct in a preliminary PCA. 

If imputation is not desirable or heavy filtering on call rate considered too wasteful of 
data, an alternative approach is to apply pairwise deletion of loci rather than the global deletion 
dictated by classical PCA. This can be done by calculating a matrix of Standard Euclidean 
distances for individuals taken pairwise, removing loci with a missing value for one or both 
individuals. Principal Coordinates Analysis (PCoA) can then be applied to the distance matrix 
to deliver the ordination. This approach capitalizes on the observation that PCA and PCoA, 
using Standard Euclidean distance, yield the same visualizations (Cox & Cox, 2001:43-44). 
There are cryptic implications of this approach, not least of which is the disruption of the metric 
and/or Euclidean properties of the distance matrix, so the resultant eigenvalues should be 
examined for negative values. Negative eigenvalues are unlikely unless the frequency of 
missing values is extreme. 

Linkage 

Distance analyses usually assume that each locus contributes independent information to the 
overall distance value (i.e. they segregate independently). With the large genotype arrays 
typical of SNP datasets, some SNP loci are likely to be linked (Waples et al., 2022). In extreme 
cases, linkage disequilibrium can seriously distort the genetic structure, confounding 
interpretation. Large blocks of sequence with limited haplotype variation (presumably a result 
of limited recombination) have been observed in humans (Daly et al., 2001; Patil et al., 2001) 
and plants (Battlay et al., 2022). If many markers have been sequenced in such a haploblock, 
they will be tightly linked, and support for any population structure that they represent will be 
proportionately inflated. This will be evident in a PCA or PCoA as artifactual structure that 
will potentially defy explanation when working with organisms with little genomic 
information. An example of such artifactual structure in a PCA plot generated from linked SNP 
markers is provided by polymorphism in a large inversion in human chromosome 8. SNP 
markers associated with this inversion generate a coordinated signal which manifests as a three-
group pattern, one corresponding to inverted homozygotes, one corresponding to heterozygotes 
and one corresponding to non-inverted homozygotes (Amos & Ma, 2012; Battlay et al., 2022). 
Such an explanation was invoked to explain the disaggregation of individuals of the Australian 
dragon Pogona vitticeps into two mirrored clusters that could not be explained by location of 
capture, sex effects or batch effects (Wild et al., 2022). The signature three-group pattern 
characteristic of a large polymorphic inversion was evident also in a SNP study of genetic 
variation across swamps occupied by the Australian Blue Mountains Water Skink Eulamprus 
leuraensis (Figure 7).  

Linkage arising from SNPs residing on a shared, non-recombining block in the genome can be 
resolved by identifying loci that are strongly correlated with the Principal Component that 
separates out the artifactual groupings and removing those loci from the analysis (Wild et al., 
2022). 
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Relatedness among individuals 

Representing distance between populations on the basis of a sample is subject to random 
sampling error provided the individuals are sampled at random and their genotypes are 
independent. However, systematic errors can arise if some sampled individuals are more 
closely related than are individuals selected at random from their population; these individuals 
can be expected to separate out from the main body of individuals in a PCA or PCoA (Figure 
8a). This can occur if for example, individuals are selected from a single school of fish that 
may be more closely related than individuals chosen at random. The effect can be pronounced 
if parents and their offspring (siblings) are among the sampled individuals (Figure 8a). These 
closely related individuals should be identified and all, but one removed from the analysis. 

 

 

Figure 7. An ordination of SNP genotypes for the Australian Blue Mountains Water 

Skink Eulamprus leuraensis collected from 17 locations with varying levels of 

isolation. The ordination shows the three-group structure characteristic of a large 

autosomal inversion (Amos & Ma, 2012). For sake of illustration, we have assumed 

that the inversion is the least frequent of the two polymorphic states. This 

interpretation remains speculative until sufficient genomic information is available 

for this species to demonstrate the existence of the inversion and to associate the 

SNP loci strongly correlated with PCA 2 to that inversion.  

When comparing two or more populations, relatedness among sampled individuals to 
a greater degree than among individuals in their population as a whole will potentially affect 
the estimate of genetic distance between that population and others. This can lead to 
misinterpretation by artificially displacing the affected population from what otherwise would 
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be a spatio-temporal trend. An important assumption of these analyses is that the sampled 
individuals are drawn at random from their populations and that their genotypes are 
independent. Datasets should be screened and filtered for close familial relationships in studies 
of spatio-temporal genetic variation at the level of populations. Care should also be exercised 
when interpreting clinal structure if the unit of dispersal comprises groups of related individuals 
(Fix, 1997). 

 

 

Figure 8. A series of sub-populations of Emydura macquarii from the northern basin of the Murray-Darling 

drainage (a) in which one subpopulation (central) has two individuals artificially added to be in a parent-offspring 

relationship versus eight individuals in a parent-offspring relationship (b). If such closely related individuals go 

undetected, and are retained, the spatio-temporal distance relationships between populations can be subject to 

misinterpretation. 

Discussion 

Species and populations usually do not constitute a single panmictic unit where individuals 
breed at random over their entire range. Population subdivisions typically exist, which may be 
hierarchically arranged if they reflect patterns of ancestry and descent, or not if they are each 
on independent random walks, perhaps periodically reset by episodic gene flow (Georges et 
al., 2018). Human genomic studies, where contributions of alleles to a phenotype are 
statistically measured using genome-wide association studies, require samples to be from one 
population without any substructure (Uffelmann et al., 2021). However, this is rarely the case 
given that self-reported ancestries and definition of social groups do not always capture the 
underlying genetics owing to admixture resulting in continuous population structure. 
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Genetic distance measures and their ordination using the continuous variation from PCA axes 
can be a powerful way to adjust genotypes and phenotypes based on ancestry to compute 
association statistic (Tian et al., 2008). 

Isolation by geographic distance (Wright, 1943) in a homogenous and continuous 
landscape is perhaps the simplest instance of departure from panmixia in a widespread 
population, and is typically examined by comparing a genetic distance matrix with geographic 
distance between individuals, sub-populations or sampling localities.  FST and Chord Distance 
are often chosen as the measures of genetic distance to examine any relationship with 
geographic distance (Séré et al., 2017). Such a relationship is often used as the null hypothesis 
against which to examine more complicated hypotheses to explain patterns of variation across 
the landscape (Manel et al., 2003; Spear et al., 2015). In particular, isolation by distance can 
be complicated by variation in resistance to gene flow in complex landscapes (McRae, 2006). 
Introduction of the concept of landscape resistance delivers a continuous set of circumstances 
between genetic structure arising from isolation by distance in otherwise freely breeding 
populations, and subdivision between populations of a species where gene flow is absent, rare 
or an episodic event. SNP studies of structure across the landscape typically use Standard 
Euclidean Distance (or Rogers D) for genotype data and Simple Matching Distance or Jaccard 
Distance for fragment presence-absence data. More novel applications of genetic distances 
include stratified sampling of a core collection of specimens from a larger pool of accessions 
to maximally capture genetic diversity (Rogers D: Jansen & van Hintum, 2007) and tracking 
the relationships of SARS-CoV-2 variants (Jaccard D: Yin, 2020). 

While several distance measures are available for different types of genetic data 
(Libiger et al., 2009), the characteristics of data generated as SNP genotypes and restricting the 
scope to contemporary rather than historical processes governing variation among populations, 
dramatically reduce the options from which to select an appropriate distance. SNP markers are 
biallelic in practice, so distinct distance measures in a multiallelic context can become the same 
in a biallelic context. Additionally, symmetry considerations in the arbitrary choice of reference 
and alternate allele eliminate from use of distance measures that treat scores of homozygous 
reference (0) as fundamentally different from scores of homozygous alternate (2). Standard 
Euclidean Distance is typically the default choice of a genetic distance (equivalent to Roger's 
D). It is free of assumptions about the processes that generate the variation and, in the biallelic 
case, does not suffer the distortions that arise in multiallelic data when two populations are 
polymorphic at a site, but share no alleles (Nei & Kumar, 2000:246). Other distance measures 
may be selected because they consider underlying processes of mutation and genetic drift (e.g. 
Chord Distance), even though some lack some fundamental properties of a distance (e.g. Nei's 
D, Reynolds D). Reynold's Distance or Chord Distance for example may be preferred when 
time-dependence of the distances is important, such as when interpretable branch lengths on a 
phenogram are desirable.  

Departures from the properties of a metric distance or Euclidean distance can present 
difficulties in faithfully representing those distances in an ordinated Cartesian space, but this 
can be overstated, as it is likely to be of practical consequence only in extreme cases such as 
when the sum of the negative eigenvalues is of a magnitude comparable to that of the 
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dimensions retained in the final solution (typically top 2 or 3). These departures can be 
diagnosed by examining eigenvalues, and the presence of negative eigenvalues can be 
redressed by simple transformations if required. Essentially, the distortion arising from only 
considering the top two or three dimensions from among a number of informative dimensions 
is likely to greatly exceed the influence of a few negative eigenvalues. 

Binary data generated from the success or failure of sequence tag amplification in 
studies based on representational sequencing with restriction enzymes (e.g. ddRAD, DArTSeq) 
have true absences (0). For data such as these, Euclidean Distance (and its square, Simple 
Matching Distance) are complemented by other distance measures (e.g. Jaccard Distance) that 
down-weight joint absences should this be considered desirable. Consideration needs to be 
given on which state should be considered an absence if applying Jaccard Distance. 

Arguably, missing values, and how they are managed, is the issue with the most 
significant consequences for calculating genetic distances and their visualisation. Classical 
PCA requires a complete input dataset, and filtering missing values requires removal of data 
from entire loci or individuals from the analysis. To overcome unacceptable loss of data, the 
missing values are typically infilled using the global average for the locus concerned. This can 
result in misleading displacement of individuals with high rates of missing data away from 
their natural groupings and toward the global centroid, with the risk of misinterpretation.  It 
can also inflate confidence envelopes for aggregations of entities in a PCA, with serious 
consequences for analyses such as population assignment. We have reviewed the approaches 
to deal with missing values that avoid these distortions, the most effective of which appears to 
be replacement of a missing value with that of the nearest neighbour. Even replacement with a 
random value is preferable to replacement with the global average allele frequency (the most 
common approach) because random values simply add noise to the data which is driven to 
lower dimensions in any ordination. 

Missing values can be managed on a pairwise basis, noting that PCA and PCoA with 
Euclidean Distance yield the same outcome. PCoA is less affected by missing values because 
they are eliminated from the computations taking the entities a pair at a time. However, PCoA 
is not immune to distortion from missing values, as their presence destroys the metric and 
Euclidean properties of the distance measure, and therefore the ability of PCoA to faithfully 
represent the distance matrix in a space defined by Cartesian coordinates. There are also issues 
with the variance of distances calculated locus by locus when the number of values differs 
among loci because of missing values. 

In summary, we recommend selection of a distance measure for SNP genotype data that 
does not give differing outcomes depending on the arbitrary choice of reference and alternate 
alleles, and careful consideration of which state should be considered as zero when applying 
binary distance measures to fragment presence-absence data. Diagnostic examination of 
eigenvalues should be undertaken when a non-metric distance has been selected, or if the 
analysis is to include substantial missing values. Action should be taken if the sum of negative 
eigenvalues is substantial, to avoid distortion in the final visual representation. We strongly 
recommend filtering heavily on missing values, then imputing those that remain to create a full 
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matrix prior to undertaking a distance analysis. Failure to do so can substantially and artificially 
inflate confidence envelopes for populations or aggregations of populations and lead to other 
distortions that can lead to misinterpretation. Screening for closely related individuals (parent-
offspring or sib relationships) is also important, and the impact of polymorphic haploblocks in 
the genomes of target species or populations occasionally emerges as a challenge for studies of 
species with limited genomic information. 
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